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We compute gravitational waves from inspiraling stellar-mass compact objects on the equatorial plane of
a massive spinning black hole (BH). Our inspiral orbits are computed by taking into account the adiabatic
change of orbital parameters due to gravitational radiation in the lowest order in mass ratio. We employ an
interpolation method to compute the adiabatic change at arbitrary points inside the region of orbital
parameter space computed in advance. Using the obtained inspiral orbits and associated gravitational
waves, we compute power spectra of gravitational waves and the signal-to-noise ratio (SNR) for several
values of the BH spin, the masses of the binary, and the initial orbital eccentricity during a hypothetical
three-year Laser Interferometer Space Antenna observation before final plunge. We find that (i) the SNR
increases as the BH spin and the mass of the compact object increase for the BH massM ≳ 106 M⊙, (ii) the
SNR has a maximum for M ≈ 106 M⊙, and (iii) the SNR increases as the initial eccentricity increases
for M ¼ 106 M⊙. We also show that incorporating the contribution from the higher multipole modes of
gravitational waves is crucial for enhancing the detection rate.
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I. INTRODUCTION

The inspirals of stellar-mass compact objects of mass
μ ∼ 1–100 M⊙ into supermassive black holes (SMBHs)
of mass M ∼ 105–107 M⊙ are among the key sources for
the future space-based gravitational-wave detector Laser
Interferometer Space Antenna (LISA) [1] (see, e.g.,
Refs. [2,3] for other future space-based detectors in the
LISA band). Such extreme-mass-ratio inspirals (EMRIs)
are expected to have typically ∼105 orbital cycles
(∼106 rad in gravitational-wave phase) during a few years
of observation by LISA. The observation of gravitational
waves from EMRIs will provide an opportunity of pre-
cision probes of general relativity and information in the
vicinity of SMBHs (see, e.g., Refs. [4,5]). However, for
these research purposes, one has to prepare accurate models
of gravitational waveforms suitable for the data analysis of
gravitational waves from EMRIs.
Since the mass ratio η≡ μ=M is ≲10−3, EMRIs can be

modeled by using black hole (BH) perturbation theory (see,
e.g., Refs. [6,7]). In the limit of the test mass, η → 0, the
compact object follows timelike geodesic orbits in back-
ground Kerr spacetime. At higher order in the mass ratio,
however, the orbit deviates slightly from geodesic orbits
due to the interaction with its own gravitational field,
gravitational self-force (GSF) (see, e.g., Refs. [8–12] and
references therein). Using the two-time-scale expansion

method in Ref. [13], the orbital phase can be expanded with
respect to η as

Φ ¼ 1

η
ðΦð0Þ þ ηΦð1Þ þOðη2ÞÞ; ð1Þ

where Φð0Þ and Φð1Þ are quantities of order unity, and
resonances [14] ofOðη1=2Þ are neglected.Φð0Þ=η denotes the
orbital phase determined by the time-averaged dissipative
part of the first-order GSF, that corresponds to the adiabatic
change of the constants of motion of the geodesics. Φð1Þ

denotes the remaining parts of the self-force. Φð0Þ must be
computed much more precisely than any others because
Φð0Þ=η is the dominant part of the orbital phase.
In order to determine Φð0Þ, one has to compute orbital

inspirals by incorporating the adiabatic change of the
constants of motion, dIi=dt, due to the gravitational-wave
emission, where Ii denotes three constants of motion (see
Sec. II for details). Many numerical results of dIi=dt have
been derived for spherical orbits [15–17], eccentric-
equatorial orbits [18–20], and eccentric-inclined orbits
[21–23]. The orbital phase Φð0Þ=η is also computed for
spherical orbits in Ref. [17], but the accuracy in Φð0Þ=η is
worse than 1 rad, which is the minimum accuracy required
for the gravitational-wave modeling suitable for the data
analysis of EMRIs.
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In this paper, we derive adiabatic orbital inspirals on the
equatorial plane of the Kerr BH focusing on the time-
averaged dissipative part of the first-order GSF (i.e., the
lowest-order part in η). We compute the adiabatic evolu-
tion of the inspiral orbits using the osculating geodesics
method [24,25], in which a sequence of geodesic orbits is
assumed to be tangent to the true inspiral orbit at each
moment (see Refs. [26,27] for inspiral orbits including the
conservative part of the first-order GSF in Schwarzschild
spacetime). Our adiabatic inspiral orbits are computed by
taking into account the adiabatic change of the constants
of motion due to the emission of gravitational waves at
each geodesic orbit.
The issue in this line of the study is that numerical

computation for the adiabatic change of Ii for each of ∼105
inspiral orbits is extremely costly, even if we restrict our
attention to equatorial inspirals. Thus, we employ the
following alternative strategy. First, we compute the adia-
batic change of Ii for a number of data points in the semi-
latus rectum, p, and the orbital eccentricity, e. Then, we use
an interpolation method to obtain dIi=dt at arbitrary points
in the phase space of ðp; eÞ, for which dIi=dt are computed
in advance. Using this strategy, we obtain inspiral orbits
and associated gravitational waves with an inexpensive
computational cost.
This paper is organized as follows. In Sec. II, we review

formulations necessary to compute the geodesic motion in
Kerr spacetime and the adiabatic change of the constants
of motion due to the emission of gravitational waves. In
Sec. III, we first summarize our approach to obtain the
adiabatic inspiral orbits using the osculating geodesic
method with interpolated fluxes. Then, we describe the
accuracy for the adiabatic change of constants of motion
numerically derived. The issues to improve the accuracy are
also discussed. Several representative inspiral orbits and
associated gravitational waves are presented in Sec. IV,
paying particular attention to gravitational-wave spectra.
We show the dependence of the gravitational-wave spectra
on the mass and spin of SMBHs and orbital eccentricity of
compact objects. We summarize this paper in Sec. V.
Throughout this paper, we use the geometrical units with
c ¼ G ¼ 1 where c and G are the speed of light and
gravitational constant, respectively.

II. FORMULATION

The purpose of this paper is to explore inspiral orbits of a
stellar-mass compact object of mass μ around a Kerr BH of
mass M ≫ μ. Specifically, we derive gravitational waves
emitted by the orbiting object using the BH perturbation
theory and consider the adiabatic evolution of the orbit due
to the gravitational-wave emission. We use the methods
presented in Refs. [23,28,29], based on the formalism
developed in Refs. [7,30–32], to numerically compute
gravitational-wave fluxes by a stellar-mass object with

bound orbits around a Kerr BH of spin a for large sets of
orbital parameters. Then, one can obtain inspiral orbits by
incorporating the adiabatic change of orbital parameters
due to the gravitational-wave emission. In this paper, we
focus only on the inspirals on the equatorial plane of the
BH as a first step.

A. Bound geodesics

First, we summarize the method to determine the generic
geodesic orbit in Kerr spacetime. Using Boyer-Lindquist
coordinates for the Kerr solution, ðt; r; θ;ϕÞ, and Mino time
[33] λ ¼ R

dτ=ðr2 þ a2 cos2 θÞ, the geodesic equations are
written as �

dr
dλ

�
2

¼ RðrÞ; ð2Þ
�
d cos θ
dλ

�
2

¼ Θðcos θÞ; ð3Þ

dϕ
dλ

¼ ΦrðrÞ þΦθðθÞ; ð4Þ

dt
dλ

¼ TrðrÞ þ TθðθÞ; ð5Þ

where

RðrÞ ¼ ½PðrÞ�2 − Δ½r2 þ ðLz − aEÞ2 þ C�; ð6Þ

PðrÞ ¼ ðr2 þ a2ÞE − aLz; ð7Þ

Θðcos θÞ ¼ C − ðC þ a2ð1 − E2Þ þ L2
zÞ cos2 θ

þ a2ð1 − E2Þ cos4 θ; ð8Þ

ΦrðrÞ ¼
a
Δ
PðrÞ; ð9Þ

ΦθðθÞ ¼
Lz

1 − cos2 θ
− aE; ð10Þ

TrðrÞ ¼
r2 þ a2

Δ
PðrÞ; ð11Þ

TθðθÞ ¼ −a2Eð1 − cos2 θÞ þ aLz; ð12Þ

and Δ ¼ r2 − 2Mrþ a2. E, Lz, and C are constants that
denote the specific energy, the z component of the specific
angular momentum, and the Carter constant of a stellar-
mass compact object, respectively. The geodesic orbits in
Kerr spacetime can be characterized by these three con-
stants of motion (E, Lz, C). In the following, we often refer
to these three constants in a vector form as Ii.
One can also use another set of three parameters, the

semilatus rectum p, the orbital eccentricity e, and the
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inclination angle θinc, to characterize the geodesics for
bound orbits. These parameters are related to turning points
of the radial motion, rmax and rmin, and the polar motion,
θmin, via

p ¼ 2rmaxrmin

rmax þ rmin
; e ¼ rmax − rmin

rmax þ rmin
; ð13Þ

and θinc ¼ π=2 − ðsgnLzÞθmin. Note that rmin is written as
p=ð1þ eÞ and the minimum value of rmin is written as
2M − aþ 2M1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − a

p
, which is realized for the margin-

ally bound orbit [34]. (E, Lz, C) are written as functions of
(p, e, θinc) using the method in Ref. [35]. In the following,
we refer to (p, e, θinc) as Ji.
Using Ji, the radial and polar motions can be para-

metrized by

rðλÞ ¼ p
1þ e cos½χðλÞ − χ0�

;

cos θðλÞ ¼ cos θinc cos½ψðλÞ − ψ0�; ð14Þ

where χðλÞ and ψðλÞ are monotonic parameters that run
from 0 to 2π over one radial and polar cycle, respectively.
χ0 and ψ0 take the values of χ and ψ at r ¼ rmin and
θ ¼ θmin, respectively. In the osculating geodesic method,
the inspiral orbit under the GSF is described by the
evolution of p, e, θinc, χ0, and ψ0. The principal orbital
elements p, e, and θinc evolve due to the dissipative part of
the GSF, while the positional orbital elements χ0 and ψ0

evolve due to the conservative part of the GSF.
Since the equations of radial and polar motion are

decoupled in Eqs. (2) and (3), for the bound orbits, rðλÞ
and θðλÞ become periodic functions that are independent of
each other. The fundamental periods for the radial and polar
motion, Λr and Λθ, are calculated by

Λr ¼ 2

Z
rmax

rmin

drffiffiffiffiffiffiffiffiffi
RðrÞp ; Λθ ¼ 4

Z
cos θmin

0

d cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðcos θÞp ;

ð15Þ

and thus, the angular frequencies of the radial and polar
motion become

ϒr ¼
2π

Λr
; ϒθ ¼

2π

Λθ
: ð16Þ

ϒr and ϒθ can be expressed in complete elliptic integrals
of the first kind; see, e.g., Refs. [23,36].
We define the angle variables as wr ¼ ϒrλ and

wθ ¼ ϒθλ. Then, any functions that depend only on r or
θ become periodic with respect to wr or wθ, respectively,
with the period of 2π.
To solve Eqs. (4) and (5), we expand their right-hand

sides into Fourier series as [37]

dt
dλ

¼
X
k;n

Tk;ne−ikϒrλe−inϒθλ; ð17Þ

dϕ
dλ

¼
X
k;n

Φk;ne−ikϒrλe−inϒθλ; ð18Þ

where

Tk;n ¼
Z

2π

0

dwr

2π

Z
2π

0

dwθ

2π
ðTrðrÞ þ TθðθÞÞeikwreinwθ ;

ð19Þ

Φk;n ¼
Z

2π

0

dwr

2π

Z
2π

0

dwθ

2π
ðΦrðrÞ þΦθðθÞÞeikwreinwθ :

ð20Þ

Since Tk;n ¼ 0 and Φk;n ¼ 0 for k ≠ 0 and n ≠ 0, we have

dt
dλ

¼ Γþ
X
k≠0

Tk;0e−ikwr þ
X
n≠0

T0;ne−inwθ ; ð21Þ

dϕ
dλ

¼ ϒϕ þ
X
k≠0

Φk;0e−ikwr þ
X
n≠0

Φ0;ne−inwθ ; ð22Þ

where

Γ≡ T00 ¼ ϒtðrÞ þϒtðθÞ ;

ϒϕ ≡Φ00 ¼ ϒϕðrÞ þϒϕðθÞ ;

ϒtðrÞ ¼
1

2π

Z
2π

0

dwrTr; ϒtðθÞ ¼
1

2π

Z
2π

0

dwθTθ;

ϒϕðrÞ ¼ 1

2π

Z
2π

0

dwrΦr; ϒϕðθÞ ¼ 1

2π

Z
2π

0

dwθΦθ:

ð23Þ

Then, we obtain the functions tðλÞ and ϕðλÞ by integrating
Eqs. (21) and (22) in the following forms:

tðλÞ ¼ Γλþ
X
k≠0

iTk;0

kϒr
e−ikwr þ

X
n≠0

iT0;n

nϒθ
e−inwθ ; ð24Þ

ϕðλÞ ¼ ϒϕλþ
X
k≠0

iΦk;0

kϒr
e−ikwr þ

X
n≠0

iΦ0;n

nϒθ
e−inwθ : ð25Þ

Here, the two variables, Γ and ϒϕ, denote the average rates
of change of t and ϕ as functions of λ, respectively.

B. Secular evolution of orbital parameters

In the Teukolsky formalism [38], the gravitational
perturbation on Kerr spacetime is described in terms of
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the Newman-Penrose variables, Ψ0 and Ψ4, which satisfy
a master equation. The Weyl scalar Ψ4 is related to
gravitational waves at infinity as

Ψ4 →
1

2
ðḧþ − iḧ×Þ: ð26Þ

The master equation for Ψ4 can be separated into radial and
angular parts if we expand Ψ4 in harmonic modes as

ρ−4Ψ4 ¼
X
lm

Z
∞

−∞
dωe−iωtþimφ

−2S
aω
lmðθÞRlmωðrÞ; ð27Þ

where ρ ¼ ðr − ia cos θÞ−1, and −2SaωlmðθÞ is the spin-
weighted spheroidal harmonics with spin s ¼ −2. The
radial function RlmωðrÞ satisfies the so-called Teukolsky
equation,

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ Tlmω; ð28Þ

where the potential term VðrÞ is

VðrÞ ¼ −
K2 þ 4iðr −MÞK

Δ
þ 8iωrþ λlmω; ð29Þ

with K ¼ ðr2 þ a2Þω −ma and λlmω the eigenvalue of

−2SaωlmðθÞ.
The asymptotic behavior of the solution at the horizon

and infinity is written, respectively, as

Rlmωðr → rþÞ≡ ZH
lmωΔ2e−iPr

� ð30Þ

and

Rlmωðr → ∞Þ≡ Z∞
lmωr

3eiωr
�
; ð31Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, P ¼ ω −ma=2Mrþ, and r�

is the tortoise coordinate.
For the bound orbits of a stellar-mass object, the

amplitude of the partial wave Z∞=H
lmω , defined in Eqs. (30)

and (31), can be expanded as

Z∞;H
lmω ≡X

kn

Z̃∞;H
lmknδðω − ωmknÞ; ð32Þ

where

ωmkn ≡ ðmϒϕ þ kϒθ þ nϒrÞ=Γ: ð33Þ

Using these functions, gravitational waves at infinity are
expressed as

hþ− ih×¼−
2

r

X
lmkn

Z̃∞
lmkn

ω2
mkn

−2S
aωmkn
lm ðθÞffiffiffiffiffiffi
2π

p eiωmknðr�−tÞþimϕ: ð34Þ

In addition, the adiabatic change for (E, Lz, C) due to the
emission of gravitational waves are expressed as [33,39,40]�
dE
dt

�
¼ −μ2

X
lmkn

1

4πω2
mkn

ðjZ̃∞
lmknj2 þ αlmknjZ̃H

lmknj2Þ;

ð35Þ�
dLz

dt

�
¼ −μ2

X
lmkn

m
4πω3

mkn

ðjZ̃∞
lmknj2 þ αlmknjZ̃H

lmknj2Þ;

ð36Þ�
dC
dt

�
¼

�
dQ
dt

�
− 2ðaE − LzÞ

�
a

�
dE
dt

�
−
�
dLz

dt

��
;

ð37Þ�
dQ
dt

�
¼ 2ϒtðrÞ

�
dE
dt

�
− 2ϒϕðrÞ

�
dLz

dt

�

þ μ3
X
lmkn

nϒr

2πω3
mkn

ðjZ̃∞
lmknj2 þ αlmknjZ̃H

lmknj2Þ;

ð38Þ
where

αlmkn¼
256ð2MrþÞ5PðP2þ4ϵ2ÞðP2þ16ϵ2Þω3

mkn

CTS
lmkn

; ð39Þ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=4Mrþ, and CTS

lmkn is the Teukolsky-
Starobinsky constant [41] (see Ref. [42] for the scalar
case). Here h� � �i denotes the time average. We note that
Z̃∞
lmkn and Z̃H

lmkn in Eqs. (35)–(38) denote fluxes at infinity
and the horizon, respectively.
Once we obtain the adiabatic change of Ii, we can derive

the adiabatic change of Ji using

�
dJi

dt

�
¼ ðG−1Þij

�
dIj

dt

�
; ð40Þ

where Gi
j ¼ ∂Ii=∂Jj. In this paper, we consider the case of

C ¼ 0, and thus, dC=dt ¼ 0 (dθinc=dt ¼ 0).

III. OURMETHOD TO OBTAIN INSPIRAL ORBITS

The purpose of this paper is to derive adiabatic inspiral
orbits and associated gravitational waves. We ignore the
change in the mass and spin of the BH due to the absorption
of gravitational waves because they are small effects. In
order to obtain the adiabatic inspiral orbits, we construct
a sequence of the osculating orbits [24,25], which are
assumed to be tangent to the true inspiral orbit at each
instance. We ignore the evolution of the positional orbital
elements, which is one of the higher-order effects in the mass
ratio (see Refs. [24,25] for a method to include the evolution
of the positional orbital elements). We incorporate the
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adiabatic change of the constants of motion due to the
emission of gravitational waves for each geodesic orbit.
Then, the error in our inspiral orbit from the true inspiral
orbit is of OðηÞ, which is caused by higher-order effects
ignored in this paper. The evolution of ðp; eÞ is calculated by
determining ðhdp=dti; hde=dtiÞ from Eq. (40) for fixed
values of M and qð¼ a=MÞ: dimensionless spin parameter.
In the following, we refer to q simply as the BH spin.

A. Procedure for determining inspiral orbits

For the numerical evolution of p, i.e., pðtÞ, using
interpolated gravitational-wave fluxes, we take a Euler
step as pðtþ ΔtÞ ¼ pðtÞ þ hdp=dtiΔt, where Δt is a time
step and hdp=dti is computed from Eq. (40). In this paper,
we choose Δt ¼ p=hdp=dtiϵt, where ϵt ≈ 10−4. In order to
estimate the relative error of pðtÞ, we compare pðtÞ by
setting ϵt ¼ 10−4 with a reference solution for pðtÞ
obtained by setting ϵt ¼ 10−6. We find that the relative
error in pðtÞ by setting ϵt ¼ 10−4 is about OðϵtÞ, i.e., 10−4.
In Sec. IV, we find that the power spectra and the signal-to-
noise ratio (SNR) for typical EMRIs span about a few
orders of magnitude. The error of 10−4 in the inspiral orbits
is acceptable for computing power spectra of gravitational
waves and the SNR within the error of 10−3, although the
error size in the adiabatic change needs to be better than
10−6 to suppress the error in the total orbital phase less than
1 rad (see discussion below). We note that the above
procedure can be straightforwardly extended to the higher-
order BH perturbation theory in η.

It is feasible to numerically calculate the adiabatic change
of the constants of motion only for a restricted number of
parameter sets of ðp; eÞ in reasonable computational time.
Thus, we first compute them for the restricted data points and
use an interpolation method to obtain ðhdp=dti; hde=dtiÞ at
arbitrary points inside the region of the defined parameter
space of ðp; eÞ. Then, we obtain an inspiral orbit using the
interpolated values of ðhdp=dti; hde=dtiÞ. We employ a
fifth-order Lagrange interpolation [43], both in p and e, for
this. We note that the similar method is employed, e.g., in
Ref. [27] for the local fitting of gravitational self-force in
Schwarzschild spacetime.
In this paper, we compute ðhdp=dti; hde=dtiÞ for

≈18000 data points in the ðp; eÞ space for each value
of q. The number of the sampling points for p is 256 for
the range of pISO ≤ p ≤ 30M with a log-even spaced grid.
Here, pISO denotes p at the innermost stable orbit for each
value of q. For e, the sampling point is chosen to be
e ¼ 0.005, 0.01, and 0.0125 ≤ e ≤ 0.925 with the grid
spacing Δe ¼ 0.0125 (the total number is 76). The total
computational cost for determining the gravitational-wave
fluxes with these sampling points and jqj ¼ 0, 0.1, 0.3, 0.5,
0.7, and 0.9 is about 20 d using ∼400 processors with
∼2.6 GHz clock speed.
Figure 1 illustrates the results for inspiral orbits deter-

mined by the above procedure for q ¼ 0.5 and e0 ¼ 0.5
with M ¼ ð105; 106; 107 M⊙Þ and μ ¼ ð1.4; 10; 30 M⊙Þ.
Here, e0 denotes the initial orbital eccentricity. We plot the
evolution of p and the number of orbital cycles Nϕ for the
last 3 years before plunge of a stellar-mass compact object
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FIG. 1. Top panels show the evolution of the semilatus rectum p as a function of time for the last 3-year inspirals before plunge with
q ¼ 0.5,M ¼ 105 M⊙ (left), 106 M⊙ (middle), and 107 M⊙ (right), and the initial orbital eccentricity e0 ¼ 0.5. Bottom panels show p
as a function of orbital cycles for the last 3-year inspirals before plunge with the same parameters (q, e0, μ, M) as in the top panels.
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into SMBHs. This figure shows that the lifetime of the
EMRIs becomes 3 years for the cases that p=M ≈ 5–20,
depending on the masses of the SMBH and compact star.
It also shows that the typical total cycles of the orbit is
Nϕ ∼ 105 (i.e., the typical total phase of gravitational waves
is∼106 rad) for the last 3-year inspiral orbits before plunge.
Thus, if we require that the error in a gravitational-wave
phase model is smaller than 1 rad, the error of the
gravitational-wave fluxes has to be within 10−6.

B. Accuracy of gravitational-wave fluxes

The adiabatic change of the orbital parameters is
computed from gravitational-wave fluxes, i.e., Z̃∞=H

lmn , where
we omit the k-mode because we focus on the equatorial
orbits. For the computation of Z̃∞=H

lmn , one needs to integrate

−2SaωlmðθÞ and RlmωðrÞ with the source term Tlmω along a
geodesic orbit. We use the numerical methods developed in
Refs. [28,29] to compute −2SaωlmðθÞ and RlmωðrÞ. One can
compute them with the machine precision in most cases.
However, in some cases, the accuracy of RlmωðrÞ is limited
by that of the so-called renormalized angular momentum ν
introduced in Refs. [30–32]: it is infeasible to accurately
determine ν for large values of Mω, typically Mω > 3 for
ðl; mÞ ¼ ð2; 2Þ in double precision calculation [28,29]
(see, however, Refs. [44–47] which useMathematica codes
to determine ν in high precision, ∼100 decimal places).
Since the high-frequency modes play an important role, it
becomes challenging to accurately compute gravitational-
wave fluxes for compact orbits (with small values of rmin),
in particular for the high BH spin of q≳ 0.9.
We use the trapezium rule, which has an excellent

convergence property to integrate periodic functions, to
derive Z̃∞=H

lmn [23,47]. We choose the maximum number of
the grid points in the trapezium rule as 214 þ 1 to save
computational time. In Ref. [23], with this number of the
grid points, it is found that one can compute dIi=dt with
the accuracy of 10−10 for q ¼ 0, p ¼ 10M, and e ¼ 0.9.
However, the numerical accuracy is not as good as this level
for a high value of q≳ 0.9 as we find in the present work.
To summarize, the numerical accuracy in Z̃∞=H

lmn is currently
limited by that of ν and the number of the grid points used
in the trapezium rule for a high value of q ≳ 0.9. Improving
the accuracy for this special case is the issue left for the
future work.
The numerical accuracy in the gravitational-wave fluxes

is also limited by truncating the mode summation in
Eqs. (35) and (36). In the present work, the mode
summation in the fluxes, Eqs. (35) and (36), is performed
until the error becomes smaller than 10−6 at least for
p ≥ 6M and e ≤ 0.8. We choose this error size because the
total cycle of gravitational waves during a few years of
LISA observation is of the order of 105 as already
illustrated in Fig. 1.

The mode summation in Eqs. (35) and (36) is
expressed as

F ¼
X∞
l¼2

Fl; ð41Þ

Fl ¼
Xl
m¼−l

Flm; ð42Þ

Flm ¼ 2
X∞
n¼ni

Flmn; ð43Þ

where ni is the minimum integer which satisfies
mϒϕ þ niϒr > 0, and

F ¼
�
dE
dt

�
or

�
dLz

dt

�
: ð44Þ

In Eq. (43), we used the relation of Flmn ¼ Fl−m−n to take
into account the modes of Mω < 0.
We truncate the l-summation in Eq. (41) by choosing a

maximum value of l as lmax. Then, F is written as

F ¼
Xlmax

l¼2

Fl þ δFlmax
; ð45Þ

where δFlmax
is the error due to restricting the l-summation

up to l ¼ lmax. The reason that we set the maximum value
of l is that for very high values of l≳ lmax, the value of ν
cannot be numerically calculated accurately. As mentioned
above, this problem could be fixed if we can improve the
precision for the numerical calculation of ν.
Figure 2 shows the energy flux of gravitational waves,

Fl, as a function of l for q ¼ 0.5 and e ¼ 0.5. Fl
decreases approximately exponentially with the increase
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/�
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l
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FIG. 2. Gravitational-wave energy flux (Fl) as a function of l
for q ¼ 0.5, e ¼ 0.5, and p ¼ 5.0M, 6.0M, 10.0M, and 20.0M.
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of l, but the decrease rate becomes less steep for smaller
values of p. If we assume the exponential decrease of Fl
in l, the error size by the truncation of the higher-l modes,
δFlmax

, can be estimated as

δFlmax
¼ F

X∞
l¼lmaxþ1

e−αl ¼ F
e−αlmax

eα − 1
; ð46Þ

where α is a positive constant.
In this paper, the maximum value of l is set to be

lmax ¼ 25. This implies that δFlmax
=F is less than 10−6

for α≳ 0.6. Figure 3 shows α as a function of rmin for
q ¼ −0.5 (left), 0 (middle), and 0.5 (right) with several
values of e. We find that the value of α is larger than 0.6 for
any stable orbits with q≲ 0.5 for which the minimum value
of the orbital radius, rmin, is larger than ∼3M. Hence, we
conclude that the error due to restricting the l-summation
up to lmax ¼ 25 in the energy dissipation rate for q ≲ 0.5 is
less than 10−6. However, lmax ¼ 25 is not large enough to
achieve the required error size for orbits close to the
separatrix with q≳ 0.6.
The summation over the n-modes in Eq. (43) is approxi-

mated as

Flm ¼ 2
Xnf
n¼ni

Flmn; ð47Þ

where nf is determined by Flmnf < 10−6F. We note that
the values of n for the dominant modes of Flmn shifts to
larger values of n for larger values of l and e (see
Refs. [21,23]), and Flmn decreases exponentially with
the increase of n after the dominant mode of Flmn is
reached [21,23]. In this paper, the maximum value of nf is
set to be 1000. This choice is large enough for the orbits
with e≲ 0.8.
Figure 4 shows the energy spectrum during the 3-year

inspiral before plunge for q ¼ 0.5 and e0 ¼ 0.6 with
M ¼ 106 M⊙ and μ ¼ 10 M⊙. The values of ðp; eÞ take
ð10.1M; 0.60Þ at the beginning, ð8.9M; 0.50Þ at 1.5 years,
and ð4.6M; 0.24Þ at the plunge, respectively. We note that
the number of the n-modes necessary for the required

accuracy for fixed values of ðl; mÞ decreases as approach-
ing the separatrix because of the circularization of the
orbital eccentricity (see, e.g., Figs. 6 and 7). By contrast,
the number of the l-modes necessary for the required
accuracy increases with the orbital evolution, because the
value of rmin decreases and relativistic effects are enhanced
with the orbital evolution. To achieve the relative error in
the energy dissipation rate within 10−6, the maximum
values of ðl; nÞ become (18,109), (19,76), and (24,42) at
the beginning, 1.5 years, and the plunge, respectively.
To confirm the validity of the interpolation, the relative

error in the interpolated energy flux is estimated by
comparison with numerical data independent of those used
for the interpolation, and the results are shown in Fig. 5.
This shows that the error is smaller than 10−6 for
rmin ¼ p=ð1þ eÞ≳ 3M. Thus, the required accuracy is
always achieved for q ≤ 0.5. As already mentioned, the
accuracy is also limited by the accuracy of ν, the number of
the grid points used in the trapezium rule, and the
truncation with respect to the l-summation. By these
limitations, the accuracy with the error less than 10−6

is not achieved for the compact orbits of rmin ≲ 3M.
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FIG. 3. α as a function of rmin for q ¼ −0.5 (left), 0 (middle), and 0.5 (right).
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FIG. 4. The energy spectrum during the 3-year inspiral before
plunge for q ¼ 0.5 and e0 ¼ 0.6 with M ¼ 106 M⊙ and
μ ¼ 10 M⊙. The values of ðp; eÞ take ð10.1M; 0.60Þ at
t ¼ 0 year, ð8.9M; 0.50Þ at t ¼ 1.5 years, and ð4.6M; 0.24Þ at
t ¼ 3 years, respectively.
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Figure 5 shows the similar feature for the magnitude of the
error associated with the interpolation. This suggests that
the accuracy would be limited by that for the individual
data set, not by the interpolation. To conclude, currently, for
the case that the value of rmin is smaller than 3M (i.e., for
q≳ 0.6), the accuracy of 10−6 is not achieved due to the
error of the individual data set.
Here, we should note the following point: the lifetime of

the binaries with an orbit near the separatrix to plunge is so
short that the total cycle of the orbits is at most 104 (see
Fig. 1). This indicates that for such compact orbits, the
accuracy of ≲10−5 would be acceptable. Thus, in this
paper, we believe that the accuracy of our numerical results
for the inspiral orbits is acceptable for q ≤ 0.7. However,
for q ≥ 0.9, we should keep in mind that the accuracy is not

sufficient. Improving the accuracy for the case of q close to
unity is the issue to be solved in the future work.

IV. RESULTS

In this section, we present inspiral orbits and corre-
sponding gravitational-wave spectra for the typical EMRIs
as sources of LISA using the procedure described in
Sec. III. We also calculate the SNR of gravitational waves
for such EMRIs using the LISA’s designed sensitivity
curve.

A. Inspiral orbits

Figures 6 and 7 illustrate the inspiral orbits showing the
orbital eccentricity e as a function of the semilatus rectum
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FIG. 5. Relative error in the interpolated energy flux, ΔE, for q ¼ −0.9, −0.5, 0.0, 0.5, 0.7, and 0.9. The error is estimated by
comparison with numerical data independent of those used for the interpolation. The error is smaller than 10−6 for
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FIG. 6. The orbital eccentricity e as a function of the semilatus rectum p for inspiral orbits from p0 ¼ 11.4M to the separatrix with
q ¼ 0, 0.1, 0.3, 0.5, 0.7, and 0.9. The initial orbital eccentricity is chosen to be e0 ¼ 0.2 (left), 0.5 (middle), and 0.8 (right). The dashed
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p for several values of (q, p0, e0). Here, p0 and e0 are the
initial semilatus rectum and the initial orbital eccentricity,
respectively. In Fig. 6, the inspirals start from p0 ¼ 11.4M
to the separatrix with e0 ¼ 0.2 (left), 0.5 (middle), and 0.8
(right) for q ¼ 0 to 0.9. We note that in our assumption
imposed in this paper, the curves eðpÞ do not depend onM
and μ [48]. It takes ∼100 M2=μ for q ¼ −0.5, ∼190 M2=μ
for q ¼ 0, and ∼300 M2=μ for q ¼ 0.5 from p0 ¼ 11.4M
to the plunge with e0 ¼ 0.2 (cf. also Fig. 17). Here,
∼300 M2=μ is ∼5 years for M¼106M⊙ and μ¼10M⊙.
We note that the inspiral time becomes longer for the larger
BH spin with fixed values of p0 and e0 because p at the
separatrix becomes smaller. The inspiral time also becomes
longer for the larger values of e0 with a fixed value of p0,
because the adiabatic change of p (i.e., hdp=dti) becomes
smaller for larger values of e with a fixed value of p [48].
Figure 6 shows that the circularization of the orbital
eccentricity occurs for the most stages of the inspiral,
but the eccentricity slightly increases near the separatrix as
already found in Refs. [19,20,23,26,27].
Figure 7 compares the inspiral orbits with p0 ¼ 7.0M

(left), 11.4M (middle), and 29.0M (right), fixing q ¼ 0.5,
but varying e0 from 0.8 to 0.2. This also shows that the
orbits always circularize in the early inspiral, but the
eccentricity increases as approaching the separatrix. For
the larger value of p0, the plunge occurs for a small value
of p, which is approximately equal to the radius of the
innermost stable circular orbit. Thus, for the case that p0=M
is fairly large ∼30, the circularization occurs significantly
even for e0 ¼ 0.8 and results in the nearly circular orbits
just before the plunge. For relatively small SMBH mass,
e.g.,M ∼ 105 M⊙, the inspiral proceeds from p0 ≈ 30M to
the plunge in a few years for μ ∼ 10 M⊙. For such a case,
the final orbit is likely to be nearly circular even if e0 is
initially high as e0 ¼ 0.8. By contrast, for a higher value of
M, the inspiral time of stellar-mass object is a few years
even if p0 is smaller than 10M. For the small value of p0,
the eccentricity does not change significantly until the
plunge orbit is reached. Thus, such a plunge orbit could
have a large eccentricity if e0 at p < 10M is so. We note
that the two-body relaxation in star clusters of the galactic
centers could produce highly eccentric EMRIs with

p ≤ 10M in the LISA band that do not plunge immediately
because the value of p at the separatrix becomes smaller
than that of a Schwarzschild BH if one takes into account
the BH spin [49].

B. Gravitational-wave spectra and SNR

Following Ref. [50], the squared SNR averaged over all
source directions is defined by

SNR2 ¼ 4

Z
∞

0

dðlog fÞ
�
heffðfÞ
hnðfÞ

�
2

; ð48Þ

where hnðfÞ is the noise amplitude and heffðfÞ is the power
spectrum defined below. The noise amplitude is defined by
hnðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
[51], where SnðfÞ is the one-sided noise

power spectral density. In this paper, SnðfÞ is taken to be
the analytic form of the LISA’s designed sky-averaged
sensitivity presented in Ref. [4].
The power spectrum is defined by the summation of the

power spectrum for l, hleff , as

heffðfÞ ¼
X
l

hleffðfÞ; ð49Þ

where

hleffðfÞ ¼
X
mn

hlmn
eff ðfÞ; ð50Þ

and hlmn
eff ðfÞ is estimated by [50]

hlmn
eff ðflmnÞ ¼

1

πD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_2Elmn

_flmn

s
: ð51Þ

Here, the dot denotes the time derivative, D is the distance
to the source, _Elmn is the energy flux to infinity due to the
emission of gravitational waves at frequency flmn, which is
defined as

flmn ¼
mϒϕ þ nϒr

2πΓ
≡mfϕ þ nfr; ð52Þ
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where Eq. (33) is used. fϕ and fr are the frequencies of the
azimuthal and radial motion, respectively. In our inspiral
orbits, fϕ and fr can be computed at each time step by

using pðtÞ and eðtÞ. We then compute _flmn from
Δflmn=Δt, where Δt is the time step for evolving the
orbital motion and Δflmn ¼ flmnðtþ ΔtÞ − flmnðtÞ (see
Sec. III A for our choice of the time step). We use ≈100
frequency bins to smooth the modal power spectrum
hlmn
eff ðfÞ. We compute hlmn

eff ðfÞ for the modes of l¼2–4,
−l ≤ m ≤ l, and n0 ≤ n ≤ n0 þ 45 where n0 ¼ −m. We
choose this value of n0 in order to compute the SNR with
the relative error of ≲10%. We check the error by varying
n0 from 10 to 60. For e0 ¼ 0.4 and l ¼ 2, n0 ¼ 10 is
sufficient to compute the SNR with such accuracy.
However, we need a larger value of n0 for higher values
of e0 and l [21,23]. For e0 ¼ 0.8 and l ¼ 2 (l ¼ 4), we
need n0 ¼ 30 (n0 ¼ 45) to compute the SNR with the error
of ≲10%. The power spectrum heffðfÞ is computed by
summing all the modes of hlmn

eff ðfÞ at each frequency bin.
In Fig. 8, we compare the power spectrum for l ¼ 2

derived from our numerical results with those obtained by
Kludge models [52–55] as a consistency check. The power
spectra for the kludge models are obtained in the following
manner. First, we compute the time domain gravitational
waveforms using the EMRI Kludge Suite in the Black
Hole Perturbation Toolkit [56]. The public code enables
us to compute the inspiral orbits, the time domain wave-
forms, and the SNR for given parameters such as
ðq; p0; e0; μ;M;D; T;ΔtÞ, where T is the duration of the
waveform and Δt is a time step. The waveforms are given

by LISA response functions hI and hII, which are trans-
formed from the waveform polarizations hþ and h× as

hI ¼
ffiffiffi
3

p

2
ðFþ

I hþ þ F×
I h×Þ;

hII ¼
ffiffiffi
3

p

2
ðFþ

IIhþ þ F×
IIh×Þ; ð53Þ

where FI and FII are the antenna pattern functions [57]. We
choose Δt ¼ 63 s to compute the inspiral orbits and the
time domain waveforms, which are constructed fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2I þ h2II

p
. We then perform Fourier transformation for

the time domain waveforms of the kludge models into
the frequency domain and smooth heffðfÞ by using 100
frequency bins.
The power spectra are computed for a 10 M⊙ compact

object inspiraling around a 106 M⊙ SMBH of spin q ¼ 0.5
at D ¼ 1 Gpc during the last 3-year inspiral before plunge.
For this setting, the inspiral starts from p0 ¼ 10.3M with
e0 ¼ 0.2. We compute the power spectra heffðfÞ for the
numerical kludge (NK) model [52,53] and the augmented
analytic kludge (AAK) model [54]. Here, in the NK, the
orbital motion is determined by solving the geodesic
equation with the gravitational radiation reaction based
on post-Newtonian (PN) formulas [58], which are fitted to
the BH perturbation theory. In the AAK, the orbital motion
is determined by solving the geodesic equation with the
gravitational radiation reaction based on PN formulas in the
BH perturbation theory [59]. Gravitational waveforms are
determined from the resulting orbits using the quadrupole
formula [60] both in the NK and AAK models.
Figure 8 shows that the power spectrum for the l ¼ 2

mode derived in our calculation is closer to the one by the
NK model than that by the AAK model. This is consistent
because the NK model should be more accurate than the
AAK model. In Fig. 8, the LISA’s designed sky-averaged
sensitivity written in an analytic form [4] is also shown. It is
found that for EMRIs with μ ¼ 10 M⊙ together with an
SMBH of M ¼ 106 M⊙ and of q ¼ 0.5 at D ¼ 1 Gpc, the
SNR is of the order of 10 (more details on the SNR will be
presented below).
The power spectra for l ¼ 3 and 4 modes derived in our

calculation are also shown in Fig. 8. This illustrates that the
modes with l ¼ 3 and 4 have the amplitude approximately
by 40% and 20% as large as that for the l ¼ 2 mode,
respectively (see also Fig. 13 for the SNR associated with
the l ¼ 3 and l ¼ 4 modes). This is reasonable because
the orbit which we consider here is very general relativistic,
and hence, the orbital velocity can be ≈50% of the speed of
light, resulting in the enhancement of the higher multipole
modes. We note that the amplitudes for the l ≥ 5modes are
less than 10% of that for the l ¼ 2 mode. We ignore the
amplitudes for the l ≥ 5 modes because they are smaller
than hnðfÞ for e0 ⪅ 0.8.
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FIG. 8. Power spectra with l ¼ 2 for numerical kludge (NK)
[52,53], augmented analytic kludge (AAK) [54], and Teukolsky
(this work) models for a 10 M⊙ compact object inspiraling
around a 106 M⊙ SMBH of spin q ¼ 0.5 at D ¼ 1 Gpc during
the last 3-year inspiral before plunge. We consider the inspiral
with p0 ¼ 10.3M and e0 ¼ 0.2. The amplitudes in the Teukolsky
model for l ¼ 3 and 4 modes are also shown. The curve hnðfÞ
shows the LISA’s designed sky-averaged sensitivity [4].
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To explore the dependence of the spectrum feature on the
initial orbital eccentricity and the BH spin, we generate
Figs. 9 and 10. These figures show the spectra of gravi-
tational waves emitted by a 10 M⊙ compact object
inspiraling around a 106 M⊙ SMBH at D ¼ 1 Gpc for
the last 3-year inspiral before plunge for a variety of q and
e0. In Fig. 9, the BH spin is fixed to be q ¼ 0.5, while e0 is
varied from 0.2 to 0.8. The values of p0 take 10.33M,
10.28M, 10.11M, and 9.58M for e0 ¼ 0.2, 0.4, 0.6, and
0.8, respectively. As the initial eccentricity increases, the
maximum frequency of gravitational waves becomes
higher, because with the large eccentricity, the minimum
value of rmin is smaller resulting in the excitation of the
higher frequency modes (see Fig. 7 and Ref. [55]): e.g., for
l ¼ m ¼ 2, the n ¼ 0 mode is dominant for e0 ≲ 0.1,
while the n ¼ 0 and 1 modes are equally dominant for
e0 ≈ 0.3 and the n ¼ 2 and 3 modes become dominant
for e0 ≈ 0.7.

We find that the maximum value of heffðfÞ increases as
the value of e0 increases (see also Fig. 13 for the SNR as a
function of e0). The reason for this is that rmin decreases
with the increase of e0, resulting possibly in the enhance-
ment of the gravitational-wave amplitude. Moreover, we
need to sum over larger number of n-modes as the value of
e0 increases, and hence, the maximum value of heffðfÞ at a
peak frequency increases. Indeed, the power spectrum
becomes broader in frequency as the value of e0 increases.
In Fig. 10, the initial orbital eccentricity is fixed to be

e0 ¼ 0.4, while the BH spin is varied from q ¼ 0 to 0.9. The
values of p0 take 11.38M, 11.15M, 10.71M, 10.28M,
9.83M, and 9.41M for q ¼ 0, 0.1, 0.3, 0.5, 0.7, and 0.9,
respectively. The frequency of gravitational waves at plunge
becomes higher as the BH spin increases because the
minimum value of rmin becomes smaller (see Fig. 6). We
also note that the maximum value of the power spectrum
becomes larger for the larger BH spin (see Fig. 13 for the SNR
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FIG. 9. Power spectra for l ¼ 2, 3, and 4 induced by a 10 M⊙ compact object inspiraling around a 106 M⊙ SMBH of spin q ¼ 0.5 at
D ¼ 1 Gpc for the last 3-year inspiral before plunge. The initial orbital eccentricity is chosen to be e0 ¼ 0.2 (top left), 0.4 (top right), 0.6
(bottom left), and 0.8 (bottom right). The values of p0 take 10.33M, 10.28M, 10.11M, and 9.58M for e0 ¼ 0.2, 0.4, 0.6, and 0.8,
respectively. Complicated structures in the amplitude can be understood by noting contributions from higher radial modes (n-modes) to
gravitational waves (see, e.g., Ref. [55]). The curve hnðfÞ shows LISA’s designed sky-averaged sensitivity [4].
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as a function of q). The reason for this is that for the larger BH
spin, the more compact orbits with smaller values of rmin is
allowed, and for such orbits, gravitational waves of the high
amplitude can be emitted due to the more relativistic motion.

Figure 11 shows the power spectra for a compact
object of mass μ ¼ ð1.4; 10; 30Þ M⊙ inspiraling around
an SMBH of mass 106 M⊙ at D ¼ 1 Gpc during the last
3-year inspiral with e0 ¼ 0.6. The BH spin is varied from
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FIG. 10. The same as Fig. 9, but for e0 ¼ 0.4, and q ¼ 0 (top left), 0.1 (top middle), 0.3 (top right), 0.5 (bottom left), 0.7 (bottom
middle), and 0.9 (bottom right). The values of p0 take 11.38M, 11.15M, 10.71M, 10.28M, 9.83M, and 9.41M for q ¼ 0, 0.1, 0.3, 0.5,
0.7, and 0.9, respectively.
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FIG. 11. Power spectrum summed over the l ¼ 2–4 modes for a compact object of mass μ ¼ ð1.4; 10; 30Þ M⊙ inspiraling around an
SMBH of M ¼ 106 M⊙ with q ¼ −0.7 (left), 0 (middle), and 0.7 (right) at D ¼ 1 Gpc during the last 3-year inspiral with e0 ¼ 0.6.
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FIG. 12. The same as Fig. 11, but for μ ¼ 10 M⊙ and M ¼ ð105; 106; 107Þ M⊙.
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q ¼ −0.7 to 0.7. For q ¼ 0.7 (−0.7), the values of p0 take
6.3M (10.8M), 9.6M (12.9M), and 12.5M (15.2M) for
μ ¼ 1.4 M⊙, 10 M⊙, and 30 M⊙, respectively. Both the
frequency of gravitational waves and the power spectra
become higher as the BH spin increases. The power spectra
increase as μ increases, and the maximum amplitudes are
approximately proportional to

ffiffiffi
μ

p
.

In Fig. 12, the spectra are shown for a 10 M⊙ compact
object inspiraling around an SMBH of mass
ð105; 106; 107Þ M⊙ at D ¼ 1 Gpc during the last 3-year
inspiral with e0 ¼ 0.6. The BH spin is again varied from
q ¼ −0.7 to 0.7. For q ¼ 0.7 (−0.7), the values of p0 are
16.8M (18.9M), 9.6M (12.9M), and 6.0M (10.6M) for
M ¼ 105 M⊙, 106 M⊙, and 107 M⊙, respectively. The
maximum amplitude of the spectra increases as the BH
mass increases because p0=M becomes smaller and thus
the inspiral orbits are in more highly general relativistic
regions for a longer duration (see Fig. 1). The frequency of
gravitational waves at plunge becomes higher as the BH
mass decreases and the BH spin increases. As a result,
gravitational waves from a compact object around a
107 M⊙ SMBH with q < 0 are not well in the LISA
sensitivity band. In addition, only gravitational waves in an
early part of the inspiral of a compact object into a 105 M⊙
SMBH is above the LISA sensitivity curve. However, for
larger values of e0, the low-frequency tail of gravitational
waves (due to the contribution of low-nmodes) is above the
LISA sensitivity curve and gravitational waves will be
detectable by LISA irrespective of q for M ≈ 105 M⊙ (see
also Fig. 16).
In the left panel of Fig. 13, we show the SNR of

gravitational waves with respect to the LISA sensitivity
curve for l ¼ 2–4 modes for a 10 M⊙ compact object
inspiraling around a 106 M⊙ SMBH at D ¼ 1 Gpc during
the last 3-year inspiral before plunge. The SNR is plotted as
a function of e0 for q ¼ 0.5. It is found that the SNR

increases as e0 increases because larger number of the
n-modes could contribute to the SNR. The SNR for the
l ¼ 2 mode with e0 ¼ 0.8 is ≈80, which is about 4 times
larger than that with e0¼0.1, ≈20. Thus, forM ¼ 106 M⊙,
highly eccentric EMRIs could dominate the detection by
LISA. The right panel of Fig. 13 shows the SNR as a
function of q with e0 ¼ 0.4. As the BH spin increases, the
SNR is significantly increased because the value of rmin
near the separatrix decreases and general relativistic effects
are enhanced. For example, the SNR for the l ¼ 2 mode
with q ¼ −0.9 is ≈12 which is about 24% of the one
with q ¼ 0.9, ≈50. This indicates that rapidly spinning
SMBHs could be more subject to the detection by LISA.
However, this is the special feature for M ≳ 106 M⊙ (see
also Fig. 16).
We also note that the SNR for the l ¼ 3 and 4 modes is

about 40% and 20% of that for the l ¼ 2 mode, respec-
tively. Thus, the detection rate with a template that includes
up to the l ¼ 3 and 4 modes of gravitational waves
becomes 1.43 ≈ 2.7 and 1.63 ≈ 4.1 times larger than that
using only the l ¼ 2 mode, respectively. Obviously, it is
crucially important to take into account the high-multipole
modes in the waveform modeling.
Figures 14–16 show the SNR of gravitational waves

including the l ¼ 2–4 modes with respect to the LISA
designed sensitivity curve for a compact object of mass μ
into an SMBH of mass M at D ¼ 1 Gpc during the last
3-year inspiral before plunge. In Fig. 14, the SNR is shown
as a function ofM for μ ¼ ð1.4; 10; 30Þ M⊙ with e0 ¼ 0.4,
and q ¼ −0.5 (left), 0 (middle), and 0.5 (right). It is found
that the SNR is largest for M ∼ 106 M⊙ irrespective of q
and μ, reflecting the sensitivity curve of LISA.
Figure 15 shows the SNR as a function of e0 for

M ¼ 106 M⊙ with q ¼ −0.5 (left), 0 (middle), and 0.5
(right). As illustrated in Fig. 13, the SNR is a monotonically
increasing function of e0, that increases by a factor of
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FIG. 13. Left: SNR associated with different l-modes from l ¼ 2 to 4 as functions of e0 for a 10 M⊙ compact object inspiraling
around a 106 M⊙ SMBH of spin q ¼ 0.5 at D ¼ 1 Gpc for the last 3-year inspiral before plunge. Right: SNR as functions of q for
M ¼ 106 M⊙, μ ¼ 10 M⊙, and e0 ¼ 0.4.
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several for the change from e0 ¼ 0.1 to 0.8 with
M ¼ 106 M⊙. This indicates that highly eccentric
EMRIs for this SMBH mass would increase the detection
rate in the LISA observation by a factor of several.
Figure 16 shows the SNR as a function of q for e0 ¼ 0.4

with M ¼ 105 M⊙ (left), 106 M⊙ (middle), and 107 M⊙
(right). The SNR increases as the BH spin increases for
M ≳ 106 M⊙ (see Fig. 13), but the SNR for M ¼ 105 M⊙
depends weakly on q because the late part of the inspirals
can be below the LISA frequency band for larger values
of q (see Fig. 12). As the right panel of Fig. 16 illustrates,
the detection rate of the EMRIs from an SMBH of M ∼
107 M⊙ depends strongly on the BH spin: for this SMBH
mass, a higher spin BH will be much more frequently
detected.

C. Limitation of post-Newtonian formulas

Before closing Sec. IV, we show the poor accuracy of
inspiral orbits determined in the PN approximation by
comparing with our numerical results. We use a newly
developed PN formula of dIi=dt that takes into account the
PN correction up to 5PN order and the tenth order in
eccentricity. This new formula is the extension of the 4PN
formula derived in Ref. [59].
In Fig. 17, we assess the accuracy of the 2PN, 3PN, 4PN,

and 5PN formulas using inspiral orbits for q ¼ −0.5, 0, and
0.5 with p0 ¼ 11.4M and e0 ¼ 0.2. Disagreement between
the PN and numerical results is obviously non-negligible.
Moreover, the convergence of the PN expansion is quite
slow, although with the increase of the PN order the results
gradually approach the numerical results. For the numerical
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inspirals, it takes ∼100 M2=μ for q ¼ −0.5, ∼190 M2=μ
for q ¼ 0, and ∼300 M2=μ for q ¼ 0.5 until the plunge. On
the other hand, for the 5PN inspirals, it takes ∼140 M2=μ
for q ¼ −0.5, ∼210 M2=μ for q ¼ 0, and ∼310 M2=μ for
q ¼ 0.5 until the plunge. The error in the orbital eccen-
tricity at the plunge between the numerical and 5PN results
is about 30%. Thus, the 5PN formulas are not at all accurate
enough for gravitational-wave data analysis.
It is interesting to note that the PN formulas work

relatively well for q ¼ 0.5 accidentally. In addition, the
4PN results often become worse models than the 3PN
results. These facts illustrate that the PN expansion has not
only a poor-convergence property but also an irregular
convergence property [61,62].
We also note that the convergence of the eccentricity

expansion in the PN formulas becomes slower if the
eccentricity becomes higher [59]. For q ¼ 0.9 and
p ¼ 6M, the relative error of the 5PN formula in dE=dt
determined by the comparison with our numerical results
becomes 10−3 for e ¼ 0.1, 10−2 for e ¼ 0.7, and 10−1 for
e ¼ 0.9, although the error is about an order of magnitude

smaller than that of the 4PN and the tenth order in the
eccentricity. Thus, the accuracy of inspirals with higher
eccentricity becomes worse than that with lower eccentricity.
In Fig. 18, we show the difference in orbital cycles using

the PN and numerical results. This clearly illustrates the
poor-convergence property and limitation in the PN for-
mulas because the difference in the orbital cycles from the
numerical results is of the order of 103 even for the 5PN
formula, in spite of the fact that the required accuracy is
within 0.1 orbital cycles. These results agree with those in
Refs. [63,64], which study quasicircular inspirals. To
conclude, the 5PN formulas, which are currently the best
analytic ones, cannot be used in the original forms for the
data analysis of gravitational waves.
To derive an accurate analytic or semianalytic formula,

the PN formula combined with other methods such as
resummation methods and numerical fitting methods of
higher PN order coefficients are inevitable [65–75].
However, a significant improvement is required. In addi-
tion, new ideas would be necessary for eccentric orbits
because we need to perform a resummation or fitting with
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respect not only to the PN expansion parameter (e.g.,
ðM=pÞ1=2) but also to the eccentricity, e. In particular, no
idea for an efficient resummation with respect to the
eccentricity has been proposed. We encourage the readers
to perform a careful analysis of our numerical data for
developing a novel scheme of a resummation/numerical
fitting. Our numerical data and 5PN formulas are published
in a web site [76].

V. SUMMARY

We computed gravitational waves from a stellar-mass
compact object inspiraling around an SMBH. The inspiral
orbits were determined by taking into account the adiabatic
change of the constants of motion, dIi=dt, due to the
emission of gravitational waves. In our procedure, we first
obtained dIi=dt for ≈2 × 104 data points in the parameter
space of ðp; eÞ for each value of q. Then, accurate
interpolation was used to derive gravitational-wave fluxes
at arbitrary points within the region of the parameter space
computed in advance. The relative error in the interpolated
values of dIi=dt is typically ≲10−6, which is smaller than

the inverse of the gravitational-wave phase for EMRIs
during the last 3-year observation in LISA, for most of the
parameter space except for rmin ≲ 3M (see Sec. III).
In Sec. IV, we derived the inspiral orbits and associated

gravitational waves. We then computed the spectrum of
gravitational waves and the SNR for several values of mass
of a binary, the BH spin, and the initial orbital eccentricity
during the 3-year LISA observation before final plunge. We
found that the SNR increases by a factor of several as the
BH spin and the mass of the compact object increase for
M ≳ 106 M⊙. The SNR as a function of the BH mass has a
maximum around M ¼ 106 M⊙ for fixed values of q and
e0. The SNR as a function of q is weakly dependent on M
around M ¼ 105 M⊙ because only an early part of the
inspirals can be observed in the LISA frequency band for
the larger BH spin. The SNR as a function of the initial
orbital eccentricity for M ¼ 106 M⊙ is a monotonically
increasing function that increases by a factor of several for
the change from e0 ¼ 0.1 to 0.8. We also found that the
SNR for the l ¼ 3 (l ¼ 4) modes is about 40% (20%) of
that for the l ¼ 2 mode. This shows that taking account of
the higher multipole modes of gravitational waves is
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FIG. 18. Difference in orbital cycle for the last 3-year inspirals computed using numerical and PN fluxes for q ¼ −0.5 (left),
0 (middle), and 0.5 (right) with e0 ¼ 0.2 (top), 0.5 (middle), and 0.8 (bottom), and ðM; μÞ ¼ ð106; 10Þ M⊙.
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important for increasing the detection rate in the LISA
observation by a factor of 3–4.
In Sec. IV C, the limitation of the PN formulas is shown

by comparing the orbital cycles between the numerical and
PN inspirals. The difference in the orbital cycles becomes
larger than 103 even for the 5PN formula, which is much
larger than the required accuracy in the LISA data analysis,
≲1 rad in phase. This illustrates that we need much higher-
order PN formulas or to develop a special prescription such
as resummation to improve the accuracy in the PN formula.
In our present numerical computation, the numerical

accuracy of the gravitational fluxes for compact orbits with
rmin ≲ 3M is not high enough. Such compact orbits are
possible for a high value of q≳ 0.6. As we showed in
Sec. IV B, the SNR is higher for higher spin SMBHs with
mass M ≈ 106 − 107 M⊙, and hence, the detectability of
EMRIs for the relatively high-mass SMBHs will be higher
for the higher spin SMBH. This indicates that it is
important to develop accurate gravitational-wave models
for the high values of q. As we discussed in Sec. III, the
accuracy could be straightforwardly improved if we could
perform the computation with higher numerical precision.
A question is how high numerical precision is required
for each value of q. This is one of our next issues to be
clarified.
In general, orbital inspirals of a compact object into an

SMBH are not only eccentric but also inclined from the
equatorial plane of the SMBH. Thus, it is necessary to
extend our approach to eccentric and inclined inspirals.

The semilatus rectum at separatrix becomes larger for
larger orbital inclination angle with fixed orbital eccentric-
ity and BH spin. This implies that orbital inclination
effectively reduces the effects of the BH spin and the
frequency of gravitational waves at separatrix. We expect
the power spectra of gravitational waves and SNR for
eccentric and inclined inspirals in LISA observation would
be smaller than those for equatorial inspirals studied in this
paper. To check this quantitatively, we need to compute
gravitational waves for a large set of parameter space in the
BH spin, the semilatus rectum, the eccentricity, and the
inclination angle from the equatorial plane of the BH. It
would take about a year to derive gravitational waves for
∼106 points in ðq; p; e; θincÞwith q≲ 0.9 and e≲ 0.9 using
a ∼10 Tflops machine if it takes 10 times longer to compute
gravitational waves for a nonequatorial orbit than the one
for an equatorial orbit (see Sec. III). However, it is not clear
how many data points are necessary to accurately derive
inspiral orbits for the generic case by interpolation meth-
ods. We are currently working on this issue, and the results
will be published in future.
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