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Long-term neutrino-radiation resistive-magnetohydrodynamics simulations in full general relativity are
performed for a system composed of a massive neutron star and a torus formed as a remnant of binary
neutron-star mergers. The simulation is performed in axial symmetry incorporating a mean-field dynamo
term for a hypothetical amplification of the magnetic-field strength. We first calibrate the mean-field
dynamo parameters by comparing the results for the evolution of black hole–disk systems with viscous
hydrodynamics results. We then perform simulations for the system of a remnant massive neutron star and a
torus. As in the viscous hydrodynamics case, the mass ejection occurs primarily from the torus surrounding
the massive neutron star. The total ejecta mass and electron fraction in the new simulation are similar to
those in the viscous hydrodynamics case. However, the velocity of the ejecta can be significantly enhanced
by magnetohydrodynamics effects caused by global magnetic fields.
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I. INTRODUCTION

The first observation of the binary neutron-star merger
GW170817 [1,2] showed that theoretical modeling for the
merger and postmerger phases of binary neutron stars is the
key for extracting valuable information from the observed
electromagnetic signals. Although there are a variety of the
possibilities for the remnants of the binary neutron-star
mergers [3] and for the corresponding electromagnetic
counterparts [4,5], irrespective of the possibilities, the key
phenomenon for the strong electromagnetic emission is the
mass ejection from the remnant including the ultrarelativ-
istic jets. Thus, the important aspect of the theoretical study
is to clarify how the matter is ejected from the system and to
understand the properties of the ejected matter such as total
mass, typical velocity, and typical elements. This motiva-
tion has stimulated many numerical simulations for the
merger phase (e.g., Refs. [6–17]) and for the postmerger
phase (e.g., Refs. [18–35]) in the last decades.
For the binary neutron-star merger resulting in the

formation of a massive neutron star, the major mass

ejection is likely to occur in the postmerger phase
[16,36] and the key process for the mass ejection from
the merger remnant is the magnetohydrodynamical effect.
For disks (or tori) surrounding the central compact object
(either a massive neutron star or a black hole), which has
approximately Keplerian rotational profile, it is believed
that the magnetorotational instability (MRI) [37] is acti-
vated, and as a result, a turbulence is developed, enhancing
the turbulence viscosity. The resulting viscous heating
and angular momentum transport inevitably enhance the
activity of the disk, and eventually, the mass ejection is
induced. In addition, the amplified magnetic field could
eventually develop a global magnetic field, which could
further enhance the mass ejection efficiency [22,27,28].
However, to fully clarify these processes, we need high-
resolution simulations in three spatial dimensions that can
resolve the unstable modes of the MRI with a sufficient
accuracy. However, to date, due to the limitation of the
computational resources, such expensive simulations have
not been performed yet (but see Ref. [38] for the high-
resolution simulation to model accretion disks around a
supermassive black hole).
The remnant massive neutron star also could be the

source for the mass ejection [24,31,33,34]. In contrast to
the accretion disk around the compact objects, the angular
velocity of the remnant massive neutron stars, ΩðϖÞ with
ϖ denoting the cylindrical radius, increases with ϖ in the
central region reflecting the nearly irrotational velocity
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field of the premerger stage of two neutron stars (e.g.,
Ref. [39]). Thus, the major region except for the outermost
part of the remnant neutron star is stable to the MRI.
However, there still exists the differential rotation in the
remnant neutron star, which causes the winding of the
magnetic field and increases the toroidal-field strength
[34,40–42]. In the presence of the resultant strong toroidal
field, several magnetohydrodynamics (MHD) instabilities
such as the Parker and Taylor instabilities [43,44] together
with the convection and circulation can take place, and the
magnetic-field strength could be amplified through the
dynamo action. To accurately investigate this amplification
process, we need a high-resolution and long-term MHD
simulation in full general relativity with the relevant
microphysics such as the neutrino transport that can induce
the convection and dynamo [45,46]. However, this is still a
formidable work in the current computational resources.
In this paper, we attack this problem phenomenologi-

cally, bypassing the high-resolution simulation. We per-
form general-relativistic neutrino-radiation resistive-MHD
(GRRRMHD) simulations for a massive neutron star
formed as a remnant of equal-mass binary neutron-star
mergers in axial symmetry as in our previous paper [34],
but taking into account the mean-field dynamo term
[34,47,48]; i.e., we incorporate the mean-field dynamo
term in the current density jμ which is proportional to the
magnetic field. In the assumption of axial symmetry with
no dynamo term, the poloidal magnetic field is not
amplified even when the toroidal-field strength is signifi-
cantly enhanced, due to the antidynamo property [49]. With
the phenomenological incorporation of the dynamo term,
by contrast, the poloidal magnetic field can be amplified in
the presence of the toroidal field. As a result, the magnetic
field continues to be amplified even if we start initially from
a purely toroidal magnetic field in the axisymmetric
simulation. In the context of the MHD evolution of the
binary neutron-star merger remnant, the differential rota-
tion is likely to be the key for the magnetic-field ampli-
fication. Thus, we pay attention only to the α − Ω dynamo
for the hypothetical field amplification in this paper.
Similar numerical experiments in MHD have been

recently performed by several groups [50–53] for the
systems of a black hole and a disk assuming the fixed
background of the black hole. These works have illustrated
that with the incorporation of the mean-field dynamo term
(i.e., with the α −Ω dynamo effect), the numerical results
by the three-dimensional ideal MHD simulations are at
least qualitatively reproduced. These results encourage us
to perform this type of a phenomenological simulation to
capture a realistic MHD evolution process of the remnant of
the binary neutron-star mergers, which cannot be currently
studied in the first-principle MHD simulation due to the
poor grid resolution resulting from the limitation of the
computational resources. This type of the phenomenologi-
cal simulations is also helpful to explore a wide variety of

the possibilities for the long-term evolution process of the
binary neutron-star merger remnants, which have not been
well explored yet, with a (relatively) inexpensive computa-
tional cost. In particular, to derive theoretical models for the
ejecta with which electromagnetic signals are studied, the
simulation results provide the useful data for the post-
process calculations (see, e.g., Refs. [54–56]).
The paper is organized as follows: In Sec. II, we

summarize the basic equations employed in the present
numerical simulations paying particular attention to the
resistive MHD equations in general relativity. In Sec. III we
first calibrate our method by performing the simulations for
the system of a black hole and a disk. We compare the
results with those in viscous hydrodynamics [29,30] and
confirm that the new results by the GRRRMHD simula-
tions are quantitatively similar to those by the previous
viscous hydrodynamics simulations with an appropriate
choice of the dynamo parameters, although the MHD
effects can modify the process of the mass ejection.
Then, in Sec. IV, we perform a GRRRMHD simulation
for a remnant of a binary neutron-star merger composed of
a massive neutron star and a torus. By comparing the results
with those by the viscous hydrodynamics simulation [31],
we show additionally significant magnetohydrodynamics
effects on the matter ejected from the system. Section V is
devoted to a summary. Throughout this paper, we use the
geometrical units of c ¼ 1 ¼ G, where c and G denote the
speed of light and the gravitational constant, respectively
(but c is often recovered to clarify the units in the following
sections). Latin and Greek indices denote the space and
spacetime components, respectively. In Sec. II, we suppose
to use Cartesian coordinates for the spatial components
whenever equations are written.

II. BASIC EQUATIONS FOR NUMERICAL
COMPUTATIONS

A. Brief summary

We perform a resistive MHD simulation in full general
relativity using the same formulation and numerical imple-
mentation as in our previous paper [34] (see this reference
for details of the formulation and numerical methods, and
for the results of test-bed problems). Specifically, we
numerically solve Einstein’s equation, resistive MHD
equations incorporating a mean-field dynamo term, evo-
lution equations for the lepton fractions including the
electron fraction, and (approximate) neutrino-radiation
transfer equations. Except for an MHD part (see the next
paragraphs), the basic equations and input physics are
the same as before: Einstein’s equation is solved using
the original version of the Baumgarte-Shapiro-Shibata-
Nakamura formalism [57] together with the puncture
formulation [58], Z4c constraint propagation prescription
[59], and fifth-order Kreiss-Oliger dissipation. The axial
symmetry for the geometric variables is imposed using the
cartoon method [60,61] with the fourth-order accurate

SHIBATA, FUJIBAYASHI, and SEKIGUCHI PHYS. REV. D 104, 063026 (2021)

063026-2



Lagrange interpolation in space. The lepton fractions
are evolved taking into account electron and positron
captures, electron-positron pair annihilation, nucleon-
nucleon bremsstrahlung, and plasmon decay [24,31]. The
same tabulated equation of state as in Refs. [29,30,34] is
employed. Specifically,we employ theDD2 equation of state
[62] for a relatively high-density part and the Timmes
(Helmholtz) equation of state for a low-density part [63].
We evolve weighted electric and magnetic fields defined,

respectively, by [34,64,65]

Eμ ≔
ffiffiffi
γ

p
Fμνnν; ð2:1Þ

Bμ ≔
1

2

ffiffiffi
γ

p
nαϵαμνβFνβ; ð2:2Þ

where the electromagnetic tensor is written as

Fμν ¼ nμEν − nνEμ þ nβϵβμναBα; ð2:3Þ

with nα the timelike unit normal vector, γ the determinant
of the spatial metric γij, and ϵμναβ the Levi-Civita tensor. Eμ

and Bμ are the electric and magnetic fields in the inertial
frame, respectively.
The evolution equations for Ei and Bi are written as [34]

∂tEi ¼ −∂kðβiEk − βkEi þ αϵkijBjÞ
− 4πðJ i −QβiÞ; ð2:4Þ

∂tBi ¼ −∂kðβiBk − βkBi − αϵkijEjÞ
− αγ1=2γij∂jϕB; ð2:5Þ

∂tϕB ¼ βk∂kϕB − ακϕB − αγ−1=2∂kBk; ð2:6Þ

where α is the lapse function, βi is the shift vector,
ϵkij ≔ nμϵμkij, ϕB is a new auxiliary variable associated
with the divergence cleaning, κ is a constant, and the
current term, J i −Qβi, is written as [34,48,51,53]

J i −Qβi ¼ Qvi þ ασc½wAi
jEj þ ϵijkujBk

− αdð−wAi
jBj þ ϵijkujEkÞ�; ð2:7Þ

with Ai
j ≔ δij − w−2ūiuj, ūi ¼ γijuj, uμ the four velocity,

vi ≔ ui=ut, and w ¼ αut. Q is a weighted charge
density evaluated by ∂kEk=4π. σc is the conductivity
[η ≔ c2=ð4πσcÞ is the resistivity], and αd denotes the so-
called α parameter that controls the mean-field dynamo
[47,48,51,52]. By normalizing it with respect to the speed
of light, we consider αd as a dimensionless parameter in this
paper. In contrast to the previous work [34], we always
consider the cases of a nonzero value of αd in this paper. κ is
chosen to be 105 s−1 for all the simulations.

In the present context, we suppose that σc and αd should
be determined by hypothetical turbulence motion of the
fluid and resulting dynamo process. We phenomenologi-
cally give these parameters from the consideration for
the plausible processes that play an important role in the
remnant of binary neutron-star mergers as well as in the
accretion disk around a neutron star or a black hole.

B. Choice of σc and αd

In the presence of nonzero values of αd and differential
rotation, the so-called α −Ω dynamo can be activated. In
the nonrelativistic case, the local analysis leads to the
following dispersion relation for the wave mode of the form
∝ expðiωt − ikixiÞ [47]:

ðiωþ ηk2Þ2 þ iαdSΩkkc − α2dk
2c2 ¼ 0; ð2:8Þ

where k2 ¼ kiki, SΩ ≔ ∂Ω=∂ lnϖ, and kk denotes the
wave number in the direction parallel to the rotational
axis. To clarify the physical dimensions, c is recovered in
this subsection. The solution of Eq. (2.8) is written as

iω ¼ −ηk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2dk

2c2 − iαdSΩkkc
q

: ð2:9Þ

In this paper, we pay attention only to the case that a
large-scale dynamo plays a key role; i.e., we consider the
case of α2dk

2c2 ≪ jαdSΩjkkc. For this case, Eq. (2.9) is
approximated as [47]

iω ≈ −ηk2 � 1 − iffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαdSΩjkkc

q
; ð2:10Þ

and thus, the condition for the presence of the unstable

modes becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαdSΩjkkc=2

q
> ηk2. Focusing on the

most optimistic case of k2 ¼ k2k, the condition for k to give
an unstable mode becomes

k < ð8π2σ2c jαdSΩjÞ1=3c−1

¼ 6.4 × 10−6 cm−1
� jαdj
10−4

�
1=3

×

�
σc

3 × 107 s−1

�
2=3

� jSΩj
103 rad=s

�
1=3

; ð2:11Þ

and the wave number of the fastest-growing mode is

kfast ¼
�
π2σ2c jαdSΩj

2

�
1=3

c−1

¼ 2.5 × 10−6 cm−1
� jαdj
10−4

�
1=3

×

�
σc

3 × 107 s−1

�
2=3

� jSΩj
103 rad=s

�
1=3

: ð2:12Þ
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For the dynamo instability to take place in the remnant
neutron star, the typical scale of the unstable mode
estimated broadly by ∼π=ð2kfastÞ should not be larger than
the radius of the neutron star ∼10 km. Thus, the condition
to get the dynamo instability in the neutron star
becomes αdσ2c ≳ 1010 s−2.
For the fastest-growing mode, the growth rate is

written as

ωmax ¼
3

4

�
πα2dσcS

2
Ω

4

�
1=3

¼ 46 s−1
� jαdj
10−4

�
2=3

×

�
σc

3 × 107 s−1

�
1=3

� jSΩj
103 rad=s

�
2=3

: ð2:13Þ

Thus, for massive neutron stars of mass ∼2.5 M⊙ for which
jSΩj is typically of Oð103Þ rad=s, the growth timescale of
the electromagnetic fields is of order 10 ms. For accretion
disks around a compact object of mass ∼3–10 M⊙, jSΩj
can be slightly smaller, but for a compact orbit of radius
∼100 km, the growth timescale is also as short as ∼102 ms.
For an accretion disk which orbits far from the central
object, jSΩj is smaller≪ 103 rad=s, and the timescale of the
dynamo action is longer. Specifically, jSΩj is approximately
proportional to R−3=2

disk; where Rdisk denotes the typical radius
of the accretion disk, and thus, ωmax is approximately
proportional to R−1

disk. This implies that for distant orbits, the
dynamo action becomes inefficient, if the values of σc and
αd for the noncompact disks are as large as those for the
compact disks.
Equation (2.10) shows that in addition to the growth (or

damping) the electromagnetic field oscillates with the
angular frequency of

ωosc ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαdSΩjkkc

2

r
¼ 61 s−1

� jαdj
10−4

�
1=2

×

� jSΩj
103 rad=s

�
1=2

�
kk

2.5 × 10−6 cm−1

�
1=2

: ð2:14Þ

Thus, with our choice of σc and αd (see below), the
electromagnetic field changes the polarity with the period
of the order of 0.1 sð∼2π=ωoscÞ for the object of total mass
∼3 M⊙ and longer for the larger mass.
In the quasilinear approximation under the assumption of

the isotropic turbulence [47], the turbulent transport coef-
ficients, i.e., αd and η, are estimated by

αd ≈ −
1

3c
τcorhuiωii; ð2:15Þ

η ≈
1

3
τcorhuiuii; ð2:16Þ

where τcor is a correlation time, ui is the fluctuation part
of the spatial velocity, and ωi ¼ ϵijk∂juk: the vorticity.

h� � �i denotes the ensemble averaging. Assuming that
ui and τcor are comparable to the Alfvén velocity and
Alfvén timescale, the typical sizes for them are eva-
luated by

juij ≈
Bffiffiffiffiffiffiffiffi
4πρ

p ¼ 2.0 × 107 cm=s

�
B

1015 G

�

×

�
ρ

2 × 1014 g cm−3

�
−1=2

; ð2:17Þ

τcor ≈
R
juij

¼ 50 ms

�
R

10 km

��
B

1015 G

�
−1

×

�
ρ

2 × 1014 g cm−3

�
1=2

; ð2:18Þ

where B is the typical magnetic-field strength, ρ is the
rest-mass density, and R is the radius of the neutron star.
Assuming that the order of magnitude of ωi is the same
as that of juij=R, we obtain jαdj ¼ Oð10−4Þ and η ¼
Oð1012Þ–Oð1013Þ cm2=s, i.e., σc ¼ Oð107Þ–Oð108Þ s−1.
For these values, the α −Ω dynamo can be activated
for long-wavelength modes of ≳1 km [cf. Eq. (2.11)].
In this paper, we broadly suppose the situation for
which the remnant neutron star and torus (or disk) are
unstable for the α − Ω dynamo with these long-wave-
length modes.
For dense accretion disks/tori surrounding a black hole/

neutron star which we consider in this paper, the typical
sizes of juij and τcor are smaller and larger than those in
Eqs. (2.17) and (2.18), respectively. (We note that R should
be replaced by the geometrical thickness of the disk/torus
which is≲100 km.) However, the order of the magnitude is
not significantly different from those for the neutron star.
Hence, we employ the same values of σc and αd both for the
remnant neutron star and accretion disks surrounding the
central compact objects for simplicity, while we perform
several simulations varying these parameters for a cer-
tain range.
We note that in the late evolution stage of the remnant

neutron star, the degree of the differential rotation is likely
to become weak due to the MHD effects (cf. Sec. IV).
Even for such a state, the magnetic-field amplification
may be still preserved by the α dynamo, for which the
necessary condition [from Eq. (2.9) with SΩ ¼ 0] is written
as [47]

k <
4πσcjαdj

c
; ð2:19Þ

or equivalently

λ ¼ 2π

k
> 50 km

� jαdj
10−4

�
−1
�

σc
3 × 107 s−1

�
−1
: ð2:20Þ
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Thus, with the setting of αd ¼ 10−4 and σc ≲ 108 s−1, the
wavelength for the unstable modes is so long that the effect
of the α dynamo is minor. Hence, the magnetic field is
likely to decay with the timescale of ≳4πσc=ðkcÞ2 where
∼k−1 denotes the curvature scale of the magnetic-field
lines. In reality, in the absence of the differential rotation, a
convection or turbulence is not likely to be preserved, and
thus, supposing the mean-field dynamo is unlikely to be
correct. Thus in this paper, we do not touch on the very late
time evolution of the system, in which the magnetic field
decays due to the resistivity.
Finally we note that αd is not a pure scalar but an axial

scalar because it has the same polarity as that of the toroidal
magnetic field. In the simulation of this paper we assume
the plane symmetry with respect to the equatorial plane.
Thus, αd should have the reflection antisymmetry for the
change of z → −z, and thus, αd ¼ 0 on the z ¼ 0 (equa-
torial) plane. To impose this condition, we employ the
functional form of αd as

αd ¼ αd;0

�
2

expð−jzj=zcÞ þ 1
− 1

�
z
jzj ; ð2:21Þ

where we choose zc ¼ 0.5 km in this paper, and αd;0 is a
constant chosen based on the estimate for the approximate
magnitude of αd shown above (hereafter we denote αd;0
simply by αd). Since the value of zc is much smaller than
the geometrical thickness of the disk and radius of the
neutron star, the dynamo effect is assumed to be present for
a wide region in which the matter is present.

C. Diagnostics

We always calculate the following quantities for the
simulation results: average entropy per baryon hsi and
average electron fraction hYei both for the matter located
outside the black hole and for the ejecta (see the method for
identifying the ejecta below). For the former case, these
average quantities are defined by

hsi ≔ 1

Mmat

Z
out

ρ�sd3x; ð2:22Þ

hYei ≔
1

Mmat

Z
out

ρ�Yed3x; ð2:23Þ

where Mmat denotes the rest mass of the matter located
outside the black hole, defined by

Mmat ≔
Z
out

ρ�d3x; ð2:24Þ

and
R
out implies that the volume integral is performed for

the matter located outside the black hole. For the ejecta
component, the volume integral is performed for the matter
that satisfies the ejecta criterion (see below).

The kinetic energy and the electromagnetic energy of the
system are defined by1

Ekin ≔
1

2

Z
out

ρ�huivid3x; ð2:25Þ

EB ≔
1

8π

Z
out
ðB2 þ E2Þ ffiffiffiffiffiffi

−g
p

d3x: ð2:26Þ

The ejecta component is determined using the same
criterion as in Refs. [29,31]; we identify a matter compo-
nent with jhutj > hmin located in a far region as the ejecta.
Here hmin denotes the minimum value of the specific
enthalpy in the adopted equation-of-state table, which is
≈0.9987c2. For the matter escaping from a sphere of its
radius r ¼ rext, we define the ejection rates of the rest mass
and energy (kinetic energy plus internal energy) at a given
radius and time by

_Meje ≔
I

ρ
ffiffiffiffiffiffi
−g

p
uidSi; ð2:27Þ

_Eeje ≔
I

ρê
ffiffiffiffiffiffi
−g

p
uidSi; ð2:28Þ

where ê ≔ hαut − P=ðραutÞ. The surface integral is per-
formed at r ¼ rext with dSi ¼ δirr2ext sin θdθdφ for the
ejecta component. rext is chosen to be ≈6000 km for black
hole–disk systems (with the mass of the black hole of
10 M⊙) and 1500 km for neutron-star–torus systems in
this work.
As in our previous paper [34], the total rest mass and

energy (excluding the gravitational potential energy and
electromagnetic energy) of the ejecta (which escape away
from a sphere of r ¼ rext) are calculated, respectively, by

MejeðtÞ ≔
Z

t
_Mejedt; ð2:29Þ

EejeðtÞ ≔
Z

t
_Eejedt: ð2:30Þ

Far from the central object, Eeje is approximated by the sum
of the rest-mass energy, kinetic energy, and gravitational
potential energy, as we discussed in Ref. [34]. Since the
ejecta velocity can be relativistic in this work, we first
define an average Lorentz factor of the ejecta (for the
component that escapes from a sphere of r ¼ rext) by

Γeje ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeje −GMMeje=rext

Mejec2

s
; ð2:31Þ

1In our previous paper [34], all the numerical results for EB
were twice larger than the correct values because the factor of 8π
was written as 4π in the code by typos.
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where M denotes the total gravitational mass of the
system and G is recovered to clarify that the last term
in the numerator of Eq. (2.31) approximately denotes
the gravitational potential energy of the matter at
r ¼ rext. Finally, the average ejecta velocity is calculated

by veje ≔ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ−2

eje

q
.

III. EVOLUTION OF BLACK
HOLE–DISK SYSTEMS

A. Setup

First we evolve systems composed of a spinning black
hole and a disk surrounding it. We employ the same initial
conditions as models M10L05 and M10H05 of Ref. [30],
which are in equilibrium states in the absence of MHD
effects. Specifically, the initial conditions for models
M10L05 and M10H05 are composed of a black hole of
the initial mass MBH;0 ¼ 10 M⊙ and dimensionless spin
χ ≈ 0.8 and of a disk of mass 0.1 M⊙ and 3 M⊙, respec-
tively. The reason that we choose the 10 M⊙ black hole
(rather than the lower-mass ones) is that with a high-mass
black hole, the finest grid spacing near the black hole can
be taken to be large, i.e., the time step determined by the
minimum grid spacing, Δx0, can be large, and hence, the
computational costs are saved for the fixed simulation time
of ∼5 s. Although the black-hole mass employed is larger
than the neutron-star mass, the disk width (determined by
the location of the outer edge of the disk) is ∼200 km,
which is as large as that for the torus formed around the
neutron star after binary neutron-star mergers. Thus, the
accretion disk has a structure similar to the torus that
surrounds the remnant neutron star of binary neutron-star
mergers.
Models M10L05 and M10H05 were already evolved in

viscous hydrodynamics with plausible values of the (vis-
cous) α parameter of 0.05 and the scale height of
2MBH;0ð≈30 kmÞ in a previous paper [30]. We compare
the results obtained in the present MHD simulations with
those in the viscous hydrodynamics ones for several
choices of σc and αd, and show that the results by these
two different approaches provide quantitatively similar
results (in particular for the low-mass disk models).
For the present MHD simulations, we initially super-

impose a purely toroidal magnetic field in a high-density
region of the disk as

BT ¼ ϖBφ ¼ A0zmax
�

P
Pmax

− 0.04; 0
�
; ð3:1Þ

where P is the gas pressure and Pmax is the maximum value
of P. The poloidal component of Bi is set to be zero initially
and the electric field is determined by the ideal MHD
condition of Ei ¼ −ϵijkujBk=w for simplicity. The

dependence on the z coordinate in Eq. (3.1) stems from
the reflection antisymmetry for BT with respect to the z ¼ 0
plane. A0 is a constant, and in this work, we choose it so
that the electromagnetic energy is EB ≈ 3.5 × 1046 erg for
the low-mass disk models and EB ≈ 1.1 × 1047 erg for the
high-mass disk models. For both cases, the initial values of
EB is much smaller than the internal energy and rotational
kinetic energy of the system. Because the magnetic-field
strength increases exponentially with time until the satu-
ration of the growth universally in the presence of the
mean-field dynamo, the final result does not depend
essentially on the initial field strength.
In the absence of the dynamo term (αd ¼ 0) and in axial

symmetry with this type of the initial condition, the
magnetic field of a purely toroidal field should be simply
preserved or decay with the resistive timescale determined
by σc (see, e.g., Appendix B of Ref. [34]). On the other
hand, in the presence of the dynamo term, the poloidal field
is generated from the toroidal field, and subsequently, due
to the α −Ω dynamo effect, winding, and the MRI, the
strength of both the toroidal and poloidal fields is
enhanced. Note that the early magnetic-field growth is
driven purely by the α −Ω dynamo effect for the present
initial condition only with the toroidal magnetic field in the
axisymmetric simulation.
Table I summarizes the models which we consider in this

paper. The values of σc and αd are chosen so that long-
wavelength dynamo modes become unstable as discussed
in Sec. II B. We note that for a high value of σc > 108 s−1

with αd ¼ 10−4, the amplification of the magnetic field
by the α −Ω dynamo proceeds initially to an extremely
high level perhaps due to the amplification in the shorter-
wavelength modes. Because it is not clear to us whether

TABLE I. Initial conditions and setup for the numerical
simulations of a spinning black hole of mass MBH;0 ≈ 10 M⊙
and disks of mass Mdisk ≈ 0.1 M⊙ or 3.0 M⊙. For all the models
the dimensionless spin of the black hole is χ ≈ 0.8 (see also
Ref. [30]). For the low-mass disk models, EB ¼ 3.5 × 1046 erg
and Ekin ¼ 1.4 × 1052 erg initially. For the high-mass disk
models, EB ¼ 1.1 × 1047 erg and Ekin ¼ 3.7 × 1053 erg initially.
For the resolution, M and H denote the medium and high
resolutions, respectively (see the text for more details).

Model Mdisk=M⊙ σc ðs−1Þ αd Resolution

M10L80 0.1 1 × 108 1 × 10−4 M, H
M10L75a 0.1 3 × 107 1 × 10−4 M, H
M10L75b 0.1 3 × 107 2 × 10−4 M, H
M10L70 0.1 1 × 107 1 × 10−4 H
M10H80 3.0 1 × 108 1 × 10−4 M
M10H75a 3.0 3 × 107 1 × 10−4 M
M10H75b 3.0 3 × 107 2 × 10−4 M
M10H70 3.0 1 × 107 1 × 10−4 M
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such an extreme amplification is realistic or not, we do
not pay attention to such cases in this paper. A sig-
nificant amplification of the magnetic-field strength of
long-wavelength modes and resulting effects are induced
even with σc ¼ 107–108 s−1.
Following our previous work [29,30], we employ a

nonuniform grid for the two-dimensional (cylindrical)
coordinates ðx; zÞ in the simulation: For x ≤ x0 ¼
0.9GMBH;0=c2, a uniform grid is used with the grid spacing
Δx0 ¼ 0.015GMBH;0=c2ð≈0.22 km in thisworkÞ, and for
x > x0,Δx is increased uniformly asΔxiþ1 ¼ ηΔΔxi where
the subscript i denotes the ith grid with x ¼ 0 at i ¼ 0. For
z, the same grid structure as for x is used for all the models.
We refer to the grid resolution with ηΔ ¼ 1.01 and 1.008 as
medium (M) and high (H) resolutions. The two grid
resolutions are employed to confirm the reasonable con-
vergence of the numerical result for low-disk mass models
(M10L80, M10L75a, and M10L75b). The black-hole
horizon is always located in the uniform grid zone. The
location of the outer boundaries along each axis, L, is
≈1.1 × 104 km irrespective of the models.

B. Numerical results

1. Evolution of the system

First, we briefly summarize the evolution process of
the disk determined by the dynamo action described in
Sec. II B. By the α −Ω dynamo effect, the poloidal
magnetic field is developed from the purely toroidal field
initially given. By the subsequent α −Ω dynamo effect and
the winding of the magnetic-field lines of the generated
poloidal field, the toroidal field is also enhanced. After the
significant amplification of the magnetic-field strength,
with which its fastest growing mode can be resolved,
the MRI also plays an important role [37]. Because of the
resulting development of the turbulent state in the disk, the
disk matter expands and a part of it is ejected from the disk
in a quasispherical manner: The major part is ejected
primarily toward the nonpolar direction because of the
presence of the angular momentum barrier, but an outflow
of the low-density matter is also observed in the polar
direction (see Fig. 1 for model M10L75a). A funnel with
the half opening angle of 10°–15° is typically formed
around the z axis after the outflow is steadily driven. The
resultant funnel region has a high ratio of the magnetic
pressure to the gas pressure (i.e., low-β plasma). All these
features are found irrespective of the values of σc and αd
employed in the present work, and are qualitatively very
similar to those found in viscous hydrodynamics simula-
tions [29,30]. However, the qualitative and quantitative
details are different between the results of viscous hydro-
dynamics and MHD (see below). Also the MHD results
depend quantitatively on the values of σc and αd.
The matter outflow is accompanied by the ejection of the

magnetic loops from the disk. This generates the large-scale

poloidal and toroidal magnetic fields outside the disk. At
the same time, in the disk, highly disturbed magnetic fields
are developed reflecting its turbulent motion. Furthermore,
in the presence of the dynamo, the polarity of the magnetic
field is often changed. Figure 2 displays the poloidal
magnetic-field lines together with the toroidal magnetic-
field strength for model M10L75a. Here, the red and blue
colors denote that the toroidal field is positive and nega-
tive, respectively. This figure shows that highly distorted
poloidal-magnetic fields are indeed developed in the
accretion disks after the enhancement of the magnetic-field
strength by the dynamo process reflecting the development
of a turbulent motion inside the disk. Some of the field lines
are extended outside the disk and form the global magnetic
fields. It is also found that an aligned magnetic field is
developed in the funnel region near the z axis. All these
features in the outcome are qualitatively the same as those
often found in the ideal MHD simulations for the accretion
disks around the black hole (e.g., Refs. [27,38,66–71]), for
which the ideal MHD simulations are for most cases started
from a seed poloidal field and the turbulence is developed
purely (in the first-principle manner) by the MRI.
One interesting feature in the simulations with the mean-

field dynamo term is that the magnetic-field polarity changes
[50] in a quasiperiodic manner, with the period of several
hundred ms in our present setting (see Sec. II B). The color
profile of Fig. 2 illustrates that the toroidal-field polarity
indeed changes as found in the high-resolution three-dimen-
sional ideal MHD simulation [27,38]. Also, near the z axis,
the poloidal-field polarity changes in the same period as that
for the toroidal field (see the arrows of the poloidal field lines
in Fig. 2). This implies that an entirely coherent, aligned
magnetic field is not established in the large scale, although
coherent magnetic-field lines near the z axis are locally
developed, and that during the change of the polarity of the
poloidal field near the z axis, not an aligned magnetic field
but a disturbed field configuration transiently appears.
In the late evolution stage in which the mass and density

of the accretion disk decrease, the magnetic-field strength
decreases. In particular in the very late stage in which the
matter motion is dominated by the turbulent motion (not by a
coherent rotational motion in the disk), the poloidal field
near the z axis does not have a very aligned structure (and as
a result, the polar outflow ceases). All these features are
found irrespective of the mean-field dynamo parameters
employed.
Upper panels of Fig. 3 plot the evolution of the

electromagnetic energy, EB, and the ratio of EB to the
kinetic energy, Ekin, as functions of time for the systems of
a black hole and a low-mass disk. For all the models, the
electromagnetic energy increases exponentially with time
in the early stage of the evolution. The growth timescale,
indicated by the black dotted line in the left panels of Fig. 3,
agrees approximately with the expression of Eq. (2.13):
As this equation indicates, for the models with the higher
values of σc and αd, the growth timescale is shorter. It is
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also found that the curves of EB oscillate with time. This is
likely to be the reflection of the fact that there are multiple
oscillatory modes in the presence of the dynamo term;
during the change of polarity of the magnetic fields with
multiple modes, the field strength should change in time
(see the discussion in Sec. II B).
After the early exponential increase of the electromag-

netic energy, the growth rate becomes smaller due to the
back reaction of the matter affected by the electromagnetic

force. Associated with this reaction, the mass outflow sets
in. Eventually, the exponential growth is stopped when the
ratio of the electromagnetic energy to the kinetic energy,
EB=Ekin, reaches ≈0.03–0.1. At this stage, the early-time
mass ejection is most activated (see, e.g., Fig. 4).
Subsequently, the ratio of EB=Ekin remains to be between
10−2 and 10−1 as often found in the accretion disks with an
equipartition state. This ratio is slightly higher for the larger
values of σc for this low-mass disk model. In the stage of

FIG. 1. Snapshots of the rest-mass density in units of g=cm3, temperature (kBT in units of MeV with kB being the Boltzmann
constant), entropy per baryon s in units of kB, and electron fraction Ye at selected time slices for model M10L75a with the high-
resolution run. The arrows denote the velocity field of ðvx; vzÞ.
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the relaxed value of EB=Ekin, due to the angular momentum
transport associated with the MHD effect, a substantial
fraction of the disk matter falls into the black hole, and the
disk mass decreases with time (see Fig. 4). Note that
the disk mass also decreases partly (in the present case
∼20% of the initial disk mass) due to the mass ejection.
Associated with the mass infall and mass ejection, the

electromagnetic energy of the disk decreases with time,
although the ratio, EB=Ekin, is preserved to be of Oð0.01Þ
(cf. Fig. 3). The decrease rate of EB is smaller for smaller
values of σc and αd, because the mass infall and ejection
proceed more slowly.
We note that the upper two panels of Fig. 3 indicate that

the dependence of the electromagnetic-energy curve on the

FIG. 2. Evolution of the poloidal magnetic-field lines together with the toroidal magnetic-field strength (color profile) in the near zone
of jxj ≤ 330 km and jzj ≤ 330 km for model M10L75a with the high-resolution run.
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FIG. 3. Upper panels: Evolution of the electromagnetic energy and ratio of the electromagnetic energy to the kinetic energy for the
systems of a black hole and a low-mass disk listed in Table I. Lower panels: The same as the upper panels but for the systems of a black
hole and a high-mass disk listed in Table I. The black dotted lines in the left two panels show ∝ expð2ωmaxtÞ with αd ¼ 10−4,
σc ¼ 108 s−1, and jSΩj ¼ 103 rad=s: cf. Eq. (2.13).
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grid resolution is weak. Thus, the MHD evolution process
of the disk is likely to be captured well with the current grid
resolutions.
The lower panels of Fig. 3 display the evolution of EB

and EB=Ekin for the high-mass disk models. It is found
that the evolution processes of these quantities are quali-
tatively similar to those for the low-mass disk models. The
dependence of the ratio of EB=Ekin on σc is weaker than
that for the low-mass model, and it varies in a narrow range
approximately between 0.01 and 0.04. For both low-mass
and high-mass disk models, the electromagnetic energy
for the models with αd ¼ 2 × 10−4 is smallest for t≳ 1 s
among the models with the same disk mass. The reason for
this is that the mass ejection proceeds earlier for the larger
value of αd [cf. Figs. 4(a) and 6(a)]. Thus the value of αd
controls the mass ejection timescale for the black hole-disk
system.

2. Mass ejection

Figure 4(a) shows the evolution of the disk mass, the rest
mass that falls into the black hole, and ejecta mass. For
comparison, numerical results derived by our viscous

hydrodynamics simulation [30] are presented together.
Since the mass ejection is delayed by the growth timescale
of the turbulent state in the present MHD simulations, we
shift the results for the viscous hydrodynamics simulation
byþ0.4 s in time. The evolution curves of the mass outside
the black hole indicate that, as in our viscous hydro-
dynamics simulation, about 20% of the initial disk mass is
likely to be ejected from the system and the rest of the
matter falls into the black hole for all the models. These
fractions are in a good agreement with those in viscous
hydrodynamics. For models M10L75a and M10L70, the
mass ejection timescale is longer than the simulation time,
and thus, the ejecta mass does not settle to the final value in
∼6 s. However, the curves for the ejecta mass and disk
mass are similar to those in other MHD models, and hence,
we may expect that the ejecta mass will approach asymp-
totically ∼0.02 M⊙.
The mass ejection timescale in the MHD simulations is

shorter for the larger values of σc and αd [see the curves for
models M10L80 and M10L75b in Fig. 4(a)]. This is natural
because for the larger values of these two parameters, the
growth timescale of the magnetic-field strength is shorter
(cf. Sec. II B). In addition, the α −Ω dynamo instability

(a) (b)

(c) (d)

FIG. 4. Evolution of several quantities for the low-mass disk surrounding a black hole. (a) Mass of the matter located outside the black
hole (solid curves), that falls into the black hole (dashed curves), and ejected from the system (dashed curves). The thick and thin curves
denote the results with the high- and medium-resolution runs, respectively. (b) the average entropy per baryon for the ejecta; (c) the
average value of Ye for the ejecta; and (d) the average velocity for the ejecta. For (b)–(d), the solid and dashed curves denote the high-
and medium-resolution results. For comparison, the results by a viscous hydrodynamics simulation performed in Ref. [30] are presented
for all the panels with the time shift of þ0.4 s.

SHIBATA, FUJIBAYASHI, and SEKIGUCHI PHYS. REV. D 104, 063026 (2021)

063026-10



occurs for the shorter-wavelength modes with the larger
values of these parameters [cf. Eq. (2.12)], resulting in the
higher magnetic power and earlier mass ejection. Although
this timescale depends on the choice of the parameters as in
the case of viscous hydrodynamics in which the mass
ejection timescale depends on the viscous coefficient, the
timescale is universally seconds in the reasonable choice of
the parameters. It should be also mentioned that the
numerical results depend only weakly on the grid reso-
lution, although with the higher grid resolution, the mass
ejection sets in earlier perhaps due to the better-resolved
magnetic-field growth (for the dynamo instability as well as
for the MRI).
Figures 4(b)–4(d) plot the evolution of the average

values of the entropy per baryon, electron fraction, and
velocity for the ejecta. Again, for comparison, we plot the
results in our viscous hydrodynamics [30] together with the
time shift of þ0.4 s. It is found that all the quantities take
similar but slightly different asymptotic values from those
obtained in the viscous hydrodynamics simulations irre-
spective of the values of σc and αd. Slightly systematic
differences are found as follows: (i) The asymptotic value
of the average electron fraction of the ejecta in the MHD
simulations is by ∼0.05 smaller than that in viscous
hydrodynamics; (ii) The average velocity of the ejecta in
the MHD simulations is ∼0.1c–0.15c, while it is ∼0.05c in
viscous hydrodynamics (the average velocity becomes high
only for σc ¼ 108 s−1, but for others, it is universally
≈0.1c). The second fact (ii) is in particular likely to be
related to the difference in the mechanisms of the mass
ejection between MHD and viscous hydrodynamics. Thus,
in the following, we discuss our interpretation for this
difference in the mass ejection mechanism in more detail.
For the case of viscous hydrodynamics, the mass ejection

is driven by the viscous heating after the disk is substan-
tially evolved by the viscous angular momentum transport
by which the density and temperature of the disk are
decreased so significantly that the neutrino cooling
becomes inefficient [18,29]. Here, it is worth mentioning
that in viscous hydrodynamics, the viscous heating is the
only channel for the mass ejection, and only when the
thermal energy gained by this heating is not significantly
dissipated by some other cooling processes such as the
neutrino cooling, the mass ejection can occur. In MHD, on
the other hand, the situation is different: In this case, the
turbulence induced by the MHD instability enhances an
effective viscosity and drives the angular momentum
transport and (effective) viscous heating in the same
manner as in viscous hydrodynamics, but there are addi-
tional magnetic-field effects associated with the global
motion of the magnetic-field lines. In particular, in the
presence of differential rotation, the magnetocentrifugal
[72] and magnetic-tower (e.g., Ref. [73]) effects can play an
important role in the mass ejection. By these effects, the
mass ejection can be driven even in the absence of the

effective viscous heating. In addition, the ejecta as well as
the matter in the outer region can be accelerated outward by
the magnetic power, even in the presence of an efficient
cooling process.
This interpretation is supported by observing the neu-

trino luminosity as a function of time; see the upper panel
of Fig. 5. In this figure, we compare the neutrino luminosity
in the MHD simulations with the viscous hydrodynamics
one. Note that for the result of viscous hydrodynamics
(black solid curve), the time is shifted byþ0.4 s. As shown
in Ref. [29], in viscous hydrodynamics, the mass ejection
sets in when the neutrino cooling rate is much smaller
than the viscous heating rate; i.e., Lν decreases below
∼1050 erg=s. On the other hand, in MHD, the mass ejection
is activated even in the stage with Lν ∼ 1051 erg=s [see
Figs. 4(a) and 5]. This is in particular the case for models
M10L75b and M10L80. This early-time mass ejection is
likely to be driven primarily by the pure MHD effects. For
all the models, however, the mass ejection is also active for
the stage of low neutrino luminosity. This late-time mass
ejection is likely to stem primarily from the effective
viscous effect associated with the enhanced turbulent

FIG. 5. Upper panel: Evolution of the neutrino luminosity for
the low-mass disk model. Lower panel: Evolution of the
maximum rest-mass density in units of g=cm3 and maximum
temperature (kBTmax) in units of MeV. For comparison, the
results by a viscous hydrodynamics simulation performed in
Ref. [30] are presented with the time shift of þ0.4 s.
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viscosity and inefficient neutrino cooling. That is, there are
multiple channels for the mass ejection in MHD [27,35].
It is also found that the peak neutrino luminosity in MHD

is at most 1052 erg=s while it is ∼1053 erg=s in viscous
hydrodynamics. This indicates that the heating in MHD is
not enhanced as efficiently as in viscous hydrodynamics, as
the neutrino emission is closely related to the thermal
energy of the matter. On the other hand, the high-
luminosity stage with Lν ∼ 1051 erg=s continues for a long
timescale of ∼1 s in MHD while the stage with Lν ≳
1051 erg=s is only for ∼300 ms in viscous hydrodynamics.
This indicates that the instantaneous heating efficiency in
MHD is not as high as that in viscous hydrodynamics but
the heating is continued constantly for a long timescale. In
other words, the timescale of the disk expansion resulting
from the (turbulent) viscous or MHD effect is not as short
as in viscous hydrodynamics. This fact is found from the
evolution of the maximum rest-mass density of the disk
(see the bottom panel of Fig. 5): In the MHD simulations,
the high value of the maximum rest-mass density is
preserved for a longer timescale than in the viscous
hydrodynamics simulation. This is also reflected in the
fact that the maximum temperature in MHD is higher than
that in viscous hydrodynamics for t≳ 1 s. We here note

that for model M10L80, the curves of Lν, ρmax, and Tmax in
the late time are similar to those for the viscous hydro-
dynamics model, but this is accidental: For model M10L80,
the disk expansion and mass ejection are driven mainly by
the MHD effect with a short timescale.
For the high-mass disk case, the difference in the

mechanism for the mass ejection between MHD and
viscous hydrodynamics becomes even more remarkable.
Figure 6(a) shows the evolution of the disk mass, the rest
mass that falls into the black hole, and ejecta mass. For
comparison, again, numerical results derived by our vis-
cous hydrodynamics simulation with plausible viscous
parameters [30] are also presented. It is found that
irrespective of the values of σc and αd the asymptotic
values of the mass for the matter located outside the horizon
in the MHD simulations are larger than that in the viscous
hydrodynamics one (and thus the mass that falls into the
black hole in the MHD simulations is smaller than that in
viscous hydrodynamics). In addition, the onset time of the
mass ejection in the MHD simulation is substantially earlier
than that in the viscous hydrodynamics one. As we already
mentioned, in viscous hydrodynamics, the mass ejection
sets in only after the neutrino cooling becomes inefficient.
For the high-mass disk model, the neutrino luminosity is

(a) (b)

(c) (d)

FIG. 6. Evolution of several quantities for the high-mass disk surrounding a black hole. (a) Mass of the matter located outside the black
hole (solid curve), that falls into the black hole (dashed curve), and ejected from the system (dashed curve); (b) neutrino luminosity;
(c) the average value of Ye for the ejecta; (d) the average velocity of the ejecta. For comparison, the results by a viscous hydrodynamics
simulation performed in Ref. [30] are presented with a time shift of þ0.4 s for all the panels.
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preserved to be high for a long timescale of several seconds
in both MHD and viscous hydrodynamics [see Fig. 6(b)].
In viscous hydrodynamics, this makes the onset time of the
mass ejection later than that in the low-mass disk model
[30]. On the other hand, in MHD, the difference in the onset
time of the mass ejection is not appreciable between the
high-mass and low-mass disk models. This indicates that
the MHD effects, not viscous effects, play a primary role in
the mass ejection. In particular, for the high-mass disk case
for which the pressure of the disk is larger than that in the
low-mass disk case, the magnetic-field strength is enhanced
to a higher level in an equipartition stage (cf. Fig. 3), and
furthermore, the high-density region of the disk, which is
located in its deep inside, can play a role of an anchor for
sustaining and swinging the field lines of strong magnetic
fields, leading to the increase of the mass ejection effi-
ciency via the magnetocentrifugal effect [72]. This indi-
cates that, in the presence of a high-mass dense object in the
central region, the efficiency of the mass ejection is
enhanced. This effect is in particular important in the
presence of a neutron star at the center (see Sec. IV).
Figures 6(c) and 6(d) plot the evolution of the average

electron fraction and velocity of the ejecta as in Fig. 4. In
comparison with the viscous hydrodynamics results, a
significant difference is again found in the asymptotic
values of the average velocity: The average ejecta velocity
in the MHD simulations is by a factor of ∼2 larger than the
viscous hydrodynamics results in the chosen ranges of σc
and αd (in this case the dependence of the ejecta velocity on
σc is weak). This is likely due to the enhancedMHD effects,
in particular to the magnetocentrifugal effect [72], as
mentioned above. An appreciable difference between the
MHD and viscous hydrodynamics results is also found in the
average electron fraction. For the MHD simulations, the
average value of the electron fraction settles to ∼0.35
irrespective of the values of σc and αd, while in the viscous
hydrodynamics simulation, it is ∼0.5. The reason for this
high value in viscous hydrodynamics is that for the high-
mass disk model, the timescale of the mass ejection from the
disk is quite long, about several seconds, and during the
long-term evolution process of the disk, the density becomes
low enough to decrease the electron degeneracy while
keeping relatively high temperature, and as a result, the
electron fraction is increased via the weak interaction process
[30]. By contrast, in the MHD simulations, the mass ejection
is not primarily driven by the effective viscous process
resulting from the turbulent viscosity developed, but mainly
by the MHD activity such as magnetocentrifugal force,
which significantly shortens the mass ejection timescale [see
Fig. 6(a)]. As a result of these effects, the electron fraction of
the ejecta remains to be fairly low, preserving the low values
of the high-density state of the disk.

3. Evolution of black hole

Although the mass ejection mechanism is different
between the MHD and viscous hydrodynamics models,

the evolution process of the black hole as a result of the
mass accretion is similar in both approaches. Figure 7
shows the evolution of the mass and dimensionless spin of
the black hole for all the high-mass disk models. For
comparison, we also plot the results obtained by the
viscous hydrodynamics simulation [30]. Irrespective of
the MHD or viscous hydrodynamics, the dimensionless
spin increases with the mass infall into the black hole and
settles eventually to a saturated value of ≈0.92� 0.01
at t ∼ 3 s. Although the mass accretion still continues for
t > 3 s and the black-hole mass gradually increases, the
dimensionless spin does not increase significantly. This
result suggests the similarity of the angular momentum
transport by the MHD and viscous processes. The evolution
curves of the black-hole mass by the MHD simulations are
also similar to that by the viscous hydrodynamics simu-
lation with a reasonable viscous coefficient. The black-hole
mass in the MHD simulations is slightly smaller than that in
the viscous hydrodynamics simulation. The reason for this
is that the fraction of the ejecta mass in the MHD
simulation is slightly larger than in the viscous hydro-
dynamics simulations due to the MHD effects.
We note that for larger values of σc and αd, the relaxed

values of the dimensionless spin is slightly smaller and the
black-hole mass is slightly smaller. This reflects the fact
that the outward angular-momentum transport effect and
resulting mass ejection are more efficient for the larger
values of σc and αd.

IV. EVOLUTION OF A REMNANT OF BINARY
NEUTRON-STAR MERGER

A. Setup

We then turn our attention to the evolution of a binary
neutron-star merger remnant, which is composed of a
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massive neutron star and a torus. As in our series of the
papers [23,24,31,34], the initial condition for the matter
field is supplied from the result of a simulation for the
binary neutron-star merger. Specifically, we employ the
DD2-135 model of Ref. [31]: a merger remnant of binary
neutron stars with each neutron-star mass 1.35 M⊙. This
model was already evolved in viscous hydrodynamics with
the (viscous) α parameter of 0.04 and the scale height of
10 km in a previous paper [31]. We compare the results
obtained in the present GRRRMHD simulations with those
in the viscous hydrodynamics ones for several choices of σc
and αd in the following.
Again, we initially superimpose a purely toroidal mag-

netic field in a high-density region of the remnant (both
neutron star and torus) as

BT ¼ ϖBφ ¼ A0ϖzmax

�
P

Pmax
− 0.01; 0

�
: ð4:1Þ

The poloidal component of Bi is set to be zero and the
electric field is determined by the ideal MHD condition of
Ei ¼ −ϵijkujBk=w. The dependence on the coordinates,
ϖz, in Eq. (4.1) stems from the regularity condition along
the z axis and the reflection antisymmetry with respect to
the z ¼ 0 plane for BT. A0 is a constant, and in this work,
we choose it so that the electromagnetic energy is
EB ≈ 2.6 × 1047 erg. We note again that the numerical
results depend very weakly on the initial field strength
because the electromagnetic field grows exponentially with
time in the early stage until a universal saturation level of
the field strength is reached. With the setting of Eq. (4.1),
the magnetic fields are initially present in the massive
neutron star and in the high-density region of the torus. As
already mentioned in Sec. III, the magnetic-field growth is
purely driven by the dynamo instability for the initial
condition only with the toroidal magnetic field in the
axisymmetric simulation.
For the numerical simulation, the central region with x≲

30 km and z≲ 30 km is covered by the uniform grid of
Δx0 ¼ Δz0 ¼ 160 or 200 m and outside this region, the
grid spacing is increased as Δxiþ1 ¼ 1.0075Δxi and
Δzjþ1 ¼ 1.0075Δzj. We basically perform the simulations
with the higher grid resolution of Δx0 ¼ Δz0 ¼ 160 m, but
to confirm the weak dependence of the results on the grid
resolution, for selected models (MNS75a and MNS80), we
also perform the simulationswithΔx0 ¼ Δz0 ¼ 200 m. The
models employed in this paper are listed in Table II. Unless
otherwise stated, the resultswith the higher-resolution setting
are presented in the following. For all the models, the initial
value of the kinetic energy is Ekin ≈ 1.16 × 1053 erg.

B. Numerical results

First of all, we display Fig. 8, which shows the evolution
of the rest-mass density, the temperature, the entropy per

baryon, and the electron fraction for σc ¼ 3 × 107 s−1 and
αd ¼ 10−4 (model MNS75a). This illustrates a typical
evolution feature of the torus surrounding a neutron star
in the present MHD simulations: Due to the angular
momentum transport and heating associated with the
MHD process caused by the enhanced magnetic fields
resulting from the dynamo action, the torus gradually
expands and the matter is ejected from the system spending
∼1 s. Eventually, the rest-mass density of the torus
becomes much lower than the initial value, and thus, the
final outcome is a massive neutron star with a low-density
torus and its envelope. During the evolution, it is also found
that a funnel region with the half opening angle of 10°–15°
is established along the z axis. In the funnel region, the
electromagnetic pressure is comparable to or larger than the
gas pressure (i.e., with the plasma-β of ≲1). The resultant
density profile is very similar to those in viscous hydro-
dynamics (compare Fig. 8 with Fig. 1 of Ref. [31]).
However, the mechanisms of the angular momentum
transport and heating in the torus and the mass ejection
process are quite different from those in viscous hydro-
dynamics. In particular, the unique properties of the MHD
processes can enhance the efficiency of the mass ejection in
the presence of strong magnetic fields that have a base point
(anchor) in the massive neutron star. In the following, we
pay particular attention to such unique properties resulting
from the MHD process.
Figure 9 shows the evolution of the electromagnetic

energy (left) and the ratio of the electromagnetic energy to
the kinetic energy (EB=Ekin: right), respectively, for the
entire system of the remnant massive neutron star and the
torus surrounding it. As in the evolution for black-hole
accretion disks, the magnetic-field strength is initially
amplified in the exponential manner until EB=Ekin reaches
∼3 × 10−3–1 × 10−2, and then the amplification is satu-
rated irrespective of the values of σc and αd. Here we note
that the kinetic energy, Ekin, is dominated by that of the
neutron star. The typical maximum magnetic-field strength
is ∼1016 G as found in Ref. [34] (also comparable to that in

TABLE II. Initial conditions and setup for the numerical
simulations of a binary neutron-star merger remnant. For all
the initial conditions, the total baryon mass isM� ¼ 2.95 M⊙, the
gravitational mass is M ¼ 2.64 M⊙, the total rotational kinetic
energy is Ekin ≈ 1.16 × 1053 erg, the electromagnetic energy
is EB ≈ 2.61 × 1047 erg, and the total angular momentum is
J ¼ 4.65 × 1049 g cm2=s.

Model σc ðs−1Þ αd Δx0 (m)

MNS80 1 × 108 1 × 10−4 160, 200
MNS75a 3 × 107 1 × 10−4 160, 200
MNS75b 3 × 107 2 × 10−4 160
MNS75c 3 × 107 5 × 10−5 160
MNS70a 1 × 107 1 × 10−4 160
MNS70b 1 × 107 2 × 10−4 160
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the remnant of binary neutron star mergers at a few ms after
the merger [74]). Here the saturation occurs due to the fact
that after the quick magnetic-field amplification, the matter
and magnetic flux start being ejected from the neutron star
and inner part of the torus primarily toward the polar
direction like in the magnetic-tower outflow (see Fig. 10;
see also Ref. [34]), and the further amplification is sup-
pressed. These initial mass and magnetic-flux ejections
occur approximately when the maximum electromagnetic

energy is reached, i.e., at ∼0.2–0.3 s after the start of the
simulation. This initial ejection is stronger for the larger
values of σc and αd because of the rapid growth of the
magnetic-field strength by the dynamo effect. In particular,
for the cases of σc ¼ 108 s−1 and of σc ¼ 3 × 107 s−1 and
αd ¼ 2 × 10−4 (models MNS80 and MNS75b, respec-
tively), this early mass ejection explosively occurs and
becomes the dominant mass ejection process among the
entire evolution.

FIG. 8. Snapshots of the rest-mass density in units of g=cm3, temperature (kBT in units of MeV), entropy per baryon s in units of kB,
and electron fraction Ye at selected time slices for model MNS75a with the high-resolution run. The arrows denote the velocity field
of ðvx; vzÞ.
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After the initial ejection toward the polar region, the
magnetic fields also spread to the equatorial region because
of the strong magnetic pressure and magnetocentrifugal
effect. Then, the matter and magnetic-field flux start being
outflowed toward a variety of the directions and a global
magnetic-field profile is established. After the initial violent
ejection, matter outflow quasisteadily continues. As we
already mentioned, this early ejection is in particular strong
for models MNS80 and MNS75b. For these models, the
torus around the massive neutron star is significantly
disturbed during the formation of the magnetic-field tower
structure.
Because the poloidal magnetic field is developed by the

α −Ω dynamo and associated outflow, the magnetic

braking is subsequently activated in the neutron star, and
then, the degree of the differential rotation in the neutron
star becomes weak: inside it, the angular velocity profile
approaches a rigid state in particular for models with σc ≥
3 × 107 s−1 (see Fig. 11). As a consequence, the value of
jSΩj in the inner region of the neutron star becomes small,
leading to the suppression of the α − Ω dynamo there.
However, the differential rotation is still present in the outer
part of the neutron star and torus. Hence, the α − Ω dynamo
is still active in the outer part of the system, preserves the
turbulent state of the torus, and induces the resulting mass
ejection from the torus. We note that the amplification of
the magnetic field initially occurs both in the neutron star
and torus, but the total electromagnetic energy is initially
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FIG. 9. Evolution of the electromagnetic energy (left) and ratio of the electromagnetic energy to the kinetic energy (right) for all the
models listed in Table II. The solid and dashed curves show the results with the high- and medium-resolution runs, respectively. The
dotted black line in the left panel shows ∝ expð2ωmaxtÞ with αd ¼ 10−4, σc ¼ 108 s−1, and jSΩj ¼ 103 rad=s: cf. Eq. (2.13).

FIG. 10. The poloidal magnetic-field lines together with the toroidal magnetic-field strength (color profiles) at selected time slices for
model MNS75a.
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determined by that in the neutron star. Also, the kinetic
energy is always dominated by that of the neutron star and
does not change significantly. For these reasons, the shapes
of the curves of EB and EB=Ekin are similar to each other.
The evolution of the electromagnetic energy inside the

neutron star after the saturation of its growth depends
strongly on the choice of σc, which determines the
dissipation timescale (for SΩ ¼ 0) given by

τdis ≈
�ðkcÞ2
4πσc

− αdkc

�−1
≈ 0.1λ20α−1d;−4 ð0.75λ−120 α−1d;−4σ−1c;8 − 1Þ−1 s; ð4:2Þ

where λ ≔ 2π=k, λ20 ≔ λ=ð20 kmÞ, αd;−4 ≔ αd=10−4, and
σc;8 ≔ σc=108 s−1, respectively. Note that if τdis is negative,
the system is unstable for the α dynamo with the corre-
sponding wavelength. Thus, for σc ¼ 108 s−1 and αd ¼
10−4, the electromagnetic field in the neutron star can be
preserved by the unstable modes with λ≳ 15 km, which is
comparable to the neutron-star radius, while for the smaller
values of σc ≤ 3 × 107 s−1 (and αd ≤ 2 × 10−4), the elec-
tromagnetic energy in the neutron star should be dissipated
in ∼0.1 s, because the modes with λ≲ 45 km decay.
Figure 9 indeed shows that for σc ¼ 108 s−1 (model

MNS80), the electromagnetic energy is preserved after the

saturation of the field growth. On the other hand, for
σc ≤ 3 × 107 s−1, the electromagnetic energy decreases
with time and its magnitude depends weakly on the
values of σc and αd. The reason for this is that in this
later stage, the electromagnetic energy is dominated by that
of the torus in which the α −Ω dynamo continues to be
active. Indeed the magnitude of the electromagnetic energy,
1048–1049 erg, is in broad agreement with the black hole–
low-mass disk cases for which the order of the disk mass is
the same as that for the torus surrounding the neutron star
(compare the left panel of Fig. 9 with the top-left panel of
Fig. 3). Figure 10 also shows that (i) as in the disk around
the black hole (compare with Fig. 2), the polarity of the
magnetic fields changes with time due to the dynamo effect
and (ii) due to the dissipation of the magnetic field in the
neutron star, the magnetic-field strength decreases along
the z axis in the late stage of t≳ 2 s. These results are
essentially the same as those in the black hole–disk case.
On the other hand, we do not find clearly aligned structure
for the magnetic-field lines in the funnel region. Our
interpretation for this is that the matter outflow from the
central region toward the polar region continuously occurs
and the magnetic-field structure is always disturbed in the
presence of the neutron star.
For σc ¼ 107 s−1 (models MNS70a and MNS70b), the

dissipation timescale of the magnetic fields in the neutron

FIG. 11. Evolution of the angular velocity as a function of ϖ with z ¼ 1 km for models MNS75a (top left), MNS75b (top right),
MNS70a (bottom left), and MNS70b (bottom right). Note that for model MNS75b, the quasisteady-state disk is absent for t ≳ 2 s
because most of the disk matter is ejected by the magnetocentrifugal effect.
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star is so short that the magnetic braking effect is not very
outstanding as found in the bottom panels of Fig. 11. That
is, before the sufficient growth of the poloidal fields in the
neutron star which activates the magnetic braking, the
resistive effect becomes important, and hence, the differ-
ential rotation is preserved for a relatively long timescale.
For these models, the effect of the neutron star on the mass
ejection becomes relatively minor (see below).
Associated with the magnetic-field amplification, the

matter is ejected from the merger remnant, primarily from
the torus surrounding the massive neutron star. However,
this does not imply that the role of the massive neutron star
is not important for the mass ejection as described in the
following.
As already mentioned, by the enhancement of the

magnetic-field strength, the turbulent state is developed
in the torus and the enhanced magnetic-field force induces
the mass ejection from the torus (see, e.g., Figs. 8 and 10).
This situation is qualitatively the same as that in the mass
ejection from the black hole–disk systems. However, in the
presence of the neutron star in the central region, the
magnetocentrifugal effect [72] further enhances the mass
ejection efficiency because some of the magnetic-field lines
are anchored by the neutron star and the angular velocity of
the neutron star is higher than that of the torus. Because of

the presence of this additional effect, the total ejecta mass
can be higher than that in the viscous hydrodynamics
simulation with reasonable viscous parameters [31], in
particular for the high values of σc [see Fig. 12(a)] with
which the dissipation timescale of the magnetic fields in the
neutron star is longer. In addition, the ejecta velocity is
enhanced significantly for σc ≥ 3 × 107 s−1 [see Fig. 12(b)].
In particular for σc ¼ 108 s−1 (model MNS80), the average
ejecta velocity becomes ∼0.5c. Even for σc ¼ 3 × 107 s−1,
the ejecta velocity is always by a factor of∼2 higher than that
in viscous hydrodynamics, and the kinetic energy of the
ejecta ≈Mejev2eje=2 becomes ≳1052 erg for models MNS80,
MNS75a, MNS75b, and MNS75c. This implies that if the
strong magnetic-field lines anchored in the neutron star are
present for a few hundred ms, the magnetocentrifugal force
plays a significant role in themass ejection. By contrast, if the
strong magnetic field is present only for ≲100 ms (i.e.,
σc ≤ 107 s−1), the magnetocentrifugal force is likely to be a
minor effect. In particular, if the dynamo effect is not strong,
i.e., for MNS70a, the mass ejection efficiency in the MHD
simulation isweaker than in theviscous hydrodynamics case.
However, if the magnetic-field growth occurs in a short
timescale, i.e., within ∼200 ms, the strong magnetic-field
effect is universally observed irrespective of the values of αd

(a) (b)

(c) (d)

FIG. 12. Evolution of (a) rest mass, (b) average velocity, (c) average entropy per baryon, and (d) average electron fraction of the ejecta
for all the models listed in Table II. The solid and dashed curves show the results with the high- and medium-resolution runs,
respectively. For comparison, the results for a viscous hydrodynamics simulation (model DD2-135M in Ref. [31]) are plotted together
with the time shift of þ0.2 s.
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(compare the results for models MNS75a, MNS75b, and
MNS75c).
The ejecta of kinetic energy, Ekin;eje, gained primarily

by the magnetocentrifugal force associated with the rota-
tion of the neutron star, should also obtain the angular
momentum approximately by Jeje ∼ Ekin;eje=Ω, where Ω is
the relaxed angular velocity of the neutron star which is
Ω ≈ 6000 rad=s (see Fig. 11). With this process, the
neutron star should lose its angular momentum approx-
imately by Jeje. For Ekin;eje ¼ 1052 erg, Jeje ∼ 3 × 1048 erg
s. The angular momentum of the neutron star is approx-
imately 3 × 1049 erg s. Thus, ≳10% of the angular momen-
tum of the neutron star is transported to the ejecta for
models with σc ≥ 3 × 107 s−1. This result is reflected in the
late-time decrease of the peak angular velocity for models
MNS75a and MNS75b (see the upper panels of Fig. 11).
With the higher value of αd, the magnetic field is ampli-

fied in a shorter timescale. As a result, the mass ejection
sets in earlier [compare the results of Fig. 12(a) among
models MNS75a, MNS75b, and MNS75c and/or between
models MNS70a and MNS70b]. However, the average
velocity of the ejecta depends only weakly on the value of
αd. This indicates that the acceleration of the ejecta is
induced primarily by the magnetocentrifugal force related
to the amplified magnetic-field lines anchored in the
neutron star.
Due to the violent magnetic-field activity and resulting

shock heating, the entropy per baryon of the ejecta is also
significantly enhanced, in particular for σc ≥ 3 × 107 s−1

[see Fig. 12(c)]. This results from the efficient shock
heating by the MHD effect. By contrast, the average
electron fraction is ∼0.3, i.e., as high as that in the viscous
hydrodynamics simulation, irrespective of the values of σc
and αd [see Fig. 12(d)]. One reason for this is that the
majority of the matter is ejected from the outer part of the
torus for which the density is not so high that the electron
degeneracy is not very high, and thus, the neutron richness
is only moderately high. The other reason is the presence of
the strong irradiation by neutrinos emitted from the massive
neutron star. Figure 13 plots the total neutrino luminosity as
a function of time. It is found that the neutrino luminosity in
the MHD simulations, ∼1053 erg=s, is only slightly smaller
than that in viscous hydrodynamics. Thus, the neutrino
irradiation in MHD can play a role as important as in
viscous hydrodynamics for controlling the electron fraction
of the matter surrounding the neutron star and those ejected
from it [31].
Figure 13 also shows that for the larger values of σc

and αd, the neutrino luminosity is enhanced earlier. This
indicates that the early growth of the magnetic-field
strength by the dynamo action contributes to enhanc-
ing the shock-heating efficiency in the neutron star and
resultant neutrino emission efficiency. By contrast for σc ¼
107 s−1 and αd ¼ 10−4 (model MNS70a), the enhancement
of the neutrino luminosity is minor, and the neutron star

appears to simply cool down. This result is consistent with
the interpretation that the MHD power is reflected in the
efficiency of the shock heating and neutrino emission.
For σc ¼ 107 s−1 for which magnetic-field lines anchored

in the neutron star do not have a high field strength in the
main mass ejection stage, the results for the average velocity,
average entropy, and electron fraction are not very different
from those in viscous hydrodynamics irrespective of the
value of αd, although the ejecta velocity is still higher than
that inviscous hydrodynamics. In this case, themass ejection
is driven primarily from the torus by the effective viscosity
induced by theMHD turbulence. Theweaker magnetic-field
effect from the neutron star is also reflected in relatively low
neutrino luminosity as mentioned above. Thus for models
MNS70a and MNS70b, the properties of the ejecta are
similar to those in the viscous hydrodynamics simulation
[31]. It is also worth mentioning that for σc ¼ 107 s−1 and
αd ¼ 2 × 10−4 (model MNS70b), the MHD and viscous
hydrodynamics results are similar to each other in the ejecta
mass and the average value of the electron fraction.
To summarize, themass, velocity, entropy per baryon, and

electron fraction of the ejecta depend strongly on the strength
of theglobalmagnetic fields anchored in theneutron star (and
the lifetime of the strong magnetic-field stage in the neutron
star). If the field strength of the neutron star is preserved to be
high enough for several hundred ms and the field lines are
extended sufficiently far from the remnant neutron star, the
ejecta properties are affected significantly by the magneto-
centrifugal effect [72].Currently, themagnetic-field structure
of the merger remnant is not very clear. Therefore, one of the
important subjects in this research field is to clarify the
magnetic-field structure of the merger remnant by a long-
term high-resolution MHD simulation for neutron-star
mergers. Alternatively, if the future electromagnetic obser-
vations for neutron-star mergers give us information for the
ejecta velocity, we may be able to learn the MHD activity in
the merger remnant.

FIG. 13. Evolution of the neutrino luminosity for all the high-
resolution models listed in Table II. For comparison, the result by
a viscous hydrodynamics simulation performed in Ref. [31] is
presented with the time shift of þ0.2 s.
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V. SUMMARY

We performed GRRRMHD simulations incorporating a
mean-field dynamo term for black hole–disk systems and
for a merger remnant of binary neutron stars composed of a
massive neutron star and a torus, paying particular attention
to the α −Ω dynamo effect. We compared the new results
with those previously obtained in our viscous hydrody-
namics simulations [29–31] and clarified the specific MHD
effects. For the system of a black hole and a low-mass disk,
it is found that the results of the MHD simulations agree
broadly with those of viscous hydrodynamics simulations:
The mass of the ejecta as well as the total mass that falls
into the black hole by the two approaches agree approx-
imately with each other. One clear difference is found in the
average velocity of the ejecta. For the viscous hydro-
dynamics case, the average velocity of the ejecta is smaller
than 0.1c irrespective of the viscous coefficient employed
widely in our previous studies [29,30]. By contrast, the
average velocity of the ejecta in the present MHD simu-
lations becomes 0.10–0.15c. Furthermore, mass ejection in
the MHD simulations occurs relatively earlier than that in
viscous hydrodynamics, because not only the effective
viscosity effect resulting from the MHD turbulence but also
the magnetic force associated with the global magnetic
fields developed by the dynamo action plays an important
role for the mass ejection. Associated with the enhance-
ment of the ejecta velocity and earlier mass ejection, the
average value of the electron fraction is slightly decreased.
The reason for this is that the ejecta is generated relatively
in early time from the disk, i.e., before the matter
significantly experiences the weak interaction effects,
and is also less subject to the irradiation of neutrinos
emitted from the accretion disk. All these results are
consistent with those found in the previous MHD simu-
lation [22,27,28,35], although in our results the velocity is
not still extremely high and the average value of the
electron fraction is only mildly neutron rich as hYei ∼ 0.3.
For the case of a black hole and a high-mass disk, the

disagreement between the results of the MHD and viscous
hydrodynamics simulations is more remarkable. For this
case, the mass ejection in MHD occurs much earlier than in
viscous hydrodynamics and the average velocity of the
ejecta in MHD is also appreciably larger than that in
viscous hydrodynamics. In addition, the average value of
the electron fraction is ∼0.35 in MHD while it is ∼0.5 in
viscous hydrodynamics. The main reason for this differ-
ence is that the magnetocentrifugal effect plays a more
significant (perhaps primary) role in the mass ejection and
ejecta acceleration than in the low-mass disk case. In the
presence of a massive disk, it is likely that the magnetic-
field lines are anchored in the dense region of the torus, and
thus, the swinging of the global field lines and resultant
ejecta acceleration become more efficient.
For the massive neutron-star–torus case, we also find a

significant enhancement in the mass and average velocity

of the ejecta due to the MHD effect, in particular for higher
values of σc ≥ 3 × 107 s−1, i.e., for the cases that strong
and global magnetic fields are preserved for several
hundred ms, in comparison with that in the viscous
hydrodynamics simulation. For the high values of σc,
strong magnetic-field lines anchored in the neutron star,
which is rotating more rapidly than the surrounding matter
such as torus, are preserved for several hundred ms, and
therefore, by the magnetocentrifugal force, which is absent
in viscous hydrodynamics, the mass ejection is enhanced
and also ejecta are accelerated. The present numerical
results indicate that the kinetic energy of the ejecta exceeds
1052 erg=s for models with σc ≥ 3 × 107 s−1. By contrast,
for σc ¼ 107 s−1, the magnetic field in the neutron star is
dissipated by the resistivity in a short timescale of
≲100 ms, and hence, the magnetocentrifugal effect does
not become as significant as for σc ≳ 3 × 107 s−1. For this
high-resistivity case, the mass ejection proceeds primarily
through the effective viscous process resulting from the
MHD turbulence in the torus and the properties of the ejecta
are similar to those in viscous hydrodynamics. This
suggests that the magnetic-field strength of the neutron
star and global structure of the magnetic-field lines can
primarily determine the ejecta properties such as their mass
and velocity. To clarify this point, we need a self-consistent
long-term simulation from the merger throughout the
postmerger evolution with the duration of seconds in the
future.
The primary message of this paper is that if the strong

amplification of the magnetic fields occurs inside the
remnant neutron star and a global magnetic-field structure
is established outside it, the ejecta velocity can be much
higher than that in the absence of the magnetic fields [31].
In our recent paper [56], we derived light-curve models of
kilonovae from the binary neutron-star merger remnant
composed of a long-lived massive neutron star and a
torus. This work was based on the results of viscous
hydrodynamics of Ref. [31]. If we take into account the
MHD effects in the postmerger evolution, the light curve
of the kilonovae is likely to be modified significantly.
Specifically, the kilonovae, by high-velocity ejecta, are
likely to shine earlier and become bluer. Also, the peak
luminosity will be larger. We plan to explore the kilonova
light curves using the numerical models obtained in this
work. The synchrotron emission generated during sweep-
ing the interstellar matter by the fast and energetic ejecta
can be also much brighter than that in the previous study
[55,75]. We also plan to quantitatively explore this signal
using our numerical models.
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