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We develop a new relativistic radiation hydrodynamics code based on the Monte Carlo algorithm. In this
code, we implement a new scheme to achieve the second-order accuracy in time in the limit of a large
packet number for solving the interaction between matter and radiation. This higher-order time-integration
scheme is implemented in the manner to guarantee the energy-momentum conservation to the precision of
the geodesic integrator. The spatial dependence of radiative processes, such as the packet propagation,
emission, absorption, and scattering, are also taken into account up to the second-order accuracy. We
validate our code by solving various test problems on a fixed-background metric following the previous
studies; one-zone thermalization, dynamical diffusion, radiation dragging, radiation-mediated shock-tube,
shock-tube in the optically-thick limit, and Eddington limit problems. We show that our code reproduces
physically appropriate results with reasonable accuracy and also demonstrate that the second-order
accuracy in time and space is indeed achieved with our implementation for one-zone and one-dimensional
problems.
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I. INTRODUCTION

The merger of neutron stars is one of the most
interesting multimessenger phenomena in high-energy
astrophysics, in which physical processes in extreme
(strongly self-gravitating, high-density, and high-
temperature) environments are realized. The simultaneous
detection of gravitational waves (GWs) from a binary
neutron star and its electromagnetic (EM) counterparts
provides a great opportunity to study such systems.
Indeed, the first detection of GWs and EM signals from
a binary neutron star, GW170817 [1,2], demonstrates the
powerfulness of the multimessenger astronomy. A num-
ber of detections of GWs and EM signals from binary
neutron stars are expected in the next few years [3–6],
and the observation of GWs and EM signals from a
binary neutron star will surely give a great impact on
both astrophysics and fundamental physics.

To maximize the scientific returns from the observed
signals, the quantitative prediction of the merger outcome is
crucial. After the binary merger, a massive neutron star or a
black hole surrounded by a strongly magnetized hot and
dense accretion torus is likely to be formed [7,8]. The
accretion torus is considered to launch a relativistic jet and
outflows by magnetic pressure and tension, viscous heating
due to magnetohydrodynamical turbulence, and neutrino
irradiation (e.g., Refs. [9–14]). In such a situation, neutrino-
antineutrino pair annihilation could be the important
mechanism for the system to launch a jet powerful enough
to explain gamma-ray bursts [15,16]. In addition to the
matter ejected by tidal disruption and collisional shock
heating at the onset of the merger (e.g., Refs. [17–19]), the
neutron-rich matter ejected in the postmerger phase is
expected to be the important site of the r-process nucleo-
synthesis in the Universe [20–23]. Since weak-interaction
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processes play an important role in determining the
dynamics and the thermodynamic properties of the
merger remnants, the postmerger environment, and
the abundance of the elements synthesized in the ejecta
(e.g., Refs. [24–41]), accurately solving neutrino radiation
is a key ingredient for the quantitative understanding of the
merger physics.
While radiation of neutrinos and photons plays an

important role in various astrophysical situation, solving
radiative transfer is for many cases computationally expen-
sive due to its large dimensionality of the phase-space
dependence; seven dimensions which come from time,
three real-space dimensions, and three momentum-space
dimensions. Moreover, the physical time scale of the local
radiation-matter coupling can often be much shorter than
the dynamical time scale of the matter field, and hence,
complicated prescriptions, such as implicit solvers, are
required to numerically solve the system in realistic
computational time. The recent dramatic progress of
computer resources has made it possible to directly solve
radiation-transfer equations by the full discretization of a
radiation field (e.g., Refs. [42–47]), but yet, the size and
resolution of the problems that can be solved are still
limited.
Various approximation methods are proposed for over-

coming such problems. One of the most successful
approximation methods among them is the moment
scheme. In a moment scheme, up to the two lowest
moments of radiation in momentum space are solved as
the dynamical variables with an approximate closure
relation to the higher moments [48,49]. In the context of
relativistic problems, many numerical codes are developed
by employing moment schemes sometimes with a combi-
nation of the leakage algorithm [14,28–30,50–58].
However, while the moment schemes should be accurate
for the optically-thick cases, it sometimes fails to capture a
physically correct property in the mildly optically-thick or
optically-thin regions (e.g., see the result of the two-beam
crossing problem presented in Ref. [47]). Since the moment
schemes do not necessarily provide a solution which
converges to the correct solution of the full radiation-
transfer equations, it is not guaranteed that the outcome
derived from the moment schemes is always reliable. In
fact, in Refs. [36,59], while the total luminosity of electron
type neutrinos obtained by aM1 scheme agrees with that by
a Monte Carlo scheme (see below) within ≈20%, nearly
50% disagreement in the angular dependence of the
neutrino luminosity are present, and it is pointed out
that a moment scheme can underestimate the neutrino-
antineutrino pair annihilation rate in a neutron star merger
simulation by a factor of 2–3. It should be also noted that
M1 schemes employed for neutron star merger simulations
are all energy integrated, and thus the information of energy
distribution is lost in those simulations (see Refs. [60–62]
for multienergy M1 schemes in the context of supernova

simulations). Because only one model is studied for a short
time scale (∼5 ms), it is still premature to say that a
moment scheme is sufficient for studying binary neutron
star systems.
An alternative approach for solving the radiation-transfer

equation is the Monte Carlo radiation transport. In the
Monte Carlo scheme, a radiation field is described by a set
of packets, each of which represents a large number of
photons or neutrinos, and its evolution is determined by
solving the transport along the geodesic and by taking the
interaction with the matter field into account for each
packet. In the limit of the large packet number (ultimately
which resolves each photon or neutrino), the solution
obtained by the Monte Carlo scheme manifestly converges
to the solution of radiation-transfer equation. Recently,
radiation hydrodynamics codes based on the Monte Carlo
scheme are developed by several groups [31,36,63–69]
because the frequency dependence and complicated angu-
lar dependence expected in an optically thin region, as well
as relativistic effects, can be incorporated in a straightfor-
ward manner. However, there are several drawbacks to the
Monte Carlo approach. Among them, the slow convergence
of the statistical error of the Monte Carlo packets (“the
Monte Carlo shot noise”) is a problem to be improved for
the radiation-hydrodynamics codes with the Monte Carlo
algorithm. The operator splitting method is often used for
the interaction between matter and radiation fields in all the
previous studies, by which the error due to the finite
discretization shows only the first order convergence.
In this paper, we report our new Monte Carlo-based

radiation-hydrodynamics code as an improved version of
the previous codes [63–66,70,71]. In this code, we imple-
ment a new scheme to achieve the second-order accuracy in
time in the limit of a large packet number for solving the
interaction between matter and radiation fields. We also
take the spatial dependence of radiative processes into
account up to the second-order accuracy, by which our code
is second-order accurate in both time and space. We also
propose a prescription which can be used for a very
optically-thick regime to suppress the Monte Carlo shot
noise of the energy-momentum transport between the cells.
Our code is primarily designed to solve an axisymmetric
system aiming at the long-term evolution of the postmerger
phase (e.g., Ref. [35]), although the modification to a
solution of the fully three-dimensional problems is straight-
forward. We validate our code by solving various test
problems. In this paper, we solve test problems on a fixed
background metric to focus on the validation of our new
prescriptions, while we design our code to be applicable in
dynamical spacetime.
This paper is organized as follows: In Sec. II, we

describe the basic formulation of the radiation hydrody-
namics. In Sec. III, we describe the numerical method
employed in our code. In Sec. IV, we present successful
results for various numerical test problems and validate our
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new code. Finally, we summarize our present work in
Sec. V. Throughout this paper, c and G denote the speed of
light and gravitational constant, respectively, and the units
of c ¼ G ¼ 1 are employed unless explicitly mentioned.

II. BASIC EQUATIONS

A. Hydrodynamics

The basic equations for the numerical hydrodynamics
employed in this work are formulated in the framework of
the 3þ 1 decomposition of the spacetime. In the 3þ 1
formulation, the metric tensor gμν is decomposed as

ds2 ¼ gμνdxμdxν

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where μ and ν denote the spacetime indices, i and j the
spatial indices, α, βi, and γij the lapse, shift, and spatial
metric, respectively. We treat the hydrodynamics fluid as a
perfect fluid and the energy-momentum tensor is written as

Tμν
fl ¼ ρhuμuμ þ Pgμν; ð2Þ

where ρ, h, uμ, and P denote the baryon rest-mass density,
specific enthalpy, four-velocity, and pressure, respectively.
The equations of energy-momentum conservation and the
continuity equation are given by

γνi∇μT
μν
fl ¼ γνiGν ð3Þ

nν∇μT
μν
fl ¼ nνGν ð4Þ

∇μðρuμÞ ¼ 0; ð5Þ

with the covariant derivative, ∇μ. Here, nν ¼ −α∇νt,
γμν ¼ gμν þ nμnν, and Gμ denotes the radiation four-force
density. Equations (3)–(5) are rewritten in the forms (e.g.,
Ref. [49])

∂tSi þ ∂kðSivk þ Pα
ffiffiffi
γ

p
δki Þ ¼ −S0∂iα

þ Sk∂iβk −
1

2
α

ffiffiffi
γ

p
Sjk∂iγjk þ α

ffiffiffi
γ

p
Gi; ð6Þ

∂tS0 þ ∂k½S0vk þ P
ffiffiffi
γ

p ðvk þ βkÞ�
¼ −γijSi∂jαþ α

ffiffiffi
γ

p
SijKij þ α2

ffiffiffi
γ

p
Gt; ð7Þ

∂tρ� þ ∂kðρ�vkÞ ¼ 0; ð8Þ

respectively. Here, Kij denotes the extrinsic curvature, and
the other variables which newly appear in the above
equations are defined as follows:

ffiffiffi
γ

p ¼ detðγijÞ;
ρ� ¼ ρw

ffiffiffi
γ

p
;

w ¼ αut;

Si ¼ ρ�ûi ¼ ρ�hui;

S0 ¼ ρ�ê ¼ ρ�

�
hw −

P
ρw

�
;

Sij ¼ ρhuiuj þ Pγij;

vi ¼ ui

ut
: ð9Þ

In our code, we assume axisymmetry of the system.
Employing the Cartesian coordinate ðx; y; zÞ and assuming
the z-axis to be the axis of symmetry, the system can be
described by the hydrodynamics quantities in the y ¼ 0
plane. Based on the formulation introduced in Ref. [72], the
set of hydrodynamics equations, Eqs. (3)–(5), are rewritten
into

∂tSx þ
1

x
∂x½xðSxvx þ Pα

ffiffiffi
γ

p Þ� þ ∂zðSxvzÞ

¼ −S0∂xαþ Si∂xβi −
1

2
α

ffiffiffi
γ

p
Sij∂xγij:

þ 1

x
α

ffiffiffi
γ

p
Pþ 1

x
Syvy þ α

ffiffiffi
γ

p
Gx; ð10Þ

∂tSy þ
1

x2
∂xðx2SyvxÞ þ ∂zðSyvzÞ ¼ α

ffiffiffi
γ

p
Gy; ð11Þ

∂tSz þ
1

x
∂xðxSzvxÞ þ ∂zðSzvz þ Pα

ffiffiffi
γ

p Þ

¼ −S0∂zαþ Si∂zβi −
1

2
α

ffiffiffi
γ

p
Sij∂zγij þ α

ffiffiffi
γ

p
Gz; ð12Þ

∂tS0 þ
1

x
∂xfx½S0vx þ P

ffiffiffi
γ

p ðvx þ βxÞ�g
þ ∂z½S0vz þ P

ffiffiffi
γ

p ðvz þ βzÞ�
¼ −γijSi∂jαþ α

ffiffiffi
γ

p
SijKij þ α2

ffiffiffi
γ

p
Gt; ð13Þ

and

∂tρ� þ
1

x
∂xðxρ�vxÞ þ ∂zðρ�vzÞ ¼ 0; ð14Þ

respectively. Here, the indices i and j take x, y, and z.

B. Radiation

From microscopic point of view, a radiation field is
consist of EM waves. If the wavelength of EM waves (the
de Broglie wavelength for the case of neutrinos) is much
smaller than the typical size of the system, EM (de Broglie)
waves can be treated as particles under the geometric optics
approximation. In a certain time slice, the state of each
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photon/neutrino is determined by the spatial coordinates,
xi, and the momentum, pi. The evolution of these quantities
are determined by the geodesic equations,

dxμ

dλ
¼ pμ;

dpi

dλ
¼ Γμ

iνpμpν; ð15Þ

together with the normalization condition,

gμνpμpν ¼ −m2
rad; ð16Þ

where λ and mrad are the affine parameter and the mass of
the particle, respectively. In the following, we set mrad ¼ 0
considering the case of photons or neutrinos (of which
mass is negligible compared to the energy scale of the
system). By the 3þ 1 decomposition, these equations can
be rewritten in the form suitable to follow the time
evolution as [66,73]

dxi

dt
¼ γij

pj

pt − βi; ð17Þ

dpi

dt
¼ −αð∂iαÞpt þ ð∂iβjÞpj −

1

2pt ð∂iγjkÞpjpk; ð18Þ

pt ¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijpipj

q
: ð19Þ

To describe a radiation field by the set of photons, it is
useful to introduce the distribution function in the phase
space. We note that there are at least two options for the
coordinates to describe the momentum sector of the phase
space: employing the momentum with the upper (pi) or
with the lower indices (pi). While the momentum with the
upper indices, pi, is also often used for the coordinates of
the momentum space (e.g., Ref. [74]), in our formulation,
we employ the momentum with the lower indices, pi,
following Refs. [65,66,70] because they match the geodesic
equation in the 3þ 1 form. To avoid the confusion, in the
following, we refer to the coordinate volume element of the
momentum space with the lower indices, dp1dp2dp3, as
d3p, while the spatial coordinate volume element,
dx1dx2dx3, as d3x.
For the phase space described in the coordinates of

ðxμ; piÞ, the gauge-invariant phase-space volume element
in a time slice is given by d3xd3p ¼ ð−nμpμÞdVdΠ
[75,76], where dV and dΠ are the spatial volume element
and momentum space volume element defined by dV ≔ffiffiffi
γ

p
d3x and dΠ ≔ d3p=ð ffiffiffiffiffiffi−gp

ptÞ, respectively. We note
that, while dΠ is gauge invariant under spacetime coor-
dinate transformations, dV is gauge invariant only under
spatial coordinate transformations.
The distribution function of photons/neutrinos in the

phase space, f, is defined by

fðxμ; piÞ ≔
dN

d3xd3p
¼ dN

ð−nμpμÞdVdΠ ; ð20Þ

where dN denotes the photon/neutrino number in the gauge-
invariant phase-space volume d3xd3p ¼ ð−nμpμÞdVdΠ.
Note that f is also gauge invariant as dN is gauge invariant
quantity.
We can show that d3xd3p ¼ ð−nμpμÞdVdΠ is also

invariant along the geodesic flow (Liouville’s Theorem).
It follows that the change in the photon/neutrino number
per a unit affine parameter in the gauge-invariant phase-
space volume is given by

dN
d3xd3pdλ

≔
df
dλ

����
source

¼ L½f�; ð21Þ

where L½f� is the so called Liouville’s operator defined by
(e.g., Ref. [65])

L½f� ≔ dxμ

dλ
∂f
∂xμ

þ dpi

dλ
∂f
∂pi

¼ dxμ

dλ
∂f
∂xμ

−
1

2
ð∂igμνÞpμpν ∂f

∂pi
; ð22Þ

and df
dλ jsource determines the change in the photon number

caused by various radiative process events of photons/
neutrinos, such as emission, absorption, and scattering.
The energy-momentum tensor of a radiation field is

given by

Tμν
rad ¼

Z
dΠpμpνf ¼

Z
d3pffiffiffiffiffiffi−gp

pt p
μpνf: ð23Þ

The conservation law of the total energy momentum,
∇μðTμν

fl þ Tμν
radÞ ¼ 0, leads to the expression of the radiation

four-force density as

Gμ ¼ −∇μT
μν
rad ¼ −

Z
dΠpμdf

dλ

����
source

¼ −
Z

d3pffiffiffiffiffiffi−gp pμdf
dt

����
source

: ð24Þ

Here, df
dt jsource ≔ 1

pt
df
dλ jsource denotes the change in the

photon number per a unit time parameter in the gauge-
invariant phase-space volume.

III. NUMERICAL METHOD

A. Hydrodynamics

In this work, we solve the set of equations, Eqs. (10)–(14),
in the conservative form. The numerical flux is calculated by
employing a Kurganov-Tadmor scheme [77] with a piece-
wise parabolic reconstruction for the hydrodynamics quan-
tities of cell interfaces and a steep MinMod filter for the
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flux-limiter. The linear interpolation is used to determine the
thermodynamical quantities and four-velocity for each loca-
tion of the radiation packets. The tetrad frame is constructed
from the interpolated four-velocity employing the Gram-
Schmidt orthonormalization and used to define the quantities
in the fluid rest frame. The hydrodynamics solver in our code
is parallelized by the domain decomposition method with
OpenMP.

B. Monte Carlo scheme for a radiation field

In the Monte Carlo scheme that we employ, a radiation
field is described by a set of photon/neutrino packets,
each of which represents a number of photons/neutrinos.
Each packet has information of the position, xiðkÞ, and the
momentum, pðkÞ;i (for the kth packet), which describe the
position and momentum of consisting photons/neutrinos.
For a given set of packets, the distribution function is
approximated by the following form [65]:

fðt; xi; piÞ ≈ fMCðt; xi; piÞ
≔

X
k

wðkÞðtÞδ3½xi − xiðkÞðtÞ�δ3½pi − pðkÞ;iðtÞ�:

ð25Þ

Here, wðkÞ denotes the weight of the packet, which
describes how many photons/neutrinos are contained in
each packet, and the summation is taken for the packets
which are located in a cell coordinate volume of Δ3x.
Substituting the distribution function in Eq. (23) together
with Eq. (25), the energy-momentum tensor of a radiation
field for a given cell of Δ3x is expressed as

Tμν
rad ¼

1ffiffiffiffiffiffi−gp Δ3x

X
k

wk

pμ
ðkÞp

ν
ðkÞ

pt
ðkÞ

: ð26Þ

Substituting the distribution function in Eq. (21) together
with Eq. (25) and integrating the equation for the infini-
tesimally small phase volume around the vicinity of each
packet with the weights of xid3xd3p and pid3xd3p lead to
the geodesic equations [Eqs. (17) and (18)] for the packet
position and momentum [xiðkÞ and pðkÞ;i]. This shows that
the evolution of the packet is determined simply by solving
the geodesic equation.
The integration for a small phase volume Δ3xΔ3p

around the vicinity of each packet gives the evolution
equation for wðkÞðtÞ,

dwðkÞ
dt

¼ df
dt

����
source

½xμðkÞ; pðkÞ;i�Δ3xΔ3p: ð27Þ

This implies that the source term of Eq. (21) can be
described by the change in wðkÞ or the probabilistic
creation/annihilation of packets.

The change in wðkÞ or the probabilistic creation/annihi-
lation of packets caused by a radiative process event
(emission, absorption, and scattering) induces the back-
reaction force to the matter field. Each radiative process
event that happens in a cell volume Δ3x during a time step
Δt contributes to the four-force density in the following
form derived from Eq. (24),

ΔGμ ¼ −
Δpμffiffiffiffiffiffi−gp ΔtΔ3x

: ð28Þ

Here, Δpμ denotes the four-momentum change occurred in
the radiative process event.
A radiation field is evolved by considering the emission,

propagation along geodesics, absorption, and scattering of
packets. The detailed implementation of the radiative
process events (emission, propagation, absorption, and
scattering) in our code are presented below. The radia-
tive-transfer solver in our code is parallelized with OpenMP
dividing the packet calculations across individual com-
pute cores.

1. Emission

At the beginning of the radiation field evolution at each
time step, packets are created in each cell in the way similar
to Ref. [65]. For given cell coordinate volumeΔ3x and time
interval Δt, the candidate for the number of packets created
in the cell, N0

p, is determined by

N0
p ¼ Min

� ffiffiffiffiffiffi
−g

p
ΔtΔ3x

η

Ep
; Ntrg

�
; ð29Þ

where η and Ep denote the (wavelength-integrated) total
emissivity and total fluid rest-frame energy of the created
packet, respectively, and Eems ¼ ffiffiffiffiffiffi−gp ΔtΔ3xη denotes the
total emitted fluid rest-frame energy in the cell. Ep is
determined by 1=Ntrg of the radiation energy in the cell in
thermal equilibrium, Erad;th. Ntrg is a parameter which
approximately controls how many packets are used to
resolve the fluid rest-frame radiation energy in thermal
equilibrium.
As we explain below, our code employs the higher-order

time-integration scheme for solving the interaction between
matter and radiation fields. To guarantee the energy-
momentum conservation of the system, our higher-order
time-integration scheme requires the number of created
packets to be a multiple of 12. For this purpose, for the case
of N0

p ≥ 6, we set the number of packets created in the cell,
Np, to be Np ¼ 12½ðN0

p þ 6Þ=12�, where ½ðN0
p þ 6Þ=12�

denotes the largest integer smaller than ðN0
p þ 6Þ=12. If

N0
p < 6, we give up applying the higher-order time-inte-

gration scheme and employ the partially first-order scheme
with Np ¼ N0

p as explained in Appendix B.
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Once Np is determined, the locations of the created
packets are determined randomly following a probability
density function proportional to Σðx; zÞ ¼ H

dφxρðxiÞ. For
this purpose, the spatial dependence of the rest-mass
density is considered up to the linear order to ensure the
second-order accuracy in space of our code for the emission
process.
After the location of the packet is determined, we sample

the fluid rest-frame energy of the packet (and hence, the
consisting photons/neutrinos in it), νðkÞ, following the
energy dependence of emissivity. Then, the direction of
the momentum for each packet, pμ

ðkÞ;emitted, is determined by

a random sampling from isotropic distribution in the fluid
rest-frame. Finally, the packet weight for each packet
is determined by wðkÞ ¼ Eems=ðNpνðkÞÞ so that the total
energy of the created packets,

P
k;created wðkÞνðkÞ, agrees

with Eems. The back reaction of the emission to the matter
filed is determined from Eq. (28) by setting Δpμ ¼P

k;created wðkÞp
μ
ðkÞ;emitted.

2. Free-streaming propagation

The free-streaming propagation of each packet is des-
cribed by the geodesic equations [Eqs. (17) and (18)].
While the fixed back ground spacetime is employed in this
paper, our code is designed to work in the dynamical
spacetime obtained by solving Einstein’s equation. For this
purpose, we solve the geodesic in the Cartesian coordi-
nates. This is because the evolution of the metric field is
often defined so in Einstein solvers (e.g., Ref. [78]). In
particular, for solving the axisymmetric system, the so-
called cartoon method is often employed [79,80]. Since the
metric field is only solved and given in the meridional plan
in this method, the packet position and momentum is
always rotated around the axis of symmetry after the
propagation so that the packet is always located in the
meridional plane. Practically, we employ the third-order
Runge-Kutta scheme for the time-integration and the
fourth-order Lagrange scheme for the interpolation of
the metric variables.

3. Absorption and scattering

In our Monte Carlo code, the absorption and scattering
events are treated probabilistically. To generate a random
value, we use the Mersenne Twister implemented in
Ref. [81]. For the evolution of a packet, we first propagate
the packet freely along the geodesic for the time interval of
the hydrodynamics evolution, Δt. If the packet crosses the
cell boundary during the free-streaming propagation, the
interval between the initial time and the time at which the
packet crosses the boundary is stored as Δtcell. Otherwise, a
value larger than Δt is set to Δtcell.
Next, we determine the time interval between the initial

time and time of the first absorption or scattering event,
Δtevent. Δtevent is determined from ΔτðΔteventÞ, which

denotes the optical depth until the next absorption or
scattering event. Because the probability for a packet to
evolve without being absorbed or scattered for Δτ is given
by expð−ΔτÞ, Δτ is probabilistically given by − ln r with r
being a random variable uniformly distributing in (0, 1].
We determine the function form of ΔτðΔteventÞ by a linear
interpolated function employing the interaction cross sec-
tion at t and tþ Δt following the method of Ref. [70].
Specifically, in our code, we obtain Δtevent by solving

Δτ ¼
Z

Δtevent

0

dτ
dt

ðt0Þdt0; ð30Þ

where

dτ
dt

ðt0Þ ≈ ð1 − Δðt0ÞÞκtotρ
ν

pt

����
t
þ Δðt0Þκtotρ

ν

pt

����
tþΔt

; ð31Þ

κtot ¼ κabs þ κsct; Δðt0Þ ¼ t0 − t
Δt

; ð32Þ

and κabs and κsct denote the absorption and scattering
opacity, respectively. By this implementation, the sec-
ond-order accuracy with respect to the spatial discretization
is ensured for the optical depth estimation.
If Δt is smaller than Δtevent and Δtcell, the evolution of

the packet for the current time step is finished. If Δtcell is
smaller than Δt or Δtevent, the packet is pulled back to the
initial state at t, and freely propagated again for Δtcell. If
Δtevent is the smallest among these three time intervals, we
pull back the packet to the initial state at t, and freely
propagate it again for Δtevent. After the propagation, we
determine the type of the event by the value of s, which is
randomly sampled from a uniform distribution of
½0; κtot=κabs�; if s < 1, we regard the event as an absorption
event, and if not, we regard the event as a scattering event.
If the event is an absorption and the total energy of the

packet is sufficiently smaller than the internal energy of the
cell in which absorption occurs, we employ a simple
approach to describe the absorption event; we annihilate
the packet and sum up its contribution to the radiation
feedback by Eq. (28) withΔpμ ¼ −pμ

absorbed where p
μ
absorbed

is the four-momentum of the absorbed packet. On the other
hand, if the total energy of the packet is comparable to or
larger than the internal energy in the cell, we employ
the continuous absorption method following Ref. [70]. In
this method, the absorption process is treated as the
continuous reduction of the packet weight along the
free-streaming propagation with the extinction factor given
by exp ½− R

κabsρν=ptdt�. At the same time, we count up the
contribution to the radiation feedback force consistent with
the lost by the extinction by Eq. (28) with

Δpμ ¼ −
�
1 − exp

�
−
Z

κabsρν=ptdt

�	
pμ
ave; ð33Þ
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where Δpμ
ave denotes the mean four-momentum calculated

by

pμ
ave ¼ 1

Δt

Z
dtpμ ð34Þ

along the free-streaming propagation with the time interval
of Δt.
This treatment reduces a Monte Carlo shot noise in the

radiation feedback force which can be induced in the
optically thin region. Practically, we apply this prescription
if the total energy of the packet is larger than rabs times the
internal energy in the cell or if the weight of the packet is
larger than rabs times the initial value assigned at the time of
the packet creation. Note that, if the continuous absorption
method is applied, the continuous reduction of the packet
weight is done for every free-streaming propagation proc-
ess, and instead, the absorption coefficient is set to be 0 for
judging the type of the radiative process event in order to
avoid the double counting of the absorption effect.
For the case that the event is a scattering event, we

determine the new fluid rest-frame energy and momentum
of packets based on the property of the scattering. For
simplicity, we only consider elastic and isotropic scattering
processes in this paper as the first step following Ref. [66].
By this setting, the fluid rest-frame energy is kept
unchanged during the scattering process, and the direction
of the momentum is sampled from an isotropic distribution
in the fluid rest-frame. The backreaction of the scattering
process to the matter field is determined from Eq. (28) by
setting Δpμ ¼ pμ

out − pμ
in with pμ

in and pμ
out being the four-

momentum of the packet before and after the scattering
event, respectively.

C. Residual packet prescription

For maintaining the consistency of the energy-momentum
conservation in numerical computation, we need to take into
account all the emission processes in the entire simulation
region. However, it is numerically inefficient to assign
normal packets to the emission from all the cells because
the packets created in the cell with very low emissivity
carries only a tiny amount of energy. To reduce the
computational cost for solving radiation-transfer equations
in such a region, we introduce a new prescription of “the
residual packet" described as follows.
If the local emissivity of the cell is smaller than a certain

value, ηmin, we set a flag of “the residual packet" to all the
packets created in the cell. During the evolution of a
radiation field, the residual packets are evolved in the
same way as for the normal packets. At the end of the
radiation-field evolution, the residual packets are collected,
and the total laboratory-frame energy, momentum, and
packet weight of them are recorded for cell by cell in which
the packets were located. At the beginning of the next
radiation-field evolution, Nres residual packets are again

created in the center of each cell so that their total
laboratory-frame energy, momentum, and packet weight
agree with those recorded in the last step. The photon/
neutrino energy of the residual packets is determined to be
consistent with the packet energy and weight.
Because the residual packets are collected in each

time step, the number of the residual packets is always
smaller than Ngrid × Nres þ Nres;0 with Ngrid and Nres;0

being the total grid number and residual packet number
created in the current time step, respectively. Hence, by this
prescription, we can avoid the accumulated increase of the
packet number guaranteeing the total energy-momentum
conservation with the accuracy of the geodesic solver and
machine precision. Note that, since the information of the
energy distribution and higher moments of the angular
distribution are lost in this procedure, we should keep in
mind that ηmin should be kept sufficiently small so that
the radiation feedback from the residual packets is not
significant.

D. Implicit Monte Carlo scheme

The minimum time step required to stably solve the
hydrodynamics evolution and packet propagation is given
approximately by the light crossing time scale ΔtLC ∼ Δx
of the grid cell, if the interaction between matter and
radiation is negligible. However, for the case that the
interaction between matter and radiation becomes impor-
tant, the time scale of the interaction can be much shorter
than ΔtLC.
For instance, the time scale of the emission and its back

reaction to the matter field can be estimated by Δtems ∼
efl=η where efl and η are the internal energy density of
the fluid in the fluid rest frame and emissivity, respec-
tively. The ratio between the time scales Δtems=ΔtLC ∼
ðefl=aT4Þ=ðαabsΔxÞ can be much smaller than unity for the
case that the absorption coefficient is large and the temper-
ature is high. In such a situation, the time step required to
properly solve the system with explicit methods becomes
too small to follow the evolution within realistic computa-
tional time. To overcome this problem, implicit schemes are
often employed in mesh-based radiation hydrodynamics
solvers [42,44,46].
For a Monte Carlo-based radiation-hydrodynamics

solver, the so-called implicit Monte Carlo scheme is often
employed [63,64,66,69,82,83]. In this scheme, the absorp-
tion opacity, κabs, and the scattering opacity, κsct, are
modified by introducing a parameter (the Fleck factor),
αeff , as

κ0abs ¼ αeffκabs; κ0sct ¼ κsct þ ð1 − αeffÞκabs ð35Þ

for the case that the absorption/emission time scales are
shorter than the evolution time step of hydrodynamics
equations. By choosing an appropriate value for αeff, the
interaction time scale between matter and radiation is
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effectively lengthened so that the system can be stably
evolved with a larger time step, while the energy distribu-
tion of photons/neutrinos in thermal equilibrium is kept
unchanged.
In our code, the value for αeff is determined so as to

satisfy the following conditions:

αeff ≤
1

κabsρΔt0
log

�
erad − η=ðκabsρÞ
erad;th − η=ðκabsρÞ

�
; ð36Þ

where Δt0 ¼ ðΔt=utÞ denotes the time step measured in the
fluid rest-frame, erad ¼ Ttt

rad, and erad;th denotes the radia-
tion energy density in the local thermal equilibrium state.
This condition is derived so that the updated value for the
radiation energy density should not overshoot the value in
the thermal equilibrium state. The time evolution of
radiation energy density in the fluid rest frame under the
one-zone approximation is given by

derad
dt0

¼ −κabsρerad þ η: ð37Þ

If we neglect the time dependence of η and κabsρ, radiation
energy density after Δt0 is expressed by

eradðt0 þ Δt0Þ ¼
�
eradðt0Þ −

η

κabsρ

�
e−κabsρΔt

0 þ η

κabsρ
: ð38Þ

Substituting κabs in Eq. (38) with κ0abs defined in Eq. (35)
and requiring for eradðt0 þ Δt0Þ not to overshoot erad;th
give the condition of αeff described Eq. (36). Note that we
use Kirhichoff’s law, η ∝ κabs, for the derivation [see,
e.g., Eq. (41)].
We emphasize that the condition of Eq. (36) reduces to

αeff ≤ ðκabsρΔt0βÞ−1, which is the same as that employed in
the previous studies [63,64,66,69,82,83], for κabsρΔt0 ≪ 1

and for a large value of β ¼ ∂erad;th
∂egas;th

j
ρ
with egas;th being the

fluid internal energy density in thermal equilibrium.
Compared to the condition employed in the previous
studies, our prescription of Eq. (36) has an advantage that,
as far as the one-zone approximation is valid, the updated
radiation and fluid energy do not overshoot the thermal
equilibrium values even if they are initially far from the
thermal equilibrium condition.
We should keep in mind that, however, the overshoot

may still happen if the updates in the radiation energy
density or fluid thermodynamical property are significant
due to nonlocal radiative transfer or the hydrodynamics
evolution. While this is a general issue for the implicit
Monte Carlo method, we may be able to solve this issue
by taking into account the intermediate-state changes of
matter and radiation in the Runge-Kutta substep to deter-
mine αeff or by enforcing matter and radiation to be in
thermal equilibrium in an optically-thick regime (see also
Sec. VI in Ref. [64] for the implicit treatment of adiabatic

heating/cooling). We leave the investigation for such ways
to future work.
In the implicit scheme, the scattering process induced by

the term ð1 − αeffÞκabs which comes from the modified
scattering opacity κ0sct can be regarded as the absorption
process immediately followed by thermal emission. Hence,
in this process, the fluid rest-frame energy of the photon in
the packet should be re-sampled from the thermal distri-
bution while the total energy of the packet is unchanged.
For this purpose, at each scattering event, we sample a
random variable, r, from a uniform distribution in ½0; κ0sct�,
and we resample the fluid rest-frame energy of the photon
from the thermal distribution if r is larger than κsct.

E. Higher-order time-integration scheme

In the Monte Carlo-based hydrodynamics codes devel-
oped in the previous studies [63–65,69,70], the hydro-
dynamics sector and radiation sector (packet propagation)
are solved with higher-order time-integration schemes, but
the interaction between them is taken into account by an
operator splitting scheme. In this way, the accuracy of the
time integration is reduced to the first order for the case that
the interaction between fluid and radiation is important.
Such a low convergence order can not only reduce the
accuracy of the computation in regions where the optical
depth is large and the emissivity is high, but also be the
source of numerical instability. In order to improve the
numerical accuracy in such a situation, in this work, we
propose an iterative method to achieve the higher-order
accuracy in time.
In the Runge-Kutta method, the changes in physical

quantities are iteratively calculated for the evolution with
appropriate time substeps and they are combined to achieve
the higher-order accuracy in time. However, unlike the
usual grid-based computation method, the Monte Carlo
scheme involves the creation and annihilation of packets,
and thus, it is not clear what is the appropriate definition of
the “amount of change” in a radiation field between certain
time steps. Therefore, in this code, we consider a scheme
that does not explicitly require to define “the amount of
change” of a radiation field.
Let uðtÞ and yðtÞ denote the matter and radiation fields at

certain time t, respectively. Practically, uðtÞ is a vector
consisting of a set of values for conserved quantities at each
discretized point of the matter field, and yðtÞ is a vector
consisting of a set of values for position and momentum of
the packets that represent a radiation field. For given u0 ¼
uðtÞ and y0 ¼ yðtÞ at the initial time t, the time evolution of
matter and radiation fields for a time step Δt is carried out
in the following manner with our higher-order time-
integration scheme:
(1) Solve the packet propagation under the initial matter

field u0 to obtain the radiation field y1 at tþ Δt.
The matter field is also evolved for Δt to obtain u1

with an explicit Eulerian scheme incorporating the
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radiation four-force obtained in the evolution of the
radiation field.

(2) Solve the packet propagation under the matter field
u1 to obtain the radiation field y2 at tþ Δt. The
matter field is then evolved for Δt to obtain u2,
incorporating the radiation feedback obtained in the
latest radiation-field evolution.

(3) Calculate the matter field in the intermediate step,
u� ¼ 1

2
u0 þ 1

4
u1 þ 1

4
u2 from the initial matter field

u0 and the matter field obtained in the previous
substeps, u1 and u2.

(4) Solve the packet propagation under the matter field
u� to obtain the radiation field y3 at tþ Δt. Also, as
in the previous step, the matter field u3 at tþ Δt is
obtained by an explicit Eulerian scheme taking the
radiation four-force obtained in the evolution of the
radiation field into account.

(5) The radiation and matter fields in the next time step,
ynew and unew, are calculated by ynew ¼ 1

6
y1 þ 1

6
y2 þ

2
3
y3 and unew ¼ 1

6
u1 þ 1

6
u2 þ 2

3
u3, respectively.

In this way, if the time step is sufficiently small, the time
integration becomes second-order accurate in the limit of a
large packet number even if the interaction between matter
and radiation is strong (see Appendix A for the proof).
In the Monte Carlo scheme, a radiation field is repre-

sented as a set of packets. There are various ways to
construct ynew by the linear combination of the radiation
field obtained in each time substep, y1,y2, and y3. The
simplest way is to combine the packets of each radiation
field with their packet weights being multiplied by the
coefficients of the linear coupling. However, in this way,
the number of packets increase accumulatively as time
evolves. Hence, instead of modifying the weights of the
consisting packets, we construct the radiation field in the
next step by combining the radiation fields obtained in each
substep with their consisting packets being thinned out so
that the total packet number in each radiation field is
reduced by the degree of the coefficient of linear coupling.
If the number of packets is sufficiently large, the radiation
field obtained by this way will be equivalent to that
obtained by the linear combination. We note that the
thinning of the packets should be done carefully keeping
the consistency between the remaining packets and the
radiation feedback to the matter field; otherwise, conser-
vation of energy and momentum of the system will be
violated. The practical way of thinning the packets out
implemented in our code, which guarantees conservation of
the energy momentum of the system to the precision of the
geodesic integrator, is described in Appendix B.
In Sec. IV D below, we also perform the computation

employing the operator splitting scheme as a comparison.
In the operator splitting scheme, the hydrodynamics sector
is first solved for each time step without taking the radiation
feedback force into account. Then, the radiation field is
evolved employing the updated hydrodynamics variables.

Finally, the radiation feedback to the hydrodynamics
variables obtained during the update of the radiation field
is incorporated. Note that the computational cost for
solving a radiation field is reduced by a factor of 3 for
the operator splitting scheme compared to the higher-order
time-integration scheme.

F. Optically-thick region in a cell

In the region in which the optical depth with respect to
the effective opacity defined by κeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ0absðκ0abs þ κ0sctÞ

p
is

much larger than 1, matter and radiation are approximately
considered to be in thermal equilibrium. Because the
distribution function in thermal equilibrium is trivial, the
propagation and creation of packets in such a region can
be omitted. Based on this concept, in our code, we apply the
following prescription to the cell in which such a thermalized
region exists. For simplicity,wedescribe themethod in a one-
dimensional system along the x-axis for instance, while the
extension to multidimensional space is straightforward.
Let l� be the propagation distance in the fluid rest frame

for which a packet is approximately thermalized in the
optically-thick region. Practically, we determine l� by
which the effective optical depth, κeffρl�, agrees with a
certain critical value, τtherm. Whether a packet is in the
thermalized region or not is determined in the laboratory
frame under the assumption of the stationary velocity field
and spacetime during the packet evolution. The largest
absolute change in the x-coordinate which a packet can
have for a given rest-frame time interval, Δt0, is given by
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ gxx

p
� uxÞΔt0, where the sign corresponds to the

case that the packet is moving toward the �x direction,
respectively. Let l� ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ2 þ gxx

p
� uxÞl� and x� being

the �x boundary of the cell in the laboratory frame,
respectively. If a packet is located in ½x− þ l−; xþ − lþ�,
it is guaranteed that the packet is located in the region in
which the packet needs to propagate at least l� in the fluid
rest frame to reach the cell boundary. Hence, radiation in
the region of ½x− þ l−; xþ − lþ� is expected to be in thermal
equilibrium if such a region exists.
At the beginning of the evolution of a radiation field, we

judge for each grid cell whether it contains a region of
which spatial depth measured from the cell boundary in the
fluid rest frame is twice larger than a critical depth l�. A
sufficient condition for this requirement is given by xþ −
x− ≥ 2ðlþ þ l−Þ using the laboratory frame coordinate. At
the same time, we also require that κabsρΔt0 > 1, where
Δt0 ¼ Δt=ut is the time step measured in the fluid rest
frame, employing the bare value of absorption opacity to
guarantee the thermalization within the time step. If there
exists such a region, we apply the following procedure to
the cell:
(1) All packets in the region of ½x− þ l−; xþ − lþ�

are collected (absorbed) at the beginning of the
evolution at each time step.
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(2) Following the thermal distribution, the packets are
sampled and created in the region of ½x− þ l−; xþ −
lþ� except for ½x− þ 2l−; xþ − 2lþ�.

(3) Packets are created following the local emissivity
and propagated as usual except for the region of
½x− þ 2l−; xþ − 2lþ�. Packets are absorbed during
the propagation if they reach the region of
½x− þ 2l−; xþ − 2lþ�.

(4) At the end of the evolution, the packets in the region
of ½x− þ l−; xþ − lþ� are collected and the packets in
the region are sampled again from the thermal
distribution.

By employing this prescription, the packet density in the
cell effectively increases since packets are only present in
the thin layer close to the surface of the cell, and hence,
the Monte Carlo shot noise of the energy-momentum
transport between the cells is reduced for the fixed number
of packets.

IV. CODE TEST

To validate our numerical code, we perform simulations
for several test problems. While we design our code to
be applicable in dynamical spacetime, in this paper, we
employ the test problems performed on a fixed back-
ground metric, which still enable us to validate our
radiation hydrodynamics implementation. Except for the
Eddington limit-test problem, a flat Minkowski metric is
employed as the fixed background. For 1D problems,
numerical computations are practically performed in
two-dimensional axisymmetric domain but taking the
x-axis to be the axis of the axisymmetry (i.e., identifying
that the x-axis and z-axis are equivalent in our formulation)
and by enforcing the homogeneity along the radial direc-
tion with the reflective boundary condition. By this setup,
the system is effectively one dimensional. Unless otherwise
stated, we set rabs ¼ 1 (Sec. III B 3), Nres ¼ 2 (Sec. III C),
and τtherm ¼ 3 (Sec. III F) for the test simulations, and
the time interval of the evolution is determined by Δt ¼
0.5Δx with Δx being the grid spacing. We note that, by
the setting of τtherm ¼ 3, the prescription introduce in
Sec. III F is not switched on in the computation expect
for the test problem in Sec. IV C since the optical depth of
each cell is not large.

A. One-zone thermalization

1. Energy-independent opacity case

To demonstrate that our code can correctly solve the
interaction between matter and radiation fields, we evolve
homogeneous one-zone systems initially with no radiation
but with fluid internal energy, and check whether the
systems relax to thermal equilibrium states. In this test,
the hydrodynamics grid that consists of a single cell is
prepared. We employ the Γ-law ideal equation of state,

P ¼ ðΓth − 1Þegas; ð39Þ

egas ¼
1

Γth − 1

ρ

μavemp
kBTgas; ð40Þ

where Tgas is the fluid temperature, Γth ¼ 5=3 is the
adiabatic index, μave ¼ 0.5 is the average molecular weight,
and mp is the proton mass. For the rest-mass density, gray
absorption opacity, and gray scattering opacity, we employ
the values of ρ ¼ 1 g cm−3, κabs ¼ 1 cm2 g−1, and κsct ¼ 0,
respectively. The monochromatic emissivity, ην, is given by
Kirhichoff’s law assuming the Planckian black-body
source function as follows:

ην ¼ κabsρcBνðTgasÞ;

BνðTgasÞ ¼
1

π2ℏ3c3
ν3

eν=kBTgas − 1
: ð41Þ

In this test, three cases with different initial fluid temper-
ature are examined: Tgas ¼ 1× 107, 5× 107, and 5 × 108 K,
which correspond to the cases that the fluid energy is
dominant, fluid and radiation energy is comparable, and
radiation energy is dominant in the thermal equilibrium
states eventually settled, respectively. For each case of
initial fluid temperature, the computation with three differ-
ent time steps (Δt=tabs ¼ 1, 0.5, and 1=128 with tabs being
the absorption time scale, ðκabsρcÞ−1) are performed. For all
the computations, we set Ntrg ¼ 1.2 × 105.
Figure 1 displays the results of the one-zone thermal-

ization tests. The upper panels show the evolution of fluid
internal energy and radiation energy density. The lower
panels show the evolution of the fluid temperature and
radiation temperature indicator, which is defined by Trad ¼
ðerad=aradÞ1=4 with arad being the radiation constant. For all
the cases, the fluid temperature and radiation temperature
relax to an identical value by t ¼ 5tabs, demonstrating that
the thermal equilibrium states are achieved.
The time scale for the thermalization depends on the

initial internal fluid energy. In particular, this time scale is
much shorter than the absorption time scale for the
radiation-dominant case; see the result of Δt=tabs ¼
1=128 in the right panels in Fig. 1. The reason for this
is that for this one-zone system, the thermalization time
scale is determined basically by the shorter of the absorp-
tion time scale (≈ðκabsρcÞ−1) or the emission time scale
(≈egas=η). Since the total emissivity is proportional to T4

gas,
the emission time scale becomes much shorter than the
absorption time scale for the radiation-dominant case.
The same temperature is reached after the thermalization

regardless of the chosen time-step interval as long as the
stable numerical computation is feasible. We find that this
is in particular the case for the radiation-dominant case,
in which the time-step interval can be chosen to be
much longer than the time scale of the emission. This is
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accomplished by the implicit Monte Carlo scheme. In fact,
without the implicit Monte Carlo scheme, we find that
the system is no-longer stably solved for the radiation-
dominant case with the large time-step interval
(Δt=tabs ∼ 1). However, we should note that applying the
implicit Monte Carlo scheme can cause an artificial delay in
the thermalization process due to the limiting of the local
temperature change in a single time step. Indeed, we find
that it takes ≈3tabs for the fluid and radiation temperature to
agree with each other for the largest time-step case in the
radiation-dominant test. We might need to keep in mind
that this delay might give some artifact in the computation,
particularly for the case that a sudden physical temperature
change occurs in the system.

2. Energy-dependent opacity case

In the previous one-zone test, we demonstrated that the
thermal equilibrium is appropriately achieved in our code
for the fluid with a gray opacity. Next, we examine the
similar thermalization test with the energy-dependent
opacity.

For this test, we employ the following setup of opacity
and emissivity, mimicking weak interaction between the
fluid and neutrino radiation fields,

κabsðνÞ ¼
G2

F

mp
ν2; κsct ¼ 0;

ην ¼ κabsðνÞρcBνðTgasÞ;

BνðTgasÞ ¼
1

π2ℏ3c3
ν3

eν=kBTgas þ 1
; ð42Þ

where ν is the fluid rest-frame energy of neutrinolike
particle and G2

F is the Fermi-interaction constant given
by 5.94 × 10−44 MeV−2 cm2. We again employ the Γ-law
ideal equation of state with Γth ¼ 5=3 and μave ¼ 0.5 for
simplicity. The rest-mass density and the initial fluid
temperature are given by ρ ¼ 3 × 1011 g cm−3 and
Tgas ¼ 10 MeV, respectively, and initially neutrino radia-
tion is set to be absent. We perform the computation with
three different time step intervals which include the one
longer than, one comparable to, and one much shorter than

FIG. 1. Results of the thermalization tests with gray opacity. The left, middle, and right panels are for the cases for which fluid energy
is dominant, fluid and radiation energy is comparable, and radiation energy is dominant in the thermal equilibrium states eventually
settled, respectively (see the body text for the detailed setups). The upper panels show the fluid internal energy density and radiation
energy density. The lower panels show the evolution of the fluid and radiation temperature. The horizontal axes denote the time
normalized by the absorption time scale [tabs ¼ ðκabsρcÞ−1].

MONTE-CARLO BASED RELATIVISTIC RADIATION … PHYS. REV. D 107, 023026 (2023)

023026-11



the thermalization time scale. For all the cases, we
set Ntrg ¼ 1.2 × 105.
Figure 2 shows the result of the thermalization test. As in

the gray opacity case, the fluid temperature and radiation
temperature relax to equilibrium values (Teq) as the system
evolves regardless of the employed time-step interval (see
the left panel of Fig. 2).
The right panel of Fig. 2 shows that the energy

distribution of radiation agrees approximately with the
thermal distribution after the thermal equilibrium is
achieved. We also plot the energy distribution of radiation
on several time slices obtained withΔt ¼ 1=128½GM⊙=c3�.
At the beginning of the simulation (t ¼ 0.04 μs), the
system has not yet settled into the thermal equilibrium.
Indeed, the energy distribution of radiation exhibits a shape
close to the emissivity function at that time. As the time
evolves, the energy distribution of the radiation field
approaches the thermal distribution from the high energy
side through interaction between the fluid (t ¼ 1.23 μs),
and finally, the energy distribution of the radiation field
agrees approximately with BνðTeqÞ (t ¼ 78.8 μs). Note that
the low-energy part of the distribution has not yet settled
into the thermal equilibrium simply because the interaction
time scale ðκabsρcÞ−1 ∝ ν2 is longer for lower-energy
neutrinolike particle (thus the result is physically reason-
able). These results indicate that the thermal equilibrium
state is properly achieved in our code even if the opacity has
energy dependence.

B. Test problems from Asahina et al. 2020

To further validate our code quantitatively, we perform
simulations for the same test problems as those examined in
Refs. [46,47] (see also the references therein). For all the
test problems in this subsection, the same equation of state
and Planckian black-body emissivity with a gray opacity as

those used in Sec. IVA are employed but in a system of
units in which egas ¼ ρTgas=ðΓth − 1Þ holds.

1. Dynamical diffusion

First, we numerically solve the dynamical diffusion test
problems which were originally proposed in Ref. [44] and
employed for the code test in Refs. [46,47]. In this test, the
diffusion of radiation in the one-dimensional (1D) homo-
geneous medium moving toward þx-direction with vx ¼
0.1c is considered. The simulation region is prepared as
−1 ≤ x ≤ 1 with 128 grid points, and the periodic boun-
dary condition is applied to the �x boundaries. Only the
isotropic scattering process is considered, and absorption
and emission are not considered. The hydrodynamics
variables are fixed during the evolution, and only the
evolution of the radiation field is considered in this test.
Two different scattering opacity, in which the scattering
optical depth of each cell, Δτ, becomes 6.25 and 625, is
considered in this test. The radiation field is initially set to
be isotropic in the fluid rest frame with the spatial
distribution of

erad;analyticðxÞjt¼0
¼ Max½exp ð−40x2Þ; exp ð−10Þ�: ð43Þ

We always set the number of packets to be ≈4 × 106 in
this test.
Figure 3 shows the radiation energy density profiles for

the dynamical diffusion tests. The radiation energy is
transported following the fluid motion while being dif-
fused, and the peak of distribution comes back to the origin
at t ¼ 20 due to the periodic boundary condition. For both
setups of the scattering opacity, the results of our code well
reproduce the analytical solutions. Indeed, we find that the
deviation of the numerical results from the analytic ones
defined by

FIG. 2. Results of the thermalization tests with energy-dependent opacity which mimics neutrino weak interaction. The left
panel shows the evolution of fluid and radiation temperature. The right panel shows the energy distribution of radiation
at t ¼ 0.04, 1.23, and 78.8 μs.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
−1 jeradðxÞ − erad;analyticðxÞj2dxR

1
−1 erad;analyticðxÞ2dx

s
ð44Þ

is less than 1% for both Δτ cases at t ¼ 20.

2. Radiation dragging

Next, we solve a test problem suitable to examine the
numerical implementation for the interaction process
between radiation and fluid. The units of c ¼ arad ¼ 1
are employed in this subsection. In this test, the one-
zone homogeneous medium initially moving toward the
x-direction with vx ¼ 0.9 is considered. The rest-mass
density and pressure are initially set to be ρ ¼ 1 and
p ¼ 0.1. Γth is set to be 5=3. The initial radiation field
is set to be uniform and isotropic with the energy density of
1.0 in the laboratory frame. As is the case for Sec. IVA, a
single cell is set for the grid. The periodic boundary
condition is applied to the �x boundaries. Three setups
of the absorption and scattering opacity with ðκabs; κsctÞ ¼
ð0.0; 1.0Þ, (1.0,0.0), and (0.1,0.9) are considered. For all the
cases, we set Ntrg ¼ 1.2 × 105. The computation with three
different time steps (Δt ¼ 1, 0.5, and 1=128) is performed.
As a reference, the numerical solutions of Ref. [47]
obtained by Δt ¼ 0.01 are also shown.
For this setup, the x-component of the radiation flux in

the fluid rest frame is initially negative. Hence, the fluid
will be decelerated through the fluid-radiation interaction
(i.e., radiation dragging), while the radiation flux in the
fluid rest frame approaches 0. Finally, the system will relax
to a stationary state at the time at which the radiation flux in
the fluid rest frame vanishes.
Figure 4 shows the results of the radiation-dragging test

problems. For the pure scattering case, i.e., ðκabs; κsctÞ ¼
ð1.0; 0.0Þ; see the left panel in Fig. 4, we find that
erad ≠ T4

gas, and this indicates that the thermal equilibrium

is not achieved since there is no emission or absorption
process which changes the photon number. On the other
hand, for the pure absorption case, i.e., ðκabs; κsctÞ ¼
ð0.0; 1.0Þ; see the middle panel in Fig. 4, erad ¼ T4

gas is
achieved after relaxing to a stationary state, and this
indicates that the thermal equilibrium is achieved. This
is also the case for ðκabs; κsctÞ ¼ ð0.1; 0.9Þ, although much
longer time is needed until reaching the stationary state due
to a small value of the absorption coefficient.
For all the setups, we confirm that our code reproduces

the results of Ref. [47]. More quantitatively, defining the L2
deviation of the result with Δt ¼ 1=128 with respect to that
of Ref. [47] by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jeradðtÞ − erad;refðtÞj2dtR

erad;refðtÞ2dt

s
; ð45Þ

we find that our results agree with the results of Ref. [47] by
≲1%. Here, eradðtÞ and erad;refðtÞ denote radiation energy
density obtained by our Δt ¼ 1=128 run and in Ref. [47],
respectively.
As is also seen in Sec. IVA, a long time scale is required

for the computation with larger values of Δt until the
system with a finite value of absorption opacity relaxes to
the thermal equilibrium state. Nevertheless, approximately
the same asymptotic values are achieved for all the physical
variables regardless of Δt after the system is relaxed.

3. Radiation-hydrodynamics shock-tube problem

In this subsection, we numerically solve the 1D shock-
tube problems proposed in Ref. [84] and performed in
Refs. [46,47]. For this test, the same form of emissivity and
equation of state as those in Sec. IVA are employed.
Initially, the system is composed of two distinct

homogeneous regions contacting at x ¼ 0 in the

FIG. 3. Radiation energy density profiles at t ¼ 0 and 20 for the dynamical-diffusion tests. The left and right panels show the results
for the test with the scattering optical depth of each cell, 6.25 and 625, respectively. The dashed and dotted curves show the results by
Asahina et al. [47] and the analytic solution, respectively.
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computational region of ½−L;L� with L > 0 (see below).
The radiation field is initially set to be isotropic. In this
test, three setups of shock-tube problems are considered;
one corresponds to a nonrelativistic shock-tube problem,
one corresponds to a nonrelativistic and radiation-pressure
dominant shock-tube problem, and one corresponds to a
relativistic shock-tube problem. For the former two prob-
lems, Γth is set to be 5=3, while Γth ¼ 2 is employed for
the relativistic shock-tube problem. κabs for a nonrelativ-
istic, nonrelativistic, and radiation-pressure dominant, and
relativistic shock-tube problems is set to be 0.4, 0.08, and
0.3, respectively. The initial values for the rest-mass
density, the x-component of four-velocity, fluid pressure,
and the fluid rest-frame radiation energy are summarized
in Table I. Here, we note that the unit is chosen so that
c ¼ 1 and erad;com ¼ T4

gas are satisfied at the initial time.
For the nonrelativistic, radiation-pressure dominant, and
relativistic shock-tube problems, the simulations are

performed for the region of x ¼ ½−20; 20�, ½−80; 80�,
and ½−20; 20�, respectively, and the number of the grid
point is set to be 256 for all the problems. Matter and
radiation fields on the four grids at both edges of the
computational domain are always reset to be identical with
the initial states to obtain the stationary solutions. For all
the runs, we employ Ntrg ¼ 1.2 × 104.
Figure 5 shows the results of the shock-tube problems

at t ¼ 5000 and the comparison with those obtained in
Ref. [47]. Here, the xx-component of the Eddington tensor
is defined by fxx;com ¼ Txx

rad;com=T
tt
rad;com using the energy

momentum tensor of the radiation field measured in the
fluid rest-frame, Tμν

rad;com. We note that the shock front of
our solution does not remain completely stationary during
the evolution due to the numerical diffusion. Hence,
the location of the coordinate origin for the results
from Ref. [47] is slightly shifted with ≲1 to match our
results.

FIG. 4. Results of the radiation-dragging test problems. The left, middle, and right panels show the results for ðκabs; κsctÞ ¼ ð0.0; 1.0Þ,
(1.0,0.0), and (0.1,0.9), respectively. For each case, the x-component of fluid velocity, radiation energy density in the laboratory frame,
the x-component of the radiation flux in the fluid rest frame, and fluid and radiation energy in the fluid rest frame are shown from the top
to bottom panels.

TABLE I. Initial values for the rest-mass density, the x-component of four-velocity, fluid pressure, and the fluid rest-frame radiation
energy employed for 1D radiation hydrodynamics shock-tube problems.

x < 0 x ≥ 0

Model ρ ux pgas erad;com ρ ux pgas erad;com

Nonrelativistic 1 0.015 3 × 10−5 10−8 2.4 6.25 × 10−3 1.61 2.5 × 10−7

Nonrelativistic, radiation dominant 1 0.69 6 × 10−3 0.18 3.65 0.189 3.59 × 10−2 1.3
Relativistic shock 1 10 60 2 8 1.25 2.34 × 103 1.13 × 103
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It is shown that our code reproduces the results of
Ref. [47] well. We note that small oscillatory features
seen in our results in Fig. 5 are induced by the statistical
errors due to a finite number of Monte Carlo packets
(“Monte Carlo shot noise”). Such statistical errors are
reduced as the number of packets employed in the
calculation increases (see Fig. 6). To check the agreement
quantitatively, we calculate the L2 deviation of our solution
from those obtained in Ref. [47] using the same definition
as in Eq. (44) but with eradðxÞ → ρðxÞ and erad;analyticðxÞ →
ρrefðxÞ, where ρðxÞ and ρrefðxÞ denote the rest-mass density
obtained by our code and in Ref. [47], respectively. The
range of the integrals are taken to be −3L=4 ≤ x ≤ 3L=4.
We find that the L2 errors are < 2% for all the shock-tube
problems. The errors are dominated by a small fluctuation
of the profile induced by the Monte Carlo shot noise.

C. Optically-thick shock

In our code, the interaction between fluid and radiation is
described as the feedback of the emission, absorption, and
scattering of the packets. On the other hand, in the optically-
thick limit, the fluid-radiation system can be treated as a
single hydrodynamics system, and the effect of fluid-
radiation interaction canbe taken into account by considering
the radiation pressure in the equation of state. In this test, we

demonstrate that our code can capture the effect of fluid-
radiation interactionproperly even in anoptically-thick regime
by showing that the result obtained for a very optically-thick
system agrees with the result obtained by a physically-
equivalent pure hydrodynamics simulation in which the
radiation pressure is included in the equation of state.
For a pure hydrodynamics simulation describing the

fluid-radiation system in the optical thick limit, we employ
the radiation-pressure dominant equation of state given by
Pgas ¼ 1

3
egas where egas ¼ aradT4

gas. (In this test, the con-
tinuity equation is solved although it is not necessary to
determine the dynamics.) For the simulation in which the
radiation-field sector is solved with the Monte Carlo
scheme, the equation of state of Pgas ¼ 1

3
egas with egas ¼

feosaradT4
gas is employed to ensure that the same result is

obtained as the pure hydrodynamics simulation in the
optically-thick limit. Indeed, by this choice of the equation
of state, the total pressure will be the same as that in the
pure hydrodynamics simulation for the same temperature
after the thermal equilibrium state is reached. The ratio of
fluid internal energy to radiation energy becomes feos=ð1þ
feosÞ in the thermal equilibrium state. For simplicity, we
here employ the units of c ¼ arad ¼ 1.
We consider a region of 0 ≤ x ≤ 1 with 256 grid points

for the computation. Initially, the system is composed of

FIG. 5. The rest-mass density, x-component of four-velocity, fluid pressure, laboratory-frame radiation-energy density, laboratory-
frame radiation-energy flux, and xx-component of the Eddington tensor at t ¼ 5000 for the radiation hydrodynamics shock-tube
problems. The left, middle, and right panel show the results for the nonrelativistic, nonrelativistic and radiation-pressure dominant, and
relativistic shock-tube problems. The solid curves are our results and the dashed curves are those by Ref. [47].
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two distinct homogeneous regions contacting at x ¼ 0.5.
The fluid in these two regions is initially at rest, and the
rest-mass density and total internal energy density for x <
0.5 and for x ≥ 0.5 are given by ðρ; eradÞ ¼ ð1; 0.01Þ and
(0.125,0.001), respectively. The reflective boundary con-
dition is applied for both edges of the domain. feos is set to
be 0.1. The initial radiation field is set so that the fluid and
radiation fields are initially in the local thermal equilibrium.
The absorption and scattering opacity is set to be 105 and 0,
respectively. By these setups, the optical depth of each
hydrodynamics cell is initially ≈390 and ≈49 for x ≥ 0.5
and x < 0.5, respectively.
The left panel of Fig. 6 compares the rest-mass density at

t ¼ 3 for a pure hydrodynamics simulation and the sim-
ulation in which the radiation field is solved by the
Monte Carlo scheme with Ntrg ¼ 1.2 × 104. This figure
shows that the simulation in which the radiation field is
solved by the Monte Carlo scheme reproduces the result of
the pure hydrodynamics simulation in the optically-thick
limit. This indicates that our code can appropriately solve
fluid-radiation interaction for an optically-thick system.
Since the system is closed, the total energy and momen-

tum perpendicular to the x-direction should be conserved.
We find that the total energy is conserved within the relative
error of 10−11, which is approximately to the level of the
machine precision. The total azimuthal angular momentum,
which is approximately 0 at t ¼ 0, is also conserved within
the error of 10−14Etot with Etot being the total energy
(remember that the computation is practically performed in
an axisymmetric domain in which the x-axis is identified
with the z-axis).
As is the case for Sec. IV B 3, small oscillatory features

seen in our results are induced by the statistical errors due

to a finite number of Monte Carlo packets. This error is
suppressed as the number of packets employed in the
calculation increases. To check the convergence property of
the solution with respect to theMonte Carlo packet number,
we perform the simulations for the same optically-thick
shock-tube problem with various values of Ntrg and
calculate the L2 deviation between the solution for the
rest-mass density profile with a finite value of Ntrg, ρNtrg

ðxÞ,
and that for Ntrg → ∞ limit, ρcðxÞ, defined by

IðNtrgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
0 ½ρNtrg

ðxÞ − ρcðxÞ�2dxR
1
0 ρcðxÞ2dx

s
: ð46Þ

For ρcðxÞ, we employ the rest-mass density profile of the
pure hydrodynamics simulation, as we expect that it
represents the solution at the Ntrg → ∞ limit.
The right panel of Fig. 6 shows the results of IðNtrgÞ for

simulations with Ntrg ¼ 120, 360, 1200, 3600, and 12000.
The sequence of IðNtrgÞ is approximately proportional to

N−1=2
trg as is expected [65,70]. The small deviation from ∝

N−1=2
trg seen for Ntrg ≥ 3600 may reflect the fact that the

opacity is large but still finite while the solution of the pure
hydrodynamics simulation is expected to be the limit of
infinite opacity.
By the setting of τtherm ¼ 3, the prescription introduced

in Sec. III F is not switched on in the computation even for
the optically-thick shock-tube problem presented above
due to the small value of the optical depth in the cells.
Hence, to examine the prescription of Sec. III F, we
compute the same optically-thick shock-tube problem
but with κabs ¼ 106. The computation is performed for
the cases of τtherm ¼ 1 and τtherm ≫ 1 (i.e., without

FIG. 6. (Left panel) Rest-mass density, velocity, and radiation energy density at t ¼ 3 for the optically-thick shock-tube problem. The
solid (“hydroþ rad”) and dashed curves (“hydro”) show the results for the simulations in which the radiation field is solved by the
Monte-Carlo scheme and by a pure hydrodynamics simulation, respectively. (Right panel) L2 deviation between the numerical solutions
for the rest-mass density profile with finite values of Ntrg ¼ 120, 360, 1200, 3600, 12000, and that at the Ntrg → ∞ limit.
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applying the prescription), and of Ntrg ¼ 1.2 × 103 for both
cases. We find that the L2 deviations computed by Eq. (46)
for these setups are ≈0.015 and ≈0.027, while the numbers
of packets per cell are ≈2200 and ≈1300, respectively (note
that the increase in the number of packets for the compu-
tation with τtherm ¼ 1 is due to the additional packet
creation/removal process of the prescription). This implies
that the improvement of the L2 deviation for the compu-
tation with τtherm ¼ 1 is equivalent to that achieved by
increasing the number of packets by a factor of ≈4 (see
Fig. 6), while the actual increase in the number of the
packets is only by a factor of ≈2.

D. Convergence order with respect
to the time resolution

1. The one-zone problems

To demonstrate that a higher-order accuracy in time is
indeed achieved in our code, we show the convergence
property of the solutions for the fluid pressure dominant
case of the one-zone thermalization test and for the pure
scattering case of the radiation-dragging test performed in
Sec. IVA and Sec. IV B 2, respectively.
To evaluate the convergence property of the numerical

solutions, we calculate the L2 errors of the solutions with
various values of Δt, which is defined by

IðΔtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
k¼0 ½TΔt

gasðkΔt0Þ − T0
gasðkΔt0Þ�2P

n
k¼0 T

0
gasðkΔt0Þ2

s
: ð47Þ

Here, TΔt
gasðtÞ denotes the numerical solutions of fluid

temperature for the test problems obtained by a finite value
of Δt and, T0

gasðtÞ denotes the numerical solutions of the
test problems at the Δt → 0 limit. Δt0 denotes the largest
value of Δt, and we consider the numerical solution for
t ¼ ½0; nΔt0�. For the one-zone thermalization test and
radiation dragging test, we setΔt ¼ tabs and 1, respectively,
with n ¼ 5 for both cases. Since it is practically difficult to
obtain the exact solutions of the test problems at theΔt → 0

limit, we approximate T0
gasðtÞ with a numerical solution

obtained with Δt ¼ Δt0=128. We set Ntrg to be 1.2 × 107

and 1.2 × 106 for the one-zone thermalization test and
radiation dragging test, respectively. The large values of
Ntrg are used to suppress the Monte Carlo shot noise and to
focus only on the error induced by the finite time
resolution.
Figure 7 shows the results of IðΔtÞ for Δt=Δt0 ¼ 1, 1=2,

1=4, 1=8, 1=16, and 1=32. This shows that the sequence of
IðΔtÞ is approximately proportional to Δt2 for both test
problems if Δt=Δt0 ≳ 0.2. If the numerical error of the
solution for Tgas due to the finite time resolution is
approximately proportional to Δtp with the convergence
order, p, for a sufficiently small value of Δt, we expect that

FIG. 7. L2 errors for various time resolution runs for the fluid-pressure dominant case of the one-zone thermalization test (left panel)
and pure scattering case of radiation-dragging test (right panel) performed in Secs. IVA and IV B 2, respectively.
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IðΔtÞ is also proportional to Δtp. Hence, the behavior of
IðΔtÞ ∝ Δt2 suggests that the second-order accuracy is
indeed achieved with respect to the time resolution.
As the reference, we also show the results in which an

operator splitting scheme is employed. For this case, we
clearly find that IðΔtÞ is approximately proportional to
Δt for both test problems, suggesting that the operator
splitting scheme results in the first-order accuracy in time
for problems in which the fluid-radiation interaction is
important. The error of the result obtained by the operator
splitting scheme is always larger than that by the higher-
order scheme. We should emphasize that this is the case
even if the value of Δt is comparable with the physical
time scale of the system. This implies that our higher-
order scheme may be useful not only to improve the
convergence property of the numerical solution but also
to suppress the numerical error for problems in which a
large value of Δt is inevitable.
We note that the convergence order decreases to ≲0.5

for Δt=Δt0 ≲ 0.2 for the one-zone thermalization test.
This reflects the fact that the error is dominated by that
due to the shot noise of the Monte Carlo packets. Hence,
considering the computational costs, we should keep inmind
that the advantages of employing the higher-order time
integration scheme may diminish for the case that the
Monte Carlo shot noise dominates the numerical error. We
should also give a caution that the second-order accuracy is

not always achieved for a large value of Δt, particularly, for
the region inwhich the implicitMonteCarlo scheme plays an
important role. The reason is simply due to the fact that the
assumption that the numerical error of the solution due to the
finite time resolution is proportional to Δtp, which is based
on the Taylor expansion of the solution with respect toΔt, is
no longer valid if the value of Δt is larger than a typical
evolution time scale of the system. Indeed, the implicit
Monte Carlo scheme did not play an important role in the
fluid-pressure dominant case of the one-zone thermalization
test and pure scattering case of radiation-dragging test.

2. 1D clump problem

In addition to the second-order accuracy in time, the
radiative processes are considered up to the second-order
accuracy in space in our code. To demonstrate that our code
has indeed the second-order accuracy in both time and
space, we solve the following 1D density clump problem
with various time and spatial grid resolution. Here we
consider a region of 0 ≤ x ≤ 1 with the periodic boundary
condition, and set the initial rest-mass density given by
ρðxÞ ¼ 1 − 0.5 cos ð2πxÞ. The system is initially at rest
(vx ¼ 0), and the total specific internal energy is set to be
uniformly 1. The same units and equation of state as in
Sec. IV C but with feos ¼ 3 are employed. Radiation is
initially set to be in thermal equilibrium. Absorption and

FIG. 8. (Left panel) Laboratory-frame radiation energy density at t ¼ 1.56 for various grid setups. The deviation of the result for each
grid setup from that for the finest grid setup, i.e., the one with 2048 grid points, is shown in the left-bottom panel. (Right panel) L2 errors
of the laboratory-frame radiation energy density for the 1D density clump problem with various grid spacing.
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scattering opacity is set to be 10 and 0, respectively. In this
problem, shock waves, in the presence of which the
hydrodynamics solver will be first-order accurate, do not
appear and the dynamical time scale can be easily resolved
so as to justify the Taylor expansion of the solution. Hence,
this problem is suitable for examining our higher-order
time-integration scheme.
The number of the grids is set to be 16, 32, 64, 128, and

2048, and the grid spacing Δx for them is Δx=Δx0 ¼
1; 1=2; 1=4; 1=8, and 1=128, respectively, with Δx0 being
the grid spacing of the computation with 16 grid points. We
choose Δt ¼ 0.5Δx, and hence, the computation with a
finer grid setup is evolved with a smaller value ofΔt.Ntrg is
set to be 1.2 × 106 except for the computation with
Δx=Δx0 ¼ 1=128, for whichNtrg ¼ 1.2 × 105 is employed.
In order to compare the profile of fluid and radiation among
different grid resolutions, all the profiles of the physical
variables are averaged in the spatial bins which agree with
the grid structure of the run with Δx ¼ Δx0.
The left panel of Fig. 8 shows the laboratory-frame

radiation energy density at t ¼ 1.56 for various grid setups.
Radiation is partially trapped by the fluid and such a
component follows the fluid motion, while gradually
becoming more homogeneous due to diffusion. A clump
is initially present around x ¼ 0.5 and expands with time.
Subsequently, a dimple is formed at the location of the
initial peak. The time of the snapshot shown in the left
panel of Fig. 8 corresponds to the time at which a dimple is
formed for the first time. The deviation of the result for each
grid setup from those for the finest grid setup (i.e., the one
with 2048 grid points) is shown in the left bottom part of
Fig. 8. We find that the results converge to the finest-grid
one as the grid resolution is improved.
To discuss the convergence property of the solution,

quantitatively, we calculate the L2 deviation between the
solution with a finite value of Δx, erad;ΔxðxÞ, and that at the
limit of Δx → ∞, erad;cðxÞ, defined by

IðΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
0 ½erad;ΔxðxÞ − erad;cðxÞ�2dxR

1
0 erad;cðxÞ2dx

s
: ð48Þ

Practically, we use the profile at t ¼ 1.56 and approximate
erad;cðxÞ by the result with Δx=Δx0 ¼ 1=128. The right
panel of Fig. 8 shows the results of IðΔxÞ for Δx=Δx0 ¼ 1,
1=2, 1=4, and 1=8. As the reference, the results obtained
by employing the operator splitting scheme are also shown.
The sequence of IðΔxÞ obtained by the higher-order scheme
is approximately proportional to Δx2. Exceptionally, for
Δx=Δx0 ¼ 1=8, we obtain a larger value of IðΔxÞ than the
trendof∝ Δx2. In this case, the error is likely to be dominated
by the Monte Carlo shot noise.
The results employing the operator splitting scheme are

approximately proportional to Δx. Since the implementa-
tion of the code other than the time-integration part is

identical in between the higher-order scheme and operator
splitting scheme, this result suggests that the L2 deviation
employing the operator splitting scheme is determined
primarily by the time-integration error.

E. Eddington limit test

As the final test, we examine whether the Eddington
limit is captured by our code for axisymmetric problems in
the presence of gravitation. In this test, we prepare a
nonrotating black hole metric with the black hole mass of
MBH ¼ 1 M⊙ in the isotropic coordinates as the fixed
background. The simulated region is set to be 0 ≤ x ≤
400 rg and 0 ≤ z ≤ 400 rg, where rg ¼ GMBH=c2, impos-
ing the equatorial symmetry in addition to axisymmetry. A
uniform grid with the number of 200 is set for both x and z
directions. We initially set a spherical shell at 200 ≤ r=rg ≤
210 where r is the radial coordinate of the isotropic
coordinates. The rest-mass density and absorption opacity
are set to be 10−8 g cm−3 and 1.5 × 10−8 cm2 g−1, respec-
tively, and the scattering opacity is set to be 0. The same
emissivity and equation of state as in Sec. IVA but with
Γth ¼ 1.01 are employed so that the thermal expansion of
the shell should be negligible. We inject photons from r ¼
50 rg with the luminosity measured in the spatial infinity to
be L ¼ finjLinj ¼ 4πfinjGMBH=κabsc. 2.4 × 104 packets
are injected for each time step, while Ntrg is set to be
120 because the emission from the shell is not important.
We do not solve the evolution of the hydrodynamics sector
until t ¼ 200 rg=c in order to wait for the spreading of the
injected radiation over the simulation region. The matter
that falls into the region of r < 60 rg is removed so as not to
disturb the photon injection. rabs ¼ 0.1 is employed to
reduce the Monte Carlo shot noise during the absorption
process.
In the absence of injected radiation, the shell should

fall into the central black hole in the time scale of the
free-fall, tff ¼ π=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBH=r3

p
≈ 4500 rg=c. In the pres-

ence of the injected radiation, the momentum is trans-
ported into the shell by the absorption of radiation and
the infall motion is suppressed. For finj ≈ 1, we expect
that the center of the shell approximately keeps the initial
radius by the balance between the gravitational and
radiation forces. For finj ≳ 1, the radiation force over-
come the gravitational force, and hence, the shell should
expand outwards. We note that, however, a small
deviation of the shell location can be induced secularly
even for finj ¼ 1 due to the deviation from the
Newtonian gravity (gravitational red shift of the photon
energy and the relativistic correction to gravitational
force) because the force balance with the Eddington
luminosity holds exactly only in the Newtonian limit.
To examine that our code can reproduce these physical

results, we perform the simulations with fedd ¼ 0.5, 1,
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and 1.5. Figure 9 shows the rest-mass density profile at
t ¼ tff and Fig. 10 the averaged radius of the shell
determined by the rest-mass density average. For
fedd ¼ 1, we find that the shell approximately keeps
the initial location at least for the free-fall time scale. We
confirm that this property does not change significantly
even if we employ lower grid resolutions or smaller
packet numbers for injected radiation (see the results with
the label of “low res.” in Fig. 10). For fedd ¼ 0.5, the
shell falls into the central region, although the infalling
speed is slower than that in the absence of the injected
radiation. For fedd ¼ 1.5, by contrast, the shell is pushed
outward by the radiation pressure and moves to larger
radii. All these results are consistent with the physical
expectation.

V. SUMMARY

In this paper, we presented our new Monte Carlo-based
relativistic radiation hydrodynamics code. Our code is
developed based on the previous works [63–66,70], but
in addition, we proposed the following new ingredients for
the Monte Carlo scheme in this paper:
(1) We proposed and implemented a new procedure to

achieve the second-order accuracy for the time
integration in the limit of a large packet number
even in the presence of significant matter-radiation
interaction. In this higher-order time-integration
scheme the energy-momentum conservation is guar-
anteed to the precision of the geodesic integrator.

(2) The spatial dependence of radiative processes, such
as the packet propagation, emission, absorption, and
scattering, is taken into account up to the second-
order accuracy.

(3) We proposed a new method to determine the Fleck
parameter, αeff , which is a key variable to control
the effective opacity introduced in the implicit
Monte Carlo scheme. The new implementation is
a generalization of the originally and previously
employed one of choosing the parameter. It has an
advantage that the updated radiation and fluid
energy do not overshoot those of the local thermal
equilibrium state even if they are initially far from
the equilibrium.

(4) We proposed and implemented a prescription to skip
the evolution of the packet deep inside the cell in
which the thermal equilibrium is likely to be
achieved. By this prescription the Monte Carlo shot
noise of the energy-momentum transport between
the cells is reduced for the fixed number of packets
due to an effective increase of the packet density in
the region near the cell interface.

We validated our code by reproducing the solutions of
various test-problems following the previous studies; one-
zone thermalization, dynamical diffusion, radiation drag-
ging, radiation mediated shock-tube, shock-tube in the
optically-thick limit, and Eddington limit problems. By
comparing our numerical results with the exact solutions

FIG. 10. Averaged radius of the shell determined by the rest-
mass density average. The results for finj ¼ 1, 1.5, and 0.5 are
shown. For finj ¼ 1, the result calculated with a low grid
resolution (100 × 100 grids) and small packet number for
injected radiation (1.2 × 104 packets per a time step) is also
shown (“low res.”). The result for finj ¼ 0.5 is truncated at the
time at which the 90% of the shell mass fall into the region of
r < 60 rg because the matter which reaches the region is removed
from the simulated region and the value of the averaged radius is
not meaningful any longer.

FIG. 9. Rest-mass density profile of the Eddington limit tests at t ¼ tff . The left, middle, and right panels show the results for finj ¼ 1,
1.5, and 0.5, respectively.
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and/or the numerical solutions obtained in Ref. [47], we
confirmed that our code can reproduce the solutions for a
number of the test problems with reasonable accuracy. We
also demonstrated that the energy-momentum conservation
is achieved to the level of the machine precision for the case
of flat spacetime.
We demonstrated that the second-order accuracy is

indeed achieved with our higher-order time-integration
scheme for one-zone and 1D problems. We also recon-
firmed that the computation based on the operator splitting
scheme results in the first order accuracy in time. We found
that the error of the result obtained by the operator splitting
scheme is always larger than that by the higher-order
scheme even for the case that the time step is comparable
with the physical time scale of the system. This suggests the
merit of employing our higher-order scheme to suppress the
numerical error accompanied with a large time-step size.
On the other hand, the second-order accuracy in time is not
always achieved in the presence of a large Monte Carlo shot
noise or for a large time step, i.e., for the case that the
implicit Monte Carlo scheme plays an essential role.
Hence, whether the higher-order time-integration scheme
should be employed or not depends on the problem and
computational resources. We also note that studying con-
vergence property of the results with respect to the
Monte Carlo packet numbers as well as comparing the
computational speed between our Monte Carlo scheme and
the other schemes (for example, a M1 scheme) in more
realistic problems are the important tasks, and we leave
those to our future tasks.
There are several tasks remaining for the development

of our code. One is the implementation of realistic
microphysics, such as the equations of state, emissivity,
and opacity. Although the implementation of them is
rather straightforward, we should examine whether we
can stably solve the system even in the presence of
their complicated dependence on temperature, rest-mass
density, and electron fraction. Implementation of
neutrino-antineutrino pair annihilation process in dynami-
cal spacetime is also a target of our future development.
The implementation of the discrete diffusion technique
[59,64,65] will be a great help to reduce the computa-
tional costs in a highly scattering regime. Both hydro-
dynamics and radiation solvers of our code is parallelized
under OpenMP, but efficient parallelization with MPI
computing has to be achieved to solve problems with
larger grid/packets numbers.
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APPENDIX A: HIGHER-ORDER TIME
INTEGRATION

In this section we show that the higher-order time-
integration scheme introduced in this work is indeed
accurate to the second order in time in the limit of a large
packet number.
As in Sec. III E, we consider the time evolution of matter

and radiation fields given by uðtÞ and yðtÞ, respectively.
Generally, the time derivatives of uðtÞ and yðtÞ are
functions of uðtÞ and yðtÞ, and thus, the basic equations
are written schematically as

dyðtÞ
dt

¼ F½yðtÞ;uðtÞ�; ðA1Þ

duðtÞ
dt

¼ G½yðtÞ;uðtÞ�: ðA2Þ

The evolution of the radiation field is given by solving the
propagation, creation, and annihilation of the consisting
packets over the fixed matter field. Hence, the new
radiation field y1 obtained by solving the evolution of
the packets under the fixed matter field of u0 can be
considered as the solution of the radiation field in which the
time evolution of the matter field is neglected. Formally,
this can be described by

y1 ¼ y0 þ
Z

Δt

0

dsF½yju¼u0
ðtþ sÞ;u0�: ðA3Þ

Here, yju¼u0
ðtþ sÞ denotes the solution of the radiation

field of which the state is y0 at t ¼ 0 and the matter field is
virtually fixed as u0 in the time evolution. The evolution
of y0 → y1 is accurate in time to the order of the time-
integration scheme employed for solving the packet
propagation. In the following, we assume that the time
integration for the packet evolution is accurate at least up to
the second order. Then, we can expand Eq. (A3) with
respect to Δt as

y1 ¼ y0 þ F½y0;u0�Δtþ
1

2

δF
δy

F½y0;u0�Δt2 þOðΔt3Þ:

ðA4Þ

The radiation feedback calculated during the time
evolution of y0 → y1 is used to evolve the matter field.
We can schematically write this as

u1 ¼ u0 þ
Z

Δt

0

dsG½yju¼u0
ðtþ sÞ;u0�: ðA5Þ

Again, the radiation feedback obtained here can also be
considered to be as accurate in time as y1 supposing that the
matter field is virtually fixed as u0. Then, we have
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u1 ¼ u0 þ G½y0;u0�Δtþ
1

2

δG
δy

F½y0;u0�Δt2 þOðΔt3Þ:

ðA6Þ

In the next substep, the matter and radiation fields are
evolved in the same way as in the first step but using u1 as
the fixed matter field. Let y2 and u2 be radiation and matter
fields obtained by this second substep, respectively.
Substituting y1 and u1 of Eqs. (A4) and (A6) into the
evolution equations, y2 and u2 can be expressed as

y2 ¼ y0 þ F½y0;u1�Δtþ
1

2

δF
δy

F½y0;u1�Δt2 þOðΔt3Þ

¼ y0 þ F½y0;u0�Δtþ
δF
δu

G½y0;u0�Δt2

þ 1

2

δF
δy

F½y0;u0�Δt2 þOðΔt3Þ; ðA7Þ

u2 ¼ u0 þ G½y0;u1�Δtþ
1

2

δG
δy

F½y0;u1�Δt2 þOðΔt3Þ

¼ u0 þ G½y0;u0�Δtþ
δG
δu

G½y0;u0�Δt2

þ 1

2

δG
δy

F½y0;u0�Δt2 þOðΔt3Þ; ðA8Þ

respectively.
In the last substep, the evolution of the matter and

radiation fields is calculated in the same ways as in the first
and second steps but using 1

2
u� ¼ 1

2
u0 þ 1

4
u1 þ 1

4
u2 as the

fixed matter field. Following the same procedure as for
calculating y2 and u2, y3 and u3 are expressed as

y3 ¼ y0 þ F½y0;u��Δtþ
1

2

δF
δy

F½y0;u0�Δt2 þOðΔt3Þ

¼ y0 þ F½y0;u0�Δtþ
1

2

δF
δu

G½y0;u0�Δt2

þ 1

2

δF
δy

F½y0;u0�Δt2 þOðΔt3Þ; ðA9Þ

u3 ¼ u0 þ G½y0;u��Δtþ
1

2

δG
δy

F½y0;u��Δt2 þOðΔt3Þ

¼ u0 þ G½y0;u0�Δtþ
1

2

δG
δu

G½y0;u0�Δt2

þ 1

2

δG
δy

F½y0;u0�Δt2 þOðΔt3Þ; ðA10Þ

respectively.
Finally, the radiation and matter fields for the next step,

ynew and unew, are determined by the following relations:

ynew ¼ 1

6
y1 þ

1

6
y2 þ

2

3
y3; ðA11Þ

unew ¼ 1

6
u1 þ

1

6
u2 þ

2

3
u3; ðA12Þ

respectively. Then we have

ynew ¼ y0 þ F½y0;u0�Δtþ
1

2

δF
δu

G½y0;u0�Δt2

þ 1

2

δF
δy

F½y0;u0�Δt2 þOðΔt3Þ; ðA13Þ

unew ¼ u0 þG½y0;u0�Δtþ
1

2

δG
δu

G½y0;u0�Δt2

þ 1

2

δG
δy

F½y0;u0�Δt2 þOðΔt3Þ: ðA14Þ

We can easily show that ynew and unew agree with the
expansion of yðtþ ΔtÞ and uðtþ ΔtÞ to second order with
Δt, respectively. Furthermore, we confirm that unew agrees
with that obtained by the so-called SSPRK3 method [85].
Hence, this time-integration scheme is accurate up to the
third order in time for the hydrodynamics sector in the limit
of the negligible radiation feedback.

APPENDIX B: THINNING AND JOINING
OF THE RADIATION FIELDS

In this section we describe the thinning method which is
used for the higher-order time-integration scheme in
our code.
We explain our method starting from a simple example.

Let y1 and y2 be the radiation fields, which are both y0 at
the initial time t but obtained by the time evolution of Δt
under two different matter fields. Let U1 (U2) be a set of
packets, which contains packets in y0 and those generated
during the time evolution of y0 → y1 (y0 → y2) between t
and tþ Δt. Let ΔGj

1;k (ΔGj
2;k) be the radiation four-force

to the jth cell which is induced by the time evolution
of the kth packet in U1 (U2). The total radiation force to
the jth hydrodynamics cell is then described by ΔGj

1 ¼P
k∈U1

ΔGj
1;k (ΔGj

2 ¼
P

k∈U2
ΔGj

2;k).
For the case that a new radiation field is constructed by

y0 ¼ λy1 þ ð1 − λÞy2, the packets in y1 and y2 are thinned
out by fractions of λ and 1 − λ, respectively, with respect to
each total packet number. If we regard y0 → y0 as the time
evolution to the next time step, the radiation force fΔG0jg
during the time evolution should be determined consis-
tently with the packets included in y0 to guarantee the
energy-momentum conservation. For instance, the thinned
out packets which are not picked up from y1 or y2 for
constructing y0 should not contribute to fΔG0jg. In other
words, for any contribution to fΔG0jg, a packet which
induces such radiation feedback should be included in y0
unless absorbed during the time evolution. We note that the
radiation feedback from the packets in U1 or U2 which are
created and already absorbed during the time evolution
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should also be taken into account with the proportion of λ
and 1 − λ, respectively.
For this purpose, we divide U1 (U2) into subsets of U1A

and U1B (U2A and U2B) for which the ratio of the packet
number between U1A and U1B (U2A and U2B) is λ∶1 − λ.
Then, the new radiation field y0 and radiation four-force
induced during y0 → y0 are given by y0 ¼ ðy1 ∩ U1AÞ ∪
ðy2 ∩ U2BÞ, ΔG0j ¼ P

k∈U1A
ΔGj

1;k þ
P

k∈U2B
ΔGj

2;k. In
this way, each contribution to ΔG0j has a corresponding
packet in U1A or U2B which induces such radiation force,
and hence, the energy-momentum conservation of the
system is naturally guaranteed. Practically, the division
of the packet sets (U1 ¼ U1A ⨁ U1B andU2 ¼ U2A ⨁ U2B)
can be done before evolving the radiation field, since the
packets generated in the period from t to tþ Δt can be
predetermined at the beginning of the time evolution.
We note that the packets in the initial configuration y0

should be divided in the same way for U1 and U2; it is
desirable to divide the packets as U1 ¼ U1A ⨁ U1B and
U2 ¼ U2A ⨁ U2B so that y0 ∩ U1A ¼ y0 ∩ U2A and
y0 ∩ U1B ¼ y0 ∩ U2B. By this way, all the packets initially
included in y0 will contribute to y0 or ΔG0j, while a
fraction of the packets experiences the evolution of y0 →
y1 and the other fraction experiences y0 → y2. In par-
ticular, if the space time is stationary and there is no
packet generation or annihilation, i.e., no interaction with
the matter during the evolution, the resultant y0 will be
the same as that without applying the higher-order time-
integration scheme, because the time evolution of y0 →
y1 and y0 → y2 is identical except for the probabilistically
determined part.
The actual code is a little bit more complicated due to the

presence of the Runge-Kutta substeps, but the procedure is
essentially the same as explained above. First, at the
beginning of the ith Runge-Kutta substep, all the packets
at the initial time t and the packets which are created in the

time evolution, U i, are divided into sets of U0
i , U

ð1Þ
i , Uð2Þ

i ,

Uð3Þ
i , Uð4Þ

i , Uð5Þ
i . Here, UðmÞ

i (m ¼ 0, 1, 2, 3, 4, 5) is deter-

mined so that #Uð0Þ
i ∶#Uð1Þ

i ∶#Uð2Þ
i ∶#Uð3Þ

i ∶#Uð4Þ
i ∶#Uð5Þ

i ¼
1
6
∶ 1
3
∶ 1
12
∶ 1
6
∶ 1
12
∶ 1
6
¼ 2∶4∶1∶2∶1∶2, where # denotes the

number of the packets. For the case that the number of the
packet is not a multiple of 12, the remainder is assigned to
either of sets probabilistically following the packet number
weight (however, as we discuss below, for the packets
newly created in each time step, we require those number to
be a multiple of 12 to have the correct emission rate).
Then, the radiation field is evolved following the packet

transport, creation, and annihilation. The radiation field

after the evolution [yðmÞ
i ] and the radiation four-force

[ΔGðmÞ
i ] induced during the evolution are computed for

each m in each Runge-Kutta substep. In the first Runge-
Kutta substep, the total induced radiation four-force deter-
mined during the evolution is simply used to calculate the

matter field at the next substep. In the second Runge-Kutta
substep, a composite value of the radiation four-force is
needed to calculate u� ¼ 1

2
u0 þ 1

4
u1 þ 1

4
u2. This is calcu-

lated from ΔG� ¼ ðΔGð2Þ
1 þ ΔGð3Þ

1 Þ þ ðΔGð4Þ
2 þ ΔGð5Þ

2 Þ.
After the third Runge-Kutta substep finished, the radiation
field and radiation four-force obtained in the first, second,
and third Runge-Kutta substeps are combined with the ratio
of 1

6
∶ 1
6
∶ 2
3
, respectively, to obtain the radiation field of the

next time step (ynew) and radiation four-force (ΔG).
Specifically, they are obtained by ynew ¼ ðy1 ∩ Uð3Þ

1 Þ ∪
ðy2 ∩ Uð5Þ

2 Þ ∪ ðy3 ∩ Uð0Þ
3 Þ ∪ ðy3 ∩ Uð1Þ

3 Þ ∪ ðy3 ∩ Uð2Þ
3 Þ ∪

ðy3 ∩ Uð4Þ
3 Þ and ΔG¼ΔGð3Þ

1 þΔGð5Þ
2 þðΔGð0Þ

3 þΔGð1Þ
3 þ

ΔGð2Þ
3 þΔGð4Þ

3 Þ. The radiation tensor and the energy of the
packet that escapes from the system can be synthesized in
the same way as the radiation reaction.
In this algorithm, the number of the packet created in

each time step should be a multiple of 12 to ensure that
expected emission rate is derived. For instance, if only one
packet is created in the first Runge-Kutta substep and if it is

assigned to the group other than Uð3Þ
1 probabilistically, the

contribution of the emission in this substep to the new
radiation field (ynew) and radiation four-force (ΔG) cannot
be taken into account. On the other hand, if the packet is

assigned to Uð3Þ
1 , the effect of emission to ynew and ΔG is

overestimated in this substep (remind that ideally only 1=6
of emission in this substep should contribute to the
evolution). Hence, although the effect of emission is
consistent with the desired value in probability average,
the remainder at the packet division can cause an artificial
fluctuation in emissivity.
To avoid the artificial fluctuation in emissivity, in our

implementation, the number of the created packet is
adjusted to be a multiple of 12 to the utmost extent in
the way explained in Sec. III B 1. However, if the number of
the created packet is small and it is numerically inefficient
to adjust the number to be a multiple of 12, we give up
applying the higher-order time-integration scheme to the
packet creation in the cell. Instead, we apply the following
procedure at the time of the packet division:
(1) In the first Runge-Kutta substep, we assign all the

created packets to Uð0Þ
1 .

(2) In the second Runge-Kutta substep, we assign all the

created packets to Uð4Þ
2 with the packet weight being

enhanced by a factor of 2.
(3) In the third Runge-Kutta substep, we assign all the

created packets to Uð0Þ
3 .

In this way, the contribution of the created packet in each
substep to the radiation field and radiation feedback will be
limited to these update in the same substep without being
lost, and thus, we can avoid the unphysical fluctuation in
emissivity. However, we note that, by this prescription, the
time-integration accuracy will drop to the first order.
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