
Properties of scalar wave emission in a scalar-tensor
theory with kinetic screening

Masaru Shibata 1,2,* and Dina Traykova 1,†

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, Potsdam-Golm 14476, Germany

2Center for Gravitational Physics and Quantum-Information, Yukawa Institute for Theoretical Physics,
Kyoto University, Kyoto 606-8502, Japan

(Received 24 October 2022; accepted 27 January 2023; published 27 February 2023)

We study numerically the scalar wave emission by a nonspherical oscillation of neutron stars in a scalar-
tensor theory of gravity with kinetic screening, considering both the monopole and quadrupole mode
emission. In agreement with previous results in the literature, we find that the monopole is always
suppressed by the screening effect, regardless of the size of the screening radius, rsc. For the quadrupole
mode, however, our analysis shows that the suppression only occurs for a screening radius larger than the
wavelength of scalar waves, λwave, but not for rsc < λwave. This demonstrates that to fully understand the
nature of this theory, it is necessary to study other more complex systems, such as neutron star binaries,
considering a wide range of rsc values.
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I. INTRODUCTION

The ample evidence for the current accelerated expan-
sion of the Universe has hinted at the existence of some new
physics at cosmological scales [1–8]. One of the simplest
modifications to general relativity (GR), which can provide
a possible explanation of this phenomenon, is the so-called
scalar-tensor theories, where an additional scalar degree of
freedom is minimally (e.g., quintessence [9–12]; see also
Refs. [13,14] for reviews) or nonminimally coupled to the
gravitational metric (see Refs. [15–18] for a review on
scalar-tensor gravity). On cosmological scales, it is possible
to measure and constrain physical parameters that capture
this novel behavior [19–23], showing that modifications to
GR that can account for the observed accelerated expansion
of the Universe on these scales with the dark sector whose
density is of the order of the critical density, ρc. This means
that we can expect similar deviations on small scales too.
However, Solar System [24,25] and binary pulsar [26–30]
tests show no violations of the predictions of GR there. In
addition, radio observations of pulsars (neutron stars)
accompanying white dwarfs constrain the emissivity of

scalar-type gravitational waves (hereafter referred to
simply as scalar waves), and thus the parameter space
for some scalar-tensor theories has been significantly
limited [30–32]. More recently, consistency with GR has
also been shown by null tests with gravitational-wave
observations [33–37].
One possible solution to this problem is employing an

appropriate screening mechanism by which the effects of
the scalar field are suppressed on local scales so that GR
phenomena can be reproduced, while on cosmological
scales modifications to GR remain appreciable. Some well-
studied examples of this behavior are the chameleon [38],
symmetron [39], and Vainshtein [40–42] screening (see
also Refs. [43–45] for reviews). Even though screening
effects have been studied extensively in a range of
simplified scenarios, such as weak-gravity and spherical
symmetry approximations (see, e.g., Refs. [46–56]), they
are not so well understood in strongly self-gravitating and
dynamical environments, such as the dynamical neutron
star spacetime. For example, the emission mechanism of
scalar waves has not been yet well understood. In order to
fully characterize the screening effect in dynamical space-
times, for which no linearization or symmetry of the
system can be employed, numerical relativity (NR), by
which the solution of the fully nonlinear systems can be
obtained, is needed.
NR simulations of compact objects in scalar-tensor

theories with a kinetic screening effect have been per-
formed in a few recent studies [57–62], some of which
report a nontrivial nature of the scalar-wave emission. In
particular, in Ref. [59], the authors find that the quadrupole
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scalar wave emission may not be screened in the case of a
binary neutron star inspiral. This study focuses on the cases
with a small screening radius (≲140 km), which is smaller
than the wavelength of gravitational and scalar waves. We
argue here that, in such a setting, the screening effect may
not be significant and one could expect different behavior
when larger screening radii, which are more realistic, are
considered.
In this paper, we study numerically the emission of scalar

waves from nonspherically oscillating neutron stars in the
same scalar-tensor theory employed in Ref. [59]. It has been
shown in Ref. [63] that scalar waves in a scalar-tensor theory
of gravity can be detected by interferometers in the sameway
as gravitational waves. Their analysis, done in the frame-
work of the Brans-Dicke theory shows that, for a simple
Michelson interferometer, the antenna sensitivity pattern
depends strongly on the frequency of the scalar gravitational
waves, with essentially the same features as those of the
tensor mode of GWs. Thus showing that as long as the
dependence of the antenna sensitivity pattern on the wave
length of scalar waves is taken into account in the sameway
as for the tensor modes, scalar waves would be detectable in
the case of a scalar-tensor theory. Therefore in this work we
treat both scalar and tensor modes as gravitational waves.
Our NR simulation is performed in the Jordan frame in

contrast to previous works [58,59], which employ the
Einstein frame instead. Doing this has three advantages:
(i) the equations for hydrodynamics are not changed and
have a conservative form, same as in GR; (ii) the gravi-
tational and scalar waves are extracted independently from
the spacetime metric and the scalar field, respectively; and
(iii) unlike the Einstein frame case, the Jordan frame metric
couples universally to the matter fields and so observables
can also be computed in the same way as one does in GR.
We will show that if the screening radius is larger than the
wavelength of scalar waves, then the screening effects on
the scalar waves (i.e., the suppression of the scalar wave
emission) is always significant irrespective of the multi-
poles considered.
The paper is organized as follows. In Sec. II we summa-

rize the basic equations that we employ. Section III presents
a formulation for computing equilibrium and quasiequili-
brium states, necessary for the initial conditions in NR
simulation. Section IV presents numerical solutions of
1.4M⊙ spherical neutron stars and summarizes the proper-
ties of a neutron star spacetime in the presence of the kinetic
screening. In Sec. V we explore the nonspherical oscillation
of neutron stars obtained in Sec. IV, in particular focusing on
the generation and propagation of quadrupole scalar waves.
Finally, we discuss our results and summarize our con-
clusions in Sec. VI. In Appendix A, we describe the 3þ 1
formulation of the basic equations and methods of the
analysis for scalar waves.
Throughout this paper, we use the units of c ¼ 1 ¼ ℏ,

where c and ℏ denote the speed of light and the reduced

Planck constant, respectively. In these units the Planck
length, lp ≔ G1=2 ¼ 1.616 × 10−33 cm and the Planck
mass, Mp ≔ G−1=2 ¼ 2.176 × 10−5 g. The subscripts a
and b denote the spacetime tensor components, and i, j,
and k denote the spatial components.

II. BASIC EQUATIONS

In this work we consider a scalar-tensor theory with
kinetic screening, in which the action in the so-called
Jordan frame is given by [24,64–66]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ

�
Rþ

�
3

2
þ K̂
α2s

�
gab

∇aϕ∇bϕ

ϕ2

�

þ Smatterðχmatter; gabÞ: ð1Þ

The corresponding action in the Einstein frame can be
found in, e.g., Refs. [59,67]. Here R and ∇a are the Ricci
scalar and covariant derivative associated with the space-
time metric gab, ϕð> 0Þ is the gravitational scalar field and
K̂ is a function of the canonical kinetic term of the scalar
field, X. Smatter is the action of the perfect fluid, with χmatter
representing the matter fields. The kinetic term of the scalar
field is defined as

X ¼ ḡab∇̄aφ̄∇̄bφ̄ ¼ ϕ−1gab∇aφ̄∇bφ̄; ð2Þ

where ḡab is the spacetime metric in the Einstein frame,
∇̄a is its covariant derivative, φ̄ ¼ lnϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGα2s

p
, and

αs is a coupling constant. Following Ref. [59], we consider
the case

K̂ðXÞ ¼ −
1

2
þ γ1
4Λ4

X −
γ2
8Λ8

X2 � � � ; ð3Þ

where Λ is the strong-coupling scale (i.e., λ ≔ Λ−1 deter-
mines the length scale of screening), and γ1 and γ2 are
constants of order unity. Here we choose γ1 ¼ 0 and γ2 ¼ 1
as it has been shown (see Refs. [68,69]) that this is a
necessary condition for having a well-posed initial value
formulation, as well as screening static solutions. Screening
is expected to occur in the strong field zone, where X > Λ4

is satisfied. We suppose that ϕ → 1 (i.e., φ̄ → 0 and X → 0)
for r → ∞.
For γ1 ¼ γ2 ¼ 0 this theory is equivalent to the Fierz-

Jordan-Brans-Dicke (FJBD) theory [64–66], with Brans-
Dicke parameter of the form,

ωðXÞ ≔ −
3

2
−
K̂ðXÞ
α2s

; ð4Þ

with X ¼ 0, so that ωðXÞ ¼ − 1
2
ð3 − αs

−2Þ.
Then the basic equations for the geometry, scalar field,

energy momentum tensor, Tab, and rest-mass continuity are
as follows:
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Gab ¼ 8πGϕ−1Tab

−
�
3

2
þ K̂
α2s

�
ϕ−2

�
ð∇aϕÞ∇bϕ−

1

2
gabð∇cϕÞ∇cϕ

�

−
X

α2sϕ
2

∂K̂
∂X

∇aϕ∇bϕþϕ−1ð∇a∇bϕ−gab□gϕÞ; ð5Þ

∇aðF∇aϕÞ ¼ 8πGα2sT; ð6Þ

∇aTa
b ¼ 0; ð7Þ

∇aðρuaÞ ¼ 0; ð8Þ

where Gab is the Einstein tensor associated with gab,
T ¼ Ta

a, ua is the fluid four velocity, ρ is the rest-mass
density, and

F ≔ −2
∂ðXK̂Þ
∂X

¼ 1 − γ1
X
Λ4

þ 3γ2
4

X2

Λ8
þ � � � : ð9Þ

To derive Eq. (6), we used the trace of Eq. (5),

−R ¼ 8πGϕ−1T þ
�
3

2
þ K̂
α2s

−
X
α2s

∂K̂
∂X

� ð∇aϕÞ∇aϕ

ϕ2

−
3

ϕ
□gϕ; ð10Þ

where □g ¼ ∇a∇a.
For Tab, we consider the stress-energy tensor for a

perfect fluid,

Tab ¼ ðρþ ρεþ PÞuaub þ Pgab; ð11Þ

where ε and P are the specific internal energy and pressure
of the fluid. In the Jordan frame the fluid matter is coupled
only to the gravitational field, as seen in Eq. (7). Hence, the
equations for the perfect fluid are the same as those in GR
in this frame.
The basic equations in the 3þ 1 formulation for the

gravitational field are derived simply by contracting nanb,
naγbi, and γaiγ

b
j with Eq. (5). Here, γab ¼ gab þ nanb

denotes the spatial metric, and na is the unit normal to the
spatial hypersurfaces. The 3þ 1 form of the scalar field
equation is derived from Eq. (6) by defining Π ≔ −na∇aϕ
or Π̂ ≔ −Fna∇aϕ.
The evolution of the scalar field and its conjugate

momentum have the following form:

ð∂t − βk∂kÞϕ ¼ −αΠ; ð12Þ

ð∂t − βk∂kÞΠ̂ ¼ −DiðαFDiϕÞ þ αKΠ̂þ 8πGαα2sT; ð13Þ

where Di is the covariant derivative with respect to γij.
In terms of Π and ϕ, X can be written as

X ¼ 1

16πGα2sϕ3
½ðDkϕÞDkϕ − Π2�: ð14Þ

From these one can also obtain an algebraic equation for X,

fðXÞ≔X−
1

16πGα2sϕ3

�
ðDkϕÞDkϕ−

Π̂2

FðXÞ2
�
¼ 0: ð15Þ

For a detailed description of the 3þ 1 equations of the
system, we refer the reader to Appendix A.
The evolution equations for the gravitational fields are

solved numerically in the Baumgarte-Shapiro-Shibata-
Nakamura formalism [70,71] with the moving-puncture
gauge [72,73], as done in Ref. [74]. In particular, we evolve
the conformal factor W ≔ ψ−2 (with ψ ≔ ðdet γijÞ1=12),
the conformal metric γ̃ij ≔ ψ−4γij, the trace part of the
extrinsic curvature K, the conformally weighted trace-free
part of the extrinsic curvature Ãij ≔ ψ−4ðKij − Kγij=3Þ
(with Kij as the extrinsic curvature), and the auxiliary
variable Γ̃i ≔ −∂jγ̃ij. Introducing the auxiliary variable Bi

and a parameter ηs, which is typically set to be ∼M−1, M
being the total mass of the system,1 we employ the moving-
puncture gauge in the form of [75]

ð∂t − βj∂jÞα ¼ −2αK; ð16Þ

ð∂t − βj∂jÞβi ¼ ð3=4ÞBi; ð17Þ

ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞΓ̃i − ηsBi; ð18Þ

where α and βi are the lapse function and shift vector,
respectively.
The spatial derivative is evaluated by a fourth-order

central finite difference scheme, except for the advection
terms, which are evaluated by a fourth-order noncentered
finite difference. For the time evolution, we employ a
fourth-order Runge-Kutta method (see Ref. [76]). We use
the same scheme for the evolution of the scalar field as
for the tensor, because the structure of the equations is
essentially the same.
To solve the hydrodynamics equations, we evolve

ρ� ≔ ραutW−3, ûi ≔ hui, and e� ≔ hαut − P=ðραutÞ, with
h being the specific enthalpy. The advection terms are
handled with a high-resolution shock capturing scheme of a
third-order piecewise parabolic interpolation for the cell
reconstruction. For the equation of state (EOS), we decom-
pose the pressure and the specific internal energy into cold
and thermal parts as

P ¼ Pcold þ Pth; ε ¼ εcold þ εth: ð19Þ

1We note that the total mass includes a contribution both from
the Arnowitt-Deser-Misner (ADM) mass and the scalar charge
(see the tensor mass in Sec. III).
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Here, Pcold and εcold are functions of ρ, and their forms
are determined by nuclear-theory-based zero-temperature
EOSs. Specifically, the cold part of both variables are
determined using the piecewise polytropic version (see,
e.g., Ref. [77]) of the APR4 EOS [78], for which the
maximum mass of the neutron stars in GR is ≈2.2M⊙.
Then the thermal part of the specific internal energy is

defined from ε as εth ≔ ε − εcold. Because εth vanishes in
the absence of shock heating, εth is regarded as the finite-
temperature part (and thus, this part is minor in the present
study). The thermal pressure is determined by a Γ-law EOS,

Pth ¼ ðΓth − 1Þρεth; ð20Þ

and we choose Γth equal to 1.8, following Refs. [74,77].

III. FORMULATION FOR INITIAL CONDITIONS

Here we outline the formulation for computing quasie-
quilibrium configurations for a binary in a circular orbit
with angular velocity Ω following Refs. [79–81]. This
description is also valid for computing static spherical stars
with Ω ¼ 0.
To derive quasiequilibrium configurations, for simplic-

ity, we assume the conformal flatness of the three metric,
such that

γij ¼ ψ4fij; ð21Þ

where fij is the flat spatial metric, and employ the
conformal thin-sandwich prescription. We also impose
the maximal slicing K ¼ 0. For integrating the hydro-
dynamics equations, we assume the presence of a helical
Killing vector, ξa ¼ ð∂t þ Ω∂φÞa. For the fluid part, the
basic equations in the Jordan frame are the same as those in
GR. Thus, assuming that the velocity field is irrotational,
the first integral of the hydrodynamics equations is readily
determined in the same manner as those in GR [82,83].
The basic equations for the tensor field are obtained from

the Hamiltonian and momentum constraints, together with
the evolution equation for K (see Appendix A) under the
maximal slicing condition, K ¼ 0 ¼ ∂tK. Except for the
modifications introduced by the presence of the scalar
field, ϕ, the equations are again the same as in GR. The
Hamiltonian and momentum constraints are written as

Δ
ð0Þ
ψ ¼ −2πGϕ−1ρhψ

5 −
1

8
ÃijÃ

ijψ5

−
ψ5

8

�
ω

ϕ2
fΠ2 þ ðDiϕÞDiϕg þ 2ϕ−1DiDiϕ

−
2Π2

α2sϕ
2
X
∂K̂
∂X

�
ð22Þ

and

D
ð0Þ

iðψ6Ãi
jÞ ¼ ψ6

�
8πGϕ−1Jj þ

�
ω −

X
α2s

∂K̂
∂X

�
ϕ−2ΠD

ð0Þ
jϕ

þ ϕ−1ðD
ð0Þ

jΠ − Ãi
jD
ð0Þ

iϕÞ
�
; ð23Þ

respectively. Here Δ
ð0Þ

and D
ð0Þ

i are the Laplacian and
covariant derivatives with respect to fij, ρh ≔ Tabnanb,
and Ji ≔ −Tabnaγbi. Ãij is the trace-free conformal extrin-
sic curvature, satisfying Ki

j ¼ Ãi
j for K ¼ 0. The equation

for Ãij can be obtained from the evolution equation for γij
with Eq. (21) and has the form

Ãij ¼
1

2α

�
fikD

ð0Þ
jβ

k þ fjkD
ð0Þ

iβ
k −

2

3
fijD

ð0Þ
kβ

k

�
; ð24Þ

where indices of Ãij, Ã
ij, and D

ð0Þ
i are raised and lowered by

fij and fij. The condition K ¼ 0 ¼ ∂tK yields the equation
for α, which leads to the equation for χ ≔ αψ in the form

Δ
ð0Þ
χ ¼ χψ4

�
2πGϕ−1ð2Sþ ρhÞ þ

7

8
ÃijÃ

ij

þ 1

8
ωϕ−2f7Π2 − ðDiϕÞDiϕg

−
1

4α2sϕ
2
X
∂K̂
∂X

ð2ðDkϕÞDkϕþ Π2Þ

þ 3

4ϕ
ðDiDiϕ − 2□gϕÞ

�
; ð25Þ

where S ≔ Tabγ
ab. Note that we replace □gϕ using

□gϕ ¼ 1

F

�
8πGα2sT − ð∇aXÞð∇aϕÞ

∂F
∂X

�
;

¼ 1

F

�
8πGα2sT − fðDkXÞDkϕþ ðna∇aXÞΠg

∂F
∂X

�
;

ð26Þ

and will replace the Laplacian term of DiDiϕ using the
equation for ϕ, as defined below.
For the scalar field, if we simply set Π ¼ 0, Eq. (13)

(with K ¼ 0) leads to an elliptic equation for ϕ,

DiDiϕ ¼ ψ−4½Δ
ð0Þ
ϕþ 2ψ−1ðD

ð0Þ
iψÞD

ð0Þi
ϕ�;

¼ −ðDi ln αÞDiϕ

þ F−1
�
8πGα2sT − ðDkϕÞðDkXÞ ∂F

∂X

�
; ð27Þ

with X ¼ ðDkϕÞDkϕ=ð16πGα2sϕ3Þ. The treatment with
Π ¼ 0 is justified in the case where the gravitational
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radiation reaction timescale is much longer than the orbital
period, 2π=Ω. With the choice of Π ¼ 0, the equation for
□gϕ simplifies to

□gϕ ¼ F−1
�
8πGα2sT − ðDkϕÞðDkXÞ ∂F

∂X

�
: ð28Þ

Furthermore, Eqs. (22), (23), and (25) are also simplified
given the choice of Π ¼ 0.
To obtain the solution for spherical stars in exact

equilibrium, we set Ω ¼ 0, βk ¼ 0, Ãij ¼ 0, and solve
the elliptic equations only for ψ, χ, and ϕ with appropriate
boundary conditions at r ¼ 0 and r → ∞. The hydrostatic
equation has the form

αh ¼ const: ð29Þ
The asymptotic behavior of ψ , χ, and ϕ for r → ∞ is

given by

ψ → 1þMADM

2r
; ð30Þ

χ → 1 −
2MK −MADM

2r
; ð31Þ

ϕ → 1þ 2MS

r
; ð32Þ

where MADM, MK, and MS are the ADM mass, Komar
mass, and scalar charge. The tensor mass, which is a
conserved quantity in scalar-tensor theories and the ADM
mass in the Einstein frame, is defined from MADM and MS
by [84]

MT ¼ MADM þMS: ð33Þ

The virial relation, which is satisfied in stationary and
quasiequilibrium solutions, is written as [85]

MK ¼ MADM þ 2MS ¼ MT þMS: ð34Þ

Equation (27) indicates that in the far zone, for which
X < Λ4 is satisfied, jϕ − 1j is of the sameorder ofmagnitude
as α2sGM=r, whereM denotes the mass of the system. Using
the definition of X in Eq. (14), the magnitude of X=Λ4 is
written as

∼
α4sλ

4

16πl2
p

�
rg
r2

�
2

; ð35Þ

where rg ¼ GM=c2 is the gravitational radius. Thus the
screening effect occurs for r≲ rsc ≔ αsλðrg=lpÞ1=2. Here
λ ≈ 1.97 × 10−11 cm ðΛ=1 MeVÞ−1. In the following, we
specify the strength of the screening by the dimensionless
parameter

β ≔
λ8

l4
pr4g;⊙

≈ 1.20 × 1028
�

λ

5 × 10−11 cm

�
8

;

≈ 1.08 × 1028
�

Λ
0.4 MeV

�
−8
; ð36Þ

where rg;⊙ ¼ GM⊙=c2. Using this parameter, the radius of
the screening region can be expressed as

rsc ¼ αsβ
1=8ðrgrg;⊙Þ1=2;

¼ 5.53 × 102 km

�
αs
0.1

��
β

1028

�
1=8

�
rg

1.4rg;⊙

�
1=2

;

¼ 5.58 × 102 km

�
αs
0.1

��
Λ

0.4 MeV

�
−1
�

rg
1.4rg;⊙

�
1=2

:

ð37Þ

Any object that has a screening radius larger than its physical
size would screen modifications to gravity within this
region.

IV. SPHERICAL NEUTRON STARS

In this section we summarize how the screening effect
appears in static spacetimes by showing solutions of
spherical neutron stars of MT ¼ 1.4M⊙ for a wide range
of β, defined in Sec. III. We find that the qualitative
behavior of ϕ, FðXÞ, and geometric quantities is essentially
the same for other values ofMT, and thus, we focus only on
this specific mass case. We fix αs ¼ 0.1. For the 1.4M⊙
neutron star, the stellar radius (circumferential radius) is
≈11.1 km and the scalar charge is ≈0.018M⊙ irrespective
of the value of β. The validity of the numerical equilibrium
profile is confirmed by the fact that the virial relation is
satisfied within a relative error <10−4.
Figure 1 plots the profiles of ϕ − 1 (in the left panel) and

FðXÞ (right panel) as functions of the coordinate radius r
(in isotropic coordinates) for β ¼ 1 and 1016–1036. Note
that for β ¼ 1, FðXÞ ≈ 1 for the entire region, and, hence,
the solution may be considered as that in the FJBD theory.
It is found that the central value of ϕ − 1, ϕc − 1, decreases
with the increase of β, reflecting the screening effect. The
value of ϕc − 1 is approximately proportional to β1=8, i.e.,
proportional to the screening radius, rsc, for β ≥ 1016.
The right panel of Fig. 1 demonstrates that Eq. (37)

approximately indicates the screening region of FðXÞ ≳ 2.
For the larger values of β, we find a wider screening region,
whereas for β ≲ 1016, the screening region disappears.
Around the stellar center, FðXÞ approaches unity because
Djϕ ¼ 0 ¼ Π in such a region, and thus the screening is
absent near the stellar center. Note that the peak of FðXÞ
(and thus X in our present choice) always appears near the
stellar surface (which is located at r ≈ 8.9 km). Outside the
stellar surface, FðXÞ decreases approximately proportional
to r−n, where n ≈ 1.6 (denoted by the red dashed line on the
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plot). The reason for this is explained by the following
analysis. Outside the neutron star, Eq. (6) is integrated to
give (in the present case),

αψ2r2F∂rϕ ¼ 8πGα2s

Z
Tαψ6r2dr ¼ 2MT: ð38Þ

Assuming that F ∝ r−n and ϕ ∝ r−p, the left-hand side is
approximately proportional to r1−p−n, resulting in
n ¼ 1 − p. On the other hand, X is approximately propor-
tional to ð∂rϕÞ2 ∝ r−2p−2, and for X ≫ 1, FðXÞ ∝ X2 ∝
r−4p−4, resulting in n ¼ 4pþ 4. Thus we obtain p ¼ −3=5
and n ¼ 8=5.2

For X ≪ 1, it scales as X ∝ r−4, and thus FðXÞ steeply
approaches unity. Inside the stellar surface, FðXÞ increases
with the radius for MT ¼ 1.4M⊙. However, this is not
always the case for high-mass neutron stars (MT ≳ 2M⊙ for
the APR4 EOS), for which Tð¼ −ρð1þ εÞ þ 3PÞ can be
positive for a very high-density region. For such a star,
FðXÞ becomes unity not only at r ¼ 0 but also at an stellar
interior; thus, FðXÞ does not increase monotonically inside
the star. However, outside such a radius, FðXÞ starts to
increase again until the stellar surface.
Figure 2 plots 1 − αψ2 ¼ 1 − χψ as a function of the

coordinate radius, r. In GR, where MS ¼ 0, this quantity
falls off as r−2 in isotropic coordinates (as shown by the
green dashed line) due to the presence of the virial relation
[see Eqs. (30), (31), and (34)]. On the other hand, in the
presence of the scalar charge, it goes as MS=r (purple
dashed line). This plot shows that in the presence of
screening, 1 − αψ2 ∝ r−2, while outside the screening

region it behaves approximately as MS=r. As already
mentioned, the scalar charge depends only weakly on
the value of β, and hence, in the far region, the profile
of αψ2 is essentially the same for any value of β.3

V. NONSPHERICAL OSCILLATION OF
SPHERICAL NEUTRON STARS

Here, we explore the emission of scalar and gravitational
waves from oscillating neutron stars.4 As a zeroth-order
solution, we take the MT ¼ 1.4M⊙ neutron stars from
Sec. IV. We also perform simulations for a high-mass
neutron stars with MT ¼ 1.9M⊙ and find very similar
results to the 1.4M⊙ case. Thus, in the following, we
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FIG. 1. ϕ − 1 (left) and FðXÞ (right) as functions of the radius in isotropic coordinates for spherical neutron stars of mass,
MT ¼ 1.4M⊙. The dashed slope line in the right panel indicates that FðXÞ outside the stellar surface is approximately proportional
to r−1.6.
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FIG. 2. 1 − αψ2 as a function of the coordinate radius for
spherical neutron stars of MT ¼ 1.4M⊙. The dashed lines denote
the slope of r−1 and r−2.

2We note that this relation should be satisfied sufficiently
outside the matter source even for stationary and quasistationary
spacetime [but the powers, n and p, depend on the chosen
function of FðXÞ] and that grasping the behavior of FðXÞ plays
an important role for understanding the propagation property of
scalar waves (see Sec. V).

3We note that outside the screening region, the geometrical
profile is the same as that in the FJBD theory with a Brans-Dicke
parameter, as defined in Eq. (4), ω ¼ ð−3þ α−2s Þ=2, irrespective
of the value of β.

4We note that in scalar-tensor theory, Birkoff’s theorem is
not valid.
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present only the results for MT ¼ 1.4M⊙. All the simu-
lations are performed for β ≤ 1032, i.e., Λ ≳ 0.1 MeV.
To excite a small quadrupole oscillation we superimpose

ux ¼ σx and uy ¼ −σy; ð39Þ

where we set σ ¼ 1.0 × 103 s−1. The oscillation velocity is
at most 3% of the speed of light near the stellar surface,
and hence, the density and pressure profiles remain
close to the spherical ones. However, the quadrupole mode,
l ¼ jmj ¼ 2, of scalar and gravitational waves is still
appreciably excited, so, in the following, we pay particular
attention to this mode.
The numerical simulations are performed using a fixed-

mesh refinement code, SACRA [76], covering the radius of
spherical neutron stars by N ¼ 45 and 55 grid points in the
finest computational domain. We find that the dependence
of the numerical results on the grid resolution is very weak
in the present problem, and we always show the result for
N ¼ 55 in the following. For scalar waves we directly
analyze ϕ − 1 in the far region of r≳ λwave. For gravita-
tional waves, we extract the outgoing component of the
complex Weyl scalar (the so-called Ψ4). For more details,
see Appendix B. Our simulations are performed at longest
for 15 ms. For high values of β, we find that it is in fact not
trivial to perform a long-term simulation (with duration
longer than 10 ms) as a small numerical error often emerges
in the primitive recovery process of determining X from
Eq. (15) and in some cases leads to a pathological solution
(see Appendix A for details). However, it is still possible to
draw an important conclusion from relatively short-term
simulations as we will show. We leave developing an
implementation for a long-term simulation (with duration
of ≫10 ms) for future work.
We perform simulations for β ¼ 1, 1016, 1020, 1022, 1024,

1026, 1028, 1030, 1032, and 1036 (the corresponding Λ for
which are Λ ∼ f1.28 × 103; 12.8; 4.04; 2.27; 1.27; 0.718;
0.404; 0.227; 0.128; 4.04 × 10−2g MeV, respectively), as
well as in GR (i.e., in the absence of the scalar field or
ϕ ¼ 1). When β ¼ 1, FðXÞ ≈ 1 in the entire region, and
hence, the results are essentially the same as those in the
FJBD theory.
Figure 3 shows the evolution of the central density for

β ¼ 1, 1020, 1024, and 1028 as well as in GR. Due to the
input perturbation, the star oscillates with time not only
nonspherically but also spherically, and as a result, the
central density also varies with time. In this figure we can
see that the oscillation pattern and amplitude depend very
weakly on the value of β, although the ones with larger
screening effect (i.e., β ≥ 1024) appear to agree best with
GR. Since the oscillation pattern is approximately identical
for all the models, we may consider that the source of the
scalar and gravitational wave emission is approximately
identical in the present setting.

We indeed find that the gravitational waveforms depend
only very weakly on the value of the β parameter (see Fig. 7
in Appendix B). In particular, for β ≳ 1024, i.e., where the
screening effect to the scalar wave generation becomes
noticeable, the gravitational waveforms are in a good
agreement with those in GR (although about 10% level
disagreement is found irrespective of β values presumably
due to the numerical error). For β ¼ 1 (approximately same
as the FJBD case), the amplitude of gravitational waves is
slightly higher than those in GR, reflecting a significant
contribution of the scalar field in determining the stellar
profile.
By contrast, the amplitude of scalar waves depends

strongly on the β parameter in spite of approximately the
same emission source, although the frequency is always
identical in all cases. Figure 4 shows the quadrupole mode
of scalar waves as a function of t − r for β ¼ 1, 1016, 1020,
1024, and 1028, and Fig. 5 summarizes the wave amplitude
as a function of β1=8 (see the hollow squares). These plots
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FIG. 3. Evolution of the central density for β ¼ 1, 1020, 1024,
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with each other.
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multiplied, respectively (see Appendix B on the correction factor).
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show that, for rsc < λwave, scalar waves are emitted to the
far zone broadly in the same manner as in the FJBD case, in
which screening is absent. Interestingly, we find that for
rsc > λwave, where the screening effect plays an important
role, the amplitude of scalar waves is suppressed.5 The
reason for the suppression can be seen in the large value of
FðXÞ inside the screening radius. By rewriting Eq. (6) as

∇a∇aϕþ ð∇a lnFÞ∇aϕ ¼ 8πGα2sTF−1; ð40Þ

we can see that the factor F−1 suppresses the scalar wave
generation associated with the matter motion by T.
One point to be added is that the suppression in the wave

amplitude is not as large as the one by the F factor. For
example, for β ¼ 1028, F > 102 for r ¼ 1–20 km, while
the suppression fraction in the wave amplitude is ∼1=10.
The reason for this is that the wave amplitude, defined by
ϕ22ðr=MÞ, increases during the outward propagation inside
the screening radius, i.e., for r < rsc, by F−η (see
Appendix B for details).
As we can see in Fig. 5, the amplitude of quadrupole

scalar waves depends only weakly on β for rsc ≲ λwave=3
(i.e., β ≲ 1020), with the steep decline starting only at
rsc ∼ λwave This suggests that the suppression effect by F−1

in the wave generation and the amplification effect during
the propagation of waves in the region of F > 1 is likely to
be balanced for the quadrupole mode.

On the contrary, for the monopole we find that the steep
decline does not start at the point of rsc ¼ λwave, where the
wavelength of the monopole mode is ∼80 km, and thus,
rsc ¼ λwaveðl ¼ m ¼ 0Þ is satisfied at β ≈ 2 × 1021. The
decrease of the asymptotic amplitude is again approxi-
mately proportional to β−1=8, satisfied for a wide range of β
values, as can be seen in the filled squares of Fig. 5. This
can also be seen clearly in Fig. 6, which shows the
monopole waveforms for β ¼ 1, 1016, 1020, 1024, and
1028, extracted at r ¼ 591 km. (We should note that, in
this case, we analyze ∂tϕ00 simply because it is clearer to
see the oscillation mode.) This feature is in agreement with
the results found in Ref. [58], in which the authors analyze
the amplitude of l ¼ m ¼ 0 scalar waves emitted by the
spherical oscillation of a neutron star. Therefore, we can
conclude that while the steep decline of the amplitude is
always found irrespective of the modes for rsc > λwave, in
the case of rsc ≲ λwave, the emergence of the screening
effect on the scalar wave emission depends on the modes
considered, presumably reflecting the generation mecha-
nism (e.g., the main generation location) of each mode.
Finally, we consider the results of Ref. [59], in which the

authors explored scalar and gravitational waves from the
late inspiral phase of binary neutron stars, in the case where
λwaveð≳300 kmÞ > rsc ≈ 140 km.6 From our present analy-
sis our suspicion is that one cannot expect the screening
effect to appear in the quadrupole mode during the inspiral
in that setting. We argue that to fully understand the
screening effect on the quadrupole mode, one should
consider parameters, for which rsc > 300 km. As we
discussed above, the screening effect may appear in the
low-multipole mode even for the case of rsc < λwave, which
means one can expect to find screening in the dipole mode
even for small screening radii, as they report.
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squares) and for the monopole (l ¼ m ¼ 0) mode (filled squares).
For the monopole mode the asymptotic amplitude of ∂tϕ00rex is
plotted. The red dotted line denotes ∝ β−1=8, which indicates that
the asymptotic amplitude of scalar waves decreases approxi-
mately as r−1sc for the parameter space of rsc > λwave irrespective
of the modes considered. The black vertical dashed line denotes
the value of β, which satisfies rsc ¼ λwave for the quadrupole
mode. For the monopole mode, rsc ¼ λwave is satisfied at
β1=8 ∼ 460 in the present case.
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5Besides the amplitude dependence on β, a phase misalign-
ment among the scalar waves is found. The reasons for this are
discussed in more detail in Appendix B.

6Note that for typical binary neutron stars, the orbital period at
their innermost stable circular orbits is ∼2 ms, and thus, the
wavelength of the quadrupole mode is ≳300 km.
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VI. DISCUSSION

By analyzing an oscillating spherical neutron star, we
have confirmed that, in a scalar-tensor theory with kinetic
screening, the scalar wave emission is suppressed for a
screening radius, rsc, larger than the wavelength of the
emitted waves, λwave, irrespective of multipole modes
considered. Therefore, inside the screening radius satisfy-
ing the condition rsc > λwave, both the matter motion and
wave emission are essentially the same as those in GR.
However, for a screening radius rsc ≲ λwave, we have

found emission of quadrupole scalar waves with a large
amplitude, comparable to that in FJBD theory and addi-
tionally that the amplitude depends only weakly on rsc.
Therefore, if the analysis were to be restricted to small
values of rsc, this could have lead to the conclusion that no
screening effect is present in these theories. We argue that
to fully understand the nature of this theory it is necessary
to perform the analysis at a wide range of rsc values,
including rsc > λwave.
For the monopole mode, we have confirmed that the

screening effect appears even for the case of rsc < λwave as
was also found previously in Ref. [58]. Furthermore, we
have found that, irrespective of the modes considered, the
asymptotic scalar wave amplitude decreases roughly as r−1sc
when rsc > λwave. For ground-based gravitational wave
detectors, such as advanced LIGO and advanced Virgo,
the lower limit of the frequency in the sensitive band of
gravitational waves is about 10 Hz, and thus, the upper limit
of the observable wavelength is ≈3 × 104 km. Therefore, if
rsc > 3 × 104 km, then it would be difficult to detect
scalar-type gravitational waves due to the screening in this
kind of scalar-tensor theories. A number of previous solar
system experiments have reported no evidence for the
presence of a scalar field effect, which implies that rsc has
to be larger than the solar radius (≈7 × 105 km). Thus, the
detection of scalar waves, e.g., from neutron-star oscilla-
tions and inspiraling binary neutron stars, by the ground-
based gravitational wave detectors might be unlikely in
kinetic screening theories.7

Our analysis in this paper has focused only on scalar and
gravitational waves from oscillating neutron stars. To fully
understand the emission mechanism of scalar waves in
screened modified gravity theories, we should also perform
simulations for other systems, such as binary neutron stars
for a wide range of rsc. As we have pointed out here, the
emissivity of scalar waves is determined by the profile of
FðXÞ, and if the profile for other systems is similar to that
of single neutron stars, we can expect the conclusion to be

the same; i.e., that the scalar wave emission is suppressed
in the presence of screening with rsc > λwave irrespective
of the multipole modes. Thus, the question is what the
profile of FðXÞ is for other systems. We leave this further
investigation for subsequent work.
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APPENDIX A: 3 + 1 FORMULATION

Here we describe the 3þ 1 form of the gravitational and
scalar fields equations. By contracting Eq. (5) with nanb,
the Hamiltonian constraint is derived as

Rk
k þ K2 − KijKij

¼ 16πGϕ−1ρh þ
ω

ϕ2
½Π2 þ ðDiϕÞDiϕ�

−
2Π2

α2sϕ
2
X
∂K̂
∂X

þ 2

ϕ
ð−KΠþDiDiϕÞ; ðA1Þ

where Rk
k is the three-dimensional Ricci scalar.

And contracting Eq. (5) with naγbi gives the momentum
constraint,

DiKi
j −DjK ¼ 8πGϕ−1Jj þ

�
ω −

X
α2s

∂K̂
∂X

�
ϕ−2ΠDjϕ

þ ϕ−1ðDjΠ − Ki
jDiϕÞ; ðA2Þ

and so the evolution equation can be obtained by con-
tracting Eq. (5) with γaiγ

b
j,

∂tKij¼αRij−8πGαϕ−1
�
Sij−

1

2
γijðS−ρhÞ

�

þαð−2KikKj
kþKKijÞ−DiDjαþβkDkKij

þKikDjβ
kþKjkDiβ

k−α

�
ω−

X
α2s

∂K̂
∂X

�
ϕ−2ðDiϕÞDjϕ

−αϕ−1ðDiDjϕ−KijΠÞ−
α

2ϕ
γij□gϕ

−
α

2ϕ2
γijððDkϕÞDkϕ−Π2ÞX

α2s

∂K̂
∂X

; ðA3Þ

where Rij is the spatial Ricci tensor and Sij ≔ Tabγ
a
iγ

b
j

with S its trace.

7Note, however, that when a black hole is formed dynamically,
scalar waves of a characteristic wave shape with an appreciable
amplitude can be emitted even in the presence of the screening
effect irrespective of rsc because the nonuniform scalar field
disappears after the formation of the black hole (e.g.,
Refs. [58,86,87]).
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Equation (A3) together with the Hamiltonian constraint yields the following evolution equation for K,

ð∂t − βk∂kÞK ¼ 4πGαϕ−1ðSþ ρhÞ þ αKijKij −DiDiαþ αωϕ−2Π2 þ αϕ−1ðDiDiϕ − KΠÞ

−
αX

2α2sϕ
2

∂K̂
∂X

ððDkϕÞDkϕþ Π2Þ − 3α

2ϕ
□gϕ; ðA4Þ

and, thus, the evolution equation for Ãij¼ψ−4ðKij−Kγij=3Þ, where ψ ¼ ðdet γijÞ1=12 is the conformal factor, is written in
the form

ð∂t − βk∂kÞÃij ¼
α

ψ4

�
Rij −

1

3
γijRk

k

�
− ψ−4

�
DiDjα −

1

3
γijDkDkα

�
þ Ãik∂jβ

k þ Ãjk∂iβ
k −

2

3
Ãij∂kβ

k

þ αðKÃij − 2ÃikÃj
kÞ − 8πG

α

ψ4ϕ

�
Sij −

1

3
γijS

�
−

α

ψ4ϕ2

�
ω −

X
α2s

∂K̂
∂X

��
ðDiϕÞDjϕ −

1

3
γijðDkϕÞDkϕ

�

−
α

ψ4ϕ

�
DiDjϕ −

1

3
γijDkDkϕ − ψ4ÃijΠ

�
: ðA5Þ

The term, □gϕ, in the right-hand side of Eq. (A4) is undesirable in numerical evolution because of the presence of the
time derivative of Π. Therefore, to handle this term, we use the following expression of □gϕ:

□gϕ ¼ DkDkϕþDkα

α
Dkϕ − KΠþ na∇aΠ;

¼ DkDkϕþDkα

α
Dkϕ − KΠþ ϕ

α
ð∂t − βk∂kÞ

�
Π
ϕ

�
−
Π2

ϕ
; ðA6Þ

and redefine the evolution equation for K̄ ≔ K þ 3Π=ð2ϕÞ as

ð∂t − βk∂kÞK̄ ¼ 4πGαϕ−1ðSþ ρhÞ þ αKijKij −DiDiαþ α

�
ωþ 3

2

�
ϕ−2Π2 −

1

2
αϕ−1ðDiDiϕ − KΠÞ

−
αX

2α2sϕ
2

∂K̂
∂X

ððDkϕÞDkϕþ Π2Þ − 3

2ϕ
ðDkαÞDkϕ; ðA7Þ

which guarantees the hyperbolicity of the geometric
equations.
Equation (6) is rewritten into a set of equations, (12)

and (13), which are first order in the time derivatives. Once
ϕ and Π̂ð¼ FðXÞΠÞ are determined from these equations,
X [as well as FðXÞ and Π] are obtained from Eq. (14),
which is considered to be an algebraic equation for X [see
Eq. (15)]. For the present choice of K̂ðXÞ [and FðXÞ],
Eq. (15) has one or two or three real solutions for X. For a
small value of Π̂2, there is only one real solution. However,
for a value of Π̂2 larger than a critical value, there are more
than two real solutions. For the case that there are two real
solutions, one should be a multiple solution. In this case,
the solution satisfies not only Eq. (15) but also the
following,

dfðXÞ
dX

¼ 1 −
Π̂2

8πGα2sϕ3FðXÞ3
dF
dX

¼ 0: ðA8Þ

This solution (dfðXÞ=dX ¼ 0) has a pathology, and hence,
in its presence the computation breaks down (see below).
Therefore, for a problem in which Π̂ is initially small
everywhere [i.e., fðXÞ > 0], but later it increases signifi-
cantly leading to fðXÞ ≤ 0 at points, it is possible that the
computation breaks down.
If X is determined, then K is obtained from

K ¼ K̄ − 3Π=ð2ϕÞ. We also note that DjX, which
appears in the computation of DjF ¼ ðdF=dXÞDjX, is
calculated as

DjX ¼ −
3X
ϕ

Djϕþ 1

8πGα2sϕ3

�
ðDjDkϕÞDkϕ −

Π̂DjΠ̂
FðXÞ2

þ Π̂2

FðXÞ3
dF
dX

DjX

�
; ðA9Þ

and hence,

MASARU SHIBATA and DINA TRAYKOVA PHYS. REV. D 107, 044068 (2023)

044068-10



DjX ¼
�
−
3X
ϕ

Djϕþ 1

8πGα2sϕ3

�
ðDjDkϕÞDkϕ −

Π̂DjΠ̂
FðXÞ2

��

×

�
1 −

1

8πGα2sϕ3

Π̂2

FðXÞ3
dF
dX

�−1
: ðA10Þ

This shows that 1 − Π̂2=ð8πGα2sϕ3F3ÞðdF=dXÞ (i.e.,
df=dX) has to be nonzero in general. This implies that
if the solution of X is a multiple root of Eq. (15), a
discontinuity appears in the scalar field and the computa-
tion in general breaks down in the present formulation. In
this work, we present results for which such a pathology is
not encountered.
During the numerical simulation, we examine the vio-

lation of the Hamiltonian constraint by monitoring the
following quantity:

hHi ¼ 1

M�

Z jHjP
l jHlj

ρ�d3x; ðA11Þ

where H is defined by the left-hand side minus the right-
hand side of Eq. (A1), Hl denotes each individual term in
Eq. (A1) so thatH ¼ P

l Hl, andM� is the rest mass of the
system defined by

M� ¼
Z

ρ�d3x: ðA12Þ

We find that hHi remains to be always of order 10−4 during
the simulation time in our present grid resolution if the
simulation is successful; no indication of the growth of
the constraint violation is found. For higher values of β, the
magnitude of hHi is larger; e.g., for β ¼ 1032 it is ≲10−3.
For β > 1032 with which stable evolution is not successful,
it can quickly grow when the code crashes. This suggests
that, for such cases, higher grid resolution might be
necessary for the successful simulation.

APPENDIX B: EXTRACTION METHOD

Here we analyze multipole components of scalar and
gravitational waves. For the scalar waves, we define

ϕlm ¼ Re

�I
d cos θdφðϕ − 1ÞYlmðθ;φÞ

�
; ðB1Þ

where Ylm is the spherical harmonics, and pay attention to
the l ¼ m ¼ 2 mode. Gravitational waveforms are ana-
lyzed by first extracting the outgoing component of the
complex Weyl scalar and by decomposed into multipole
modes [76]. Since the waves are approximately mono-
chromatic, the gravitational wave amplitude, hlm, may be
calculated from each multipole mode of the complex Weyl
scalar, Ψlm, by

hlm ¼ 2ω−2
w jΨlmj; ðB2Þ

where ωw is the angular velocity of gravitational waves
and in the present case GMωw ≈ 0.087 with M ¼ 1.4M⊙.
Thus, hlmðr=MÞ ≈ 260jΨlmjðrMÞ.
Figure 7 plots the quadrupole waveforms of gravitational

and scalar waves for β ¼ 1, 1016, 1020, 1024, and 1028, as
well as in GR. The amplitude of Ψ22ðrexMÞ is ∼4 × 10−5

irrespective of the value of β. For scalar waves, if the
condition, rsc ≲ λwave, is satisfied, the asymptotic amplitude
is ϕ22ðrex=MÞ ¼ ð2–3Þ × 10−5. The order of magnitude for
this agrees approximately with the expected value calcu-
lated by ðMS=MÞðv=cÞ2, where v ∼ σR ∼ c=30 with R the
stellar radius and MS=M ∼ α2s ¼ 10−2. In addition, the
waveforms with different extraction radii as functions of
the retarded time, t − rex, approximately align with
each other for the case where rsc ≲ λwave. This behavior
is always found for gravitational waves irrespective of the
screening effect.
By contrast, for rsc ≳ λwave, the amplitude defined by

ϕ22ðrex=MÞ increases with the extraction radius whenever
rex ≲ rsc. Moreover, the waveforms with different extrac-
tion radii as functions of the retarded time, t − rex, do not
overlap for this case, because of the presence of a large
factor of FðXÞ ≫ 1 in the screening region (see the scalar
waveforms for β ¼ 1024 and 1028). To determine the
asymptotic amplitude of scalar waves, we have to extract
them in a far zone, in which FðXÞ ≈ 1 or we perform an
extrapolation. In the present work, we consider the latter
possibility for high values of β ≥ 1028.
Since FðXÞ decreases approximately proportional to r−n

with n ≈ 1.6 outside the neutron stars (see Fig. 1), it is
possible to predict the behavior of the amplitude for λwave ≲
r≲ rsc using the following method. Neglecting the curva-
ture effect (i.e., assuming the flat spacetime), approximat-
ing F as a fixed background and setting T ¼ 0, the equation
of ϕlm can be written as

�
−∂2t þ ∂

2
r þ

2 − n
r

∂r −
lðlþ 1Þ

r2

�
ϕlm ¼ 0: ðB3Þ

In addition, we assume that ϕlm ∝ expðiωswtÞ. The general
solution of Eq. (B3) is written in terms of the outgoing
component of the modified Bessel function, Zν,

ϕlm ¼ rðn−1Þ=2ZνðωswrÞ expðiωswtÞ; ðB4Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ þ ðn − 1Þ2=4

p
. Since the amplitude

of Zν is proportional to r−1=2 for ωswr ≫ 1 irrespective
of ν, the wave amplitude of ϕlm is proportional to rn=2−1.
Thus for n ¼ 1.6, ϕlm ∝ r−0.2, which implies that
ϕlmðrex=MÞ ∝ r0.8ex ∝ F−1=2; i.e., the amplitude defined
by ϕlmðrex=MÞ increases with radius. For β ¼ 1028,

PROPERTIES OF SCALAR WAVE EMISSION IN A SCALAR- … PHYS. REV. D 107, 044068 (2023)

044068-11



we find that ϕ22ðrex=MÞ is approximately proportional to
FðXÞ−0.6 of r ¼ rex because for this case, the screening
region with r > λwave is rather narrow. However, for
β ¼ 1030 and β ¼ 1032, we confirm that the relation of
ϕ22ðrex=MÞ ∝ F−1=2 is satisfied well. Thus, for determining

the asymptotic amplitude in these cases, we utilize this
approximate relation. In Fig. 8, we plot ϕlmðrex=MÞFη as a
function of the retarded time with η ¼ 0.6 and 0.5 for
β ¼ 1028 and 1032, respectively, showing that this extraction
method works well.
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FIG. 7. Gravitational and scalar waveforms of the (l ¼ m ¼ 2) quadrupole mode as functions of the retarded time, t − rex, in GR
(upper left), for β ¼ 1 (upper right), 1016 (middle left), 1020 (middle right), 1024 (lower left), and 1028 (lower right). For gravitational
waves, we plot the real part of the complex Weyl scalar, Ψ22. For each panel, the waveforms are plotted with several extraction radius,
rex ≈ 236 (magenta), 354 (green), 472 (blue), 591 (orange), and 709 km (yellow). (For the upper and middle panels as well as for
gravitational waves, all the curves approximately overlap with each other.) Note that the high amplitude waves found at t − r ≈ 0 are the
junk radiation numerically induced during the relaxation of the given initial data to those fitted to the computational setting. Note that the
vertical scale is the same for all the panels.
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The analysis performed here also gives the reason that a
phase misalignment is found among the scalar waves of
different values of β plotted in Fig. 4 and among those
with the different extraction radii for β ≥ 1024 plotted
in Fig. 7. As described in Eq. (B4), the wave phase is
determined by the functional form of Zν. Thus during the
propagation of scalar waves in a region of F > 1, the wave
phase is changed and this is reflected in the asymptotic
wave phase.
We note that not only forMT ¼ 1.4M⊙ but also for other

values of MT we find that F ∝ r−1.6 is approximately
satisfied outside the neutron star with r < rsc. Thus, the
analysis shown here is likely to be valid for any neutron
star.
The above analysis also shows that for n < 0, the

amplitude defined by ϕlmðrex=MÞ decreases with the
radius. Thus, if a wave is generated in r≲ 8 km, the wave
amplitude is suppressed, and hence, the wave amplitude
should depend strongly on the wave generation region.
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