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We present our new general relativistic Monte Carlo (MC)-based neutrino radiation hydrodynamics
code designed to solve axisymmetric systems with several improvements. The main improvements are as
follows: (i) the development of an extended version of the implicit MC method for multispecies radiation
fields; (ii) modeling of neutrino pair process rates based on a new numerically efficient and
asymptotically correct fitting function for the kernel function; (iii) the implementation of new numerical
limiters on the radiation-matter interaction to ensure a stable and physically correct evolution of the
system. We apply our code to a black hole (BH)-torus system with a BH mass of 3M⊙, BH dimensionless
spin of 0.8, and a torus mass of 0.1M⊙, which mimics a postmerger remnant of a binary neutron star
merger in the case that the massive neutron star collapses to a BH within a short timescale (∼10 ms). We
follow the evolution of the BH-torus system up to more than 1 s with our MC-based radiation viscous-
hydrodynamics code that dynamically takes into account nonthermal pair annihilation. We find that the
system evolution and the various key quantities, such as neutrino luminosity, ejecta mass, torus Ye, and
pair annihilation luminosity, are broadly in agreement with the results of the previous studies. We also
find that the νeν̄e pair annihilation can launch a relativistic outflow for a timescale of ∼0.1 s, and it can be
energetic enough to explain some of short-hard gamma-ray bursts and the precursors. Finally,
we calculate the indicators of the fast flavor instability directly from the obtained neutrino distribu-
tion functions, which indicate that the instability can occur particularly near the equatorial region of
the torus.

DOI: 10.1103/PhysRevD.111.023015

I. INTRODUCTION

Merger of neutron star (NS) binaries is one of the most
interesting scientific targets in multimessenger astrophys-
ics. A NS binary gradually decreases its orbital separation
and eventually merges by emitting gravitational waves
(GWs). GWs emitted during the orbital evolution and at the
time of the merger are the main targets of ground-based
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GW detectors [1–3]. At the onset of the merger, a fraction
of the neutron-rich matter is ejected by tidal disruption and
collisional shock heating [e.g., [4–6] ]. After the binary
merger, a massive NS or black hole (BH) surrounded by a
strongly magnetized hot and dense accretion torus is
formed [7,8], and the further outflows can be launched
by magnetic pressure and tension, viscous heating due to
magnetohydrodynamic turbulence, and neutrino irradiation
[e.g., [9–39] ]. These outflows will be the source of various
high-energy electromagnetic transients, such as gamma-ray
bursts [40–42], kilonovae [43–47], and synchrotron
flares [48–51]. In the neutron-rich outflows, a suitable
condition can be realized for the r-process nucleosynthesis
of heavy elements to proceed [52–55]. Hence, a merger of
NSs is considered to be one of the important production
sites for the about half of the elements heavier than iron in
the universe [52–55]. The simultaneous detection of GWs
and EM signals from NS binaries, of which first detection is
indeed achieved in GW170817 [56,57] and more detections
are expected to be achieved in the next few years [58–61],
will surely give a great opportunity to understand these
important astrophysical phenomena.
Weak interactions and neutrino radiative transfer play an

important role in determining the postmerger dynamics.
They determine the dynamics and thermodynamic proper-
ties of the merger remnants, the postmerger environment,
and the abundance of elements synthesized in the ejecta.
[e.g., [16,19,24–26,34,45,62–72] ]. Neutrino-antineutrino
pair annihilation could also be the important mechanism for
the system to launch a jet powerful enough to explain short-
hard gamma-ray bursts [73,74]. To maximize the scientific
return from the observed signals, a quantitative prediction
of the merger outcome is crucial. Hence, accurately solving
neutrino radiation is a task for this purpose. However,
solving radiative transfer is for many cases computationally
expensive due to its large dimensionality of the phase space
dependence; seven dimensions which come from time, 3
real-space dimensions, and 3 momentum-space dimen-
sions. Moreover, the physical timescale of the local
radiation-matter coupling can often be much shorter than
the dynamical timescale of the system. This fact also
requires the implementation of some complicated schemes,
such as implicit solvers, to solve the system numerically in
a feasible computational time.
To overcome the computational difficulties, various

approximation methods have been proposed. One of the
most successful approximation methods among them is
the moment scheme. In a moment scheme, two lowest
moments of radiation in the momentum space are solved as
dynamical variables with an approximate closure relation to
higher moments [75,76]. In the context of relativistic
problems, many numerical codes are developed employing
moment schemes sometimes with a combination of the
leakage algorithm, and enabled to quantitatively under-
stand the postmerger dynamics and outcomes consistently

taking neutrino radiative transfer effects into account
[36,64–66,77–86]. However, the moment schemes require
an auxiliary closure relation for the higher moments to
derive the system equations in a closed form. For the
limited accuracy of the closure relation models [87], the
moment schemes do not necessarily provide a solution
which converges to the correct solution of the full radiation-
transfer equations (but see [88,89] for the improved method
for modeling the closure relation). It should also be noted
that the moment schemes employed for NS merger sim-
ulations are often energy-integrated, and thus, the infor-
mation of energy distribution is lost in these simulations
(see Refs. [90–93] for multienergy moment schemes).
Therefore, it is not guaranteed that the results derived
from moment schemes are always quantitatively accurate.
The recent significant progress of computer resources and

numerical techniques have made it possible to directly solve
radiation-transfer equations by the full discretization of a
radiation field [e.g., [94–99] ]. However, the size and
resolution of the problems that can be solved are still limited
for such approaches. As an alternative approach for directly
solving the radiation-transfer equation, recently, radiation
hydrodynamics codes based on the Monte Carlo (MC)
scheme are developed by several groups [67,68,100–106]
(see also [107,108]). The MC-based methods have the
advantage that the solution obtained by the MC scheme
manifestly converges to the solution of radiative transfer
equation in the limit of large packet numbers. Moreover, the
energy dependence and the complicated angular dependence
as well as the relativistic effects in radiative transfer can be
incorporated in a straightforward manner. While there are
several drawbacks in the MC approach, such as the slow
convergence of the statistical error of the MC packets (the
“MCshot noise”), the study based on theMCscheme and the
comparison with the previous study will provide important
insights for understanding the possible systematic errors in
the results derived by the approximated radiative transfer
schemes.
In fact, quantitative differences between the results

from the MC and moment schemes are pointed out in
Refs. [68,109,110]. While the neutrino luminosity obtained
by moment schemes agrees with that by a MC scheme
within ≈10% − 30%, nearly 50% disagreement in the
angular dependence of the neutrino flux is present, and
this could lead the errors in the neutrino-antineutrino pair
annihilation rate in a NS merger simulation by a factor of
2–3. However, most of the studies based on MC schemes
follow the evolution of the system only for a short timescale
(∼10 ms) (but see [39] for a 1.2 s BH-torus simulation with
a MC scheme), and the impact of the radiative transfer
scheme on the dynamics and outcomes from the merger
remnant, for which the evolution of the timescale of the
system is ≳1 s, is not comprehended yet.
The determination of the neutrino distribution functions

by directly solving the radiative transfer equation also can
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contribute to understanding the possible flavor conversion
of neutrinos. In particular, it is pointed out that the neutrino
fast flavor instability (FFI) can take place ubiquitously in
the postmerger system and significantly modify the result-
ing composition of the ejected matter [111,112]. Since
the FFI is due to quantum effects, solving the quantum
kinematic equation is required for the detailed analysis,
while directly solving the FFI is also challenging for its
extremely short timescale (∼1 ns, [113]; see also [114,115]
for the method based on MC and moment schemes based
on quantum kinematic equations). However, linear stability
analysis has shown that solving neutrino distribution
functions in the classical level still can be useful to indicate
the possible location in which the FFI can occur (see
also [112]).
In this paper, we present our new general relativistic MC-

based neutrino radiation viscous-hydrodynamics code
designed to solve axisymmetric systems. In particular,
we present several improvements to the code from previous
studies. We then apply our code to a BH-torus system with
a BH mass of 3M⊙, BH dimensionless spin of 0.8, and a
torus mass of 0.1M⊙, which mimics a postmerger remnant
of a binary NS merger in the case that the massive NS
collapses to a BH in a short timescale (∼10 ms). We follow
the evolution of the BH torus system up to more than 1 s.
We note that this is the first study to perform radiation
viscous-hydrodynamics simulations for BH-torus sys-
tems dynamically taking into account nonthermal pair
annihilation by employing an MC-based scheme (see,
e.g., [90,91,116] for the study based on moment schemes
dynamically taking into account the nonthermal pair
process). We find that the system evolution and the
various key quantities, such as neutrino luminosity, ejecta
mass, torus Ye, and pair annihilation luminosity, are
broadly in agreement with the results of the previous
studies in which the leakage or moment schemes are
employed [e.g., [24,69] ] (and also the works which employ
MC schemes [23,35,39,107,117,118]). We also find that
νeν̄e pair annihilation can launch a relativistic outflow for a
timescale of ∼0.1 s, and it can be energetic enough to
explain some of short gamma-ray bursts [41] and the
precursors [119,120]. Finally, we demonstrate that our
code enables to directly calculate the indicators of FFI
introduced in [113]. We show a strong indication that FFI
can take place particularly around the equatorial region of
the torus, which is broadly in agreement with the previous
study [118].
This paper is organized as follows: In Sec. II, we

describe the formulation and methods employed in our
code. In Sec. III, we present our model setup of a BH-torus
system studied in this paper. In Sec. IV, we describe the
definitions of several key quantities used for presenting the
results. Section V presents the results of the simulations for
a BH-torus system. Finally, Sec. VI is devoted to a
summary of this paper. Throughout this paper, c and G

denote the speed of light and gravitational constant,
respectively, and the units of c ¼ G ¼ 1 are employed
unless otherwise stated.

II. FORMULATION AND METHODS

In this section, we describe the method implemented in
our MC-based neutrino radiation viscous hydrodynamics
code. Before presenting the details of the formulation and
methods, we summarize the important assumptions and
simplifications imposed in our code.
First, the axisymmetry and equatorial plane symmetry

are imposed in our code to reduce the computational cost.
This is motivated by the fact that, the merger remnant
typically relaxes to a nearly axisymmetric structure within
the dynamical timescale (∼10 ms). We note that, however,
the nonaxisymmetric structure in the remnant torus and fall
back tail can remain even for longer timescale and may play
an important role in the dynamics particularly for unequal-
binaries (see also [121,122] in the context of BH-NS
binaries). Hence, we should note that such effects are
not taken into account in our simulations.
Second, a fixed space-timemetric is employed for solving

viscous-hydrodynamics and radiative transfer in this paper.
This is a reasonable simplification for a BH-torus system
studied in this paper, of which torus mass is much smaller
(0.1M⊙) than the BH mass (3M⊙). This simplification
dramatically reduces the computational cost for the system
with a BH because it requires a large resolution for the stable
dynamical evolution [24,25]. However, we should note that
the long-term evolution of the BH, such as the increase in the
BH mass and spin, may also have certain quantitative
influences on the results, which are not taken into account
by the space-time metric to be fixed.
The third is the simplification in the microphysics. In this

paper, as a first step toward developing our neutrino radiation
hydrodynamics code, the effect of the finite electron mass is
consistently neglected for the equation of state (EOS) and
neutrino interaction rates. This allows us to describe the EOS
and neutrino interaction rates with simple analytical expres-
sions and to focusmore on checking that thematter-radiation
interaction is correctly solved. This simplification is also
qualitatively reasonable in the BH-torus system studied in
this paper since the typical matter temperature is above
1 MeV, although this simplification may cause some quan-
titative differences in the results (see Sec.V).We note that the
mass difference between proton and neutron, and binding
energy of α particles, which have the same order of
magnitude with the electron mass, are taken into account
because it is important to realize the similar configuration of
the initial data for BH-torus simulations as in Ref. [24].

A. Viscous hydrodynamics

In a strongly magnetized hot and dense accretion torus
formed after NS mergers, angular momentum transport is
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likely to be induced effectively by a magnetohydrodynam-
ics process [11]. In this work, we approximately describe
this process by viscous hydrodynamics following the
formulation of [123]. The basic equations for the viscous
hydrodynamics are formulated in the framework of the
3þ 1 decomposition of the space-time. In the 3þ 1
formulation, the metric tensor gμν is decomposed as

ds2 ¼ gμνdxμdxν

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where μ and ν denote the space-time indices, i and j the
spatial indices, α, βi, and γij the lapse function, shift vector,
and spatial metric, respectively. In this work we employ the
fixed background metric of the rotating BH described in the
Kerr-Schild coordinates.
Following [123], the energy-momentum tensor of a

viscous fluid is written as

Tμν
fl ¼ ρhuμuμ þ Pgμν − ρhντ0μν; ð2Þ

where ρ, h, uμ, P, τ0μν, and ν denote the baryon mass
density, specific enthalpy, four-velocity, pressure, stress
tensor, and shear viscous coefficient, respectively. The
equations of energy-momentum conservation and the con-
tinuity equation are given by

γνi∇μT
μν
fl ¼ γνiGν ð3Þ

nν∇μT
μν
fl ¼ nνGν ð4Þ

∇μðρuμÞ ¼ 0; ð5Þ

with the covariant derivative, ∇μ. Here, nν ¼ −α∇νt,
γμν ¼ gμν þ nμnν, and Gμ denotes the radiation four-force
density.
In presence of the timelike Killing vector, tμ ¼ αnμ þ βμ,

instead of solving the energy equation of Eq. (4), we solve
the conservation equation for the energy measured by the
asymptotic observer given by

∇μT
μ
fl;t ¼

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Tμ
fl;tÞ ¼ Gt; ð6Þ

where g is the determinant of gμν.
The time evolution of the viscous tensor is given by

solving [123]

Luτμν ¼ −ζτ0μν; ð7Þ

where hμν ¼ gμν þ uμuν, τμν ¼ τ0μν − ζhμν, Lu denotes the
Lie derivative with respect to uμ, and ζ denotes a nonzero
constant which describes the timescale for the viscous
tensor to relax to the local shear tensor.

During our calculation, we find that the component
values of τμν sometimes accidentally become very large in
the vicinity of the event horizon, and cause numerical
instability in the simulation. To avoid the numerical
instability caused by the unphysical increase of τμν, we
modify the evolution equation of the viscous tensor,
Eq. (7), by introducing a limiter term:

Luτμν ¼ −ζτ0μν −max ðjτ0j − τ0max; 0Þτ0μν: ð8Þ

Here, jτ0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ0;μντ0μν

q
and τ0max denotes a constant param-

eter. After each step of the time evolution, we also
normalize τ0μν so that jτ0j is smaller than τ0max (see [124]
for the similar prescription). By these prescriptions, we find
that the simulation becomes numerically stable by keeping
the component values of τ0μν to be always smaller than τ0max,
while the evolution of τ0μν with jτ0j ≤ τ0max kept the same. In
the present BH-torus simulations in this work, we set
τ0max ¼ 3=MBH, of which value is much larger than the
physical value of the viscous tensor.
The electron fraction (Ye) evolution is given by

∇μðρYeuμÞ ¼ Λe; ð9Þ

with Λe being the electron number change rate density due
to the matter-radiation interaction. By numerically solving
Eq. (9) explicitly, the value of Ye sometimes goes out from
the proper range ([0, 1]) particularly in the optically thick
region. To prevent this problem, we introduce a new
variable Yres

e and solve the following equations, which
are equivalent to solving Eq. (9) in the limit of infinitesi-
mally small value of τres

∇μðρYres
e uμÞ ¼ Λe −

ρYres
e

τres
; ð10Þ

∇μðρYeuμÞ ¼
ρYres

e

τres
: ð11Þ

Here τres ¼ max ðjYres
e j=ΔY tol

e ; 1ÞΔt. We also modify the
values of Ye and Yres

e by

Ye → min ½max ðYe; 0Þ; 1�;
Yres
e → Yres

e þ Ye −min ½max ðYe; 0Þ; 1�; ð12Þ

at the time that the Ye value leaves the range of [0, 1]. By
this prescription, the change in the value of Ye in each time
step will be limited within ∼ΔY tol

e , and furthermore, the
total lepton number of the system (including that in stored
in Yres

e ) is guaranteed to be conserved. In this study, we
employ ΔY tol

e ¼ 0.1. We note that this prescription is
justified in our simulations because the dynamical time-
scale of the system is much longer than the time interval of
the numerical evolution. In fact, the mass averaged value of
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Yres
e is found to be smaller than 10−4 for the present

BH-torus simulations.
In our study, we impose the axisymmetry and equatorial

symmetry to the system. Equations (3), (5), (6), (8), (11),
and (10) are solved in the cylindrical coordinate system by
employing a Kurganov-Tadmor scheme [125] with a piece-
wise parabolic reconstruction for the quantities of cell
interfaces and the minmod filter for the flux-limiter. The
primitive recovery procedure is done by employing the
method of Ref. [126] but with a small modification to take
the viscous terms into account.

B. Radiative transfer

In this study, we numerically solve neutrino radiation
fields by a MC scheme essentially in the same way as
described in [127]. In the MC scheme, neutrino radiation
fields are described by the sets of particles (which we refer
to as MC packets) of which each represents the set of
neutrinos with certain energy and momentum. Each MC
packet is created following the local deposition rate and
propagates along the geodesic during the time evolution. At
the same time, MC packets probabilistically experience the
change in the energy-momentum and neutrino numbers or
are removed from the system following the interaction
cross section to the matter field. The radiative-feedback to
the matter field is determined by locally summing up the
energy-momentum and neutrino number changes of the
MC packets in each hydrodynamics cell. Our code employs
a higher-order scheme introduced in [127], by which the
2nd order convergence both in time and space is realized in
the limit of large MC packets.
The number of MC packets created in each time step in

each hydrodynamics cell is determined in the same way as
in the previous study: the number of the created MC
packets is tuned so that, for each neutrino species, the fluid
rest-frame radiation energy in the optically thick cell is
resolved by a desired target number of MC packets, Ntrg,
(for the case that the continuous absorption method is
turned off [127]) in thermal equilibrium. To reduce the MC
shot-noise (statistical error), we also employ the continuous
absorption method with the threshold parameter of rabs
(see [127] for details). Note that, with the continuous
absorption method, the fluid rest-frame radiation energy in
the optically thick cell is typically resolved byNtrg=rabs MC
packets.
To suppress the number of MC packets which are

energetically unimportant, we employ the numerical pre-
scription of “residual packets” introduced in our previous
paper [127]. In this prescription, MC packets are created
with a flag of “the residual packet” in the cell where only a
small number of MC packets are created (≤1). During the
evolution of a radiation field, the residual packets are
evolved in the same way as for the normal packets, but at
the end of the evolution of the radiation field, the residual
packets are removed from the computation. The total

laboratory-frame energy, momentum, and neutrino number
of the removed MC packets are recorded for each cell in
which the packets were located. At the beginning of the
next radiation-field evolution, 2 residual packets are re-
created in the center of each cell so that their total
laboratory-frame energy, momentum, and neutrino number
agree with those recorded in the last step. This allows us to
avoid increasing too many low-energy MC packets, while
at the same time to ensure total energy-momentum and
lepton-number conservation, which can be important to
follow the long-term evolution of the system quantitatively.
This prescription helps the total MC packets to be reduced
by a factor of ≈3 in the present BH-torus simulations.
One drawback of this prescription is that the distribution

functions may be slightly less accurately derived. This is
because, while the energy-momentum and lepton-number
are conserved, the information of the detailed energy and
angular distribution are lost during the removal and
recreation of the residual MC packets. In fact, the MC
packets with the residual flag tend to create small bumps in
the distribution functions at the average energy determined
by the total energy and neutrino number recorded in the end
of each evolution step (see Fig. 8). Nevertheless, the
radiation energy of MC packets with residual-packet flag
is always less than ≈10% compared to the total radiation
energy and MC packets with the residual flag are more
located in optically thin region. We also checked that the
results of a BH-torus simulation are essentially unchanged
at least up to ≈0.1 s regardless of whether the prescription
is used or not. For example, the differences in the mass
averaged Ye value with/without this prescription is found to
be smaller than ∼0.1%. Hence, we consider that the effect
of this prescription to the dynamics of the system is minor.
To stably solve the region in which the emission/

absorption timescales are much smaller than the dynamical
timescale of the system, we employ the so-called the
implicit MC technique [128]. We employ essentially the
same method as that introduced in [127] but we generalize
it for the multispecies radiation fields (see Appendix A for
details). In the implicit MC method, the absorption rate,
ανi;abs, scattering rate, σνi;sct, and emissivity, jνi;ems, of the
neutrino species, νi ¼ ðνe; ν̄e; νxÞ, are modified as

ανi;abs → hgiανi;abs
σνi;sct → σνi;sct þ ð1 − hgiÞανi;abs
jνi;ems → gνi jνi;ems: ð13Þ

Here, gνi is the Fleck-Cummings factor for the neutrino
species, νi, and hgi is the emissivity average of gνi given by
ðPνi

gνi jνi;emsÞ=ð
P

νi
jνi;emsÞ. In this study gνi is given by

gνi ¼ min

�
1

hαabsiνið1þ βÞΔt0 ; 1
�
; ð14Þ
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where Δt0 is the time interval of the evolution measured in
the comoving frame, hαabsiνi and β denote the Planck-mean
absorption rate of the neutrino species, νi, and β ¼
∂uth=∂ufljρ;Ye

, respectively, with uth and ufl being the total
energy density of neutrino radiation fields in the thermal
equilibrium and internal energy density of the matter field,
respectively. By this prescription, the timescale of emission
and absorption are artificially elongated so that the energy
and momentum equations are solved numerically stably.
Unfortunately, we have to confess that the implicit MC

method currently employed is still not always sufficient to
guarantee the numerically stability. The reason is that only
the energy equation is implicitly solved in the implicit MC
method. Hence, the timescale of the matter-radiation
interaction in the electron fraction evolution sometimes
becomes much smaller than the dynamical timescale even if
the implicit MCmethod is applied. For this purpose we also
employ a prescription to limit the radiative feedback, which
is described in Sec. II E 4.

C. Equation of state

This subsection describes the EOS which we employ in
this paper. Note that we recover c in this subsection to
clarify the physical dimension.
Following [129], we assume that the EOS is determined

by the contributions of relativistic particles composed of
electrons and positrons, nonrelativistic particles composed
of free protons, free neutrons, and α-particles, and photons,
respectively. Then, the pressure is written as

P ¼ Pe þ Pion þ Pγ; ð15Þ

where Pe, Pion, and Pγ denote the pressure of relativistic
particles composed of electrons and positrons, nonrelativ-
istic particles composed of free protons, free neutrons, and
α-particles, and photons, respectively. For simplicity, we
consistently set the electron mass me to be 0 under the
assumption that the correction from the finite electron mass
is negligible for sufficiently high temperature (kBT≫mec2

where kB is the Boltzmann constant and T the matter
temperature). We note that this assumption is not satisfied
after ≳0.5 s for the models studied in this work (see Figs. 3
and 4). Hence, our treatment of the EOS would be less
accurate after that, and we leave the improvement of the
EOS as a future work.
Under the assumption of me ¼ 0, the pressure of

relativistic electrons and positrons is written as

Pe ¼
1

12π2ðℏcÞ3 ðkBTÞ
4

�
η4e þ 2π2η2e þ

7π4

15

�
; ð16Þ

where ℏ is the reduced Planck constant and ηe is the
degeneracy parameter of electron, which is determined by
solving

ρYe

mu
¼ 1

3π2ðℏcÞ3 ðkBTÞ
3ðη3e þ π2ηeÞ; ð17Þ

for given baryon mass density, ρ, temperature, T, and
electron fraction, Ye.
Following previous studies (e.g., [129]) the pressure of

nonrelativistic ions is given by

Pion ¼
ρkBT
mu

1þ 3Xnuc

4
; ð18Þ

where Xnuc denotes the free nucleon fraction. Xnuc is
determined by solving the Saha’s equation for free protons,
free neutrons, and α-particles under the assumption of
nuclear statistical equilibrium (NSE).
Finally, the pressure of photons is given by

Pγ ¼
π2

45ðℏcÞ3 ðkBTÞ
4: ð19Þ

The total specific internal energy is given by

ϵ ¼ ϵe þ ϵion þ ϵγ;

ϵe ¼ 3
Pe

ρ
; ϵion ¼

3

2

Pion

ρ
; ϵγ ¼ 3

Pγ

ρ
; ð20Þ

with ϵe, ϵion, and ϵγ denote the contribution from the
relativistic particles composed of electrons and positrons,
nonrelativistic particle composed of free protons, free
neutrons, and α-particles, and photons, respectively.
The total specific enthalpy is given by

h ¼ c2 þ δþ ϵþ P
ρ
; ð21Þ

where δ denotes the averaged specific binding energy of
nonrelativistic particles. δ is given as a function of Xnuc and
Ye by

δ

c2
¼ mpnp þmnnn þmαnα

munb
− 1

¼ 1

mu
½ðmp þmn − 2muÞ þ ðmp −mnÞð2Ye − 1Þ

þ ðmα −muÞð1 − XnucÞ�; ð22Þ

where np, nn, and nα denote the number densities, mu, mp,
mn, and mα denote the masses of the atomic unit, free
protons, free neutrons, and α-particles, respectively.

D. Viscous parameters

In this paper, we model the viscous coefficient by the so-
called α-viscosity description [130]. Specifically, we set the
viscous coefficient to be ν ¼ αviscsHvis following [24].
Here, αvis, Hvis, and cs denote the dimensionless α-viscous
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parameter, a scale height, and the sound speed, respectively.
We vary αvis from 0.05 to 0.15, and Hvis and ζ are set to be
2MBH and ≈1=MBH, respectively, following the previous
study [24].

E. Neutrino processes

In this subsection, we describe our setups of neutrino
processes considered in this work. The expressions for the
interaction rates are taken from [131–133]. Note that we
again recover c in this subsection. In the present work, we
consider electron/positron captures by free protons/neu-
trons and electron-positron pair annihilation for neutrino
emission. For absorption processes, electron–type neutrino/
antineutrino absorption by free protons/neutrons and neu-
trino/antineutrino pair annihilation are considered. For
scattering process, elastic scattering by free protons and
neutrons is considered. Consistently with the EOS, for
simplicity, we set the electron mass me to be 0 under the
assumption that the correction from the finite electron
mass is negligible for sufficiently high temperature
(kBT ≫ mec2). As we mentioned in the previous subsec-
tion, this assumption is not satisfied after ≳0.5 s for the
models studied in this work (see Figs. 3 and 4). While we
expect that the effect of neglecting the electron mass could
not be significant since the weak interaction timescale is
nevertheless much longer than the simulation timescale for
the matter temperature less than 1 MeV (see [24,69]), the
effect may be important for the quantitative prediction, and
we leave the improvement as a future task.

1. Electron/positron captures

The neutrino/antineutrino emissivity of electron/positron
captures without the Fermi-blocking correction, jec and jpc,
respectively, are given by [131]

jecðωνeÞ ¼
G2

Fc
πðℏcÞ4 ðg

2
V þ 3g2AÞnpWM̄ðωνeÞ

× ðωνe þQÞ2 1

h3
Feðωνe þQÞ; ð23Þ

jpcðων̄eÞ¼
G2

Fc
πðℏcÞ4 ðg

2
V þ3g2AÞnnWMðων̄eÞ

× ðων̄e −QÞ2 1

h3
F̄eðων̄e −QÞΘðων̄e −QÞ; ð24Þ

where GF, gV , gA, and Q are the Fermi coupling constant,
vector coupling strength, axial vector coupling strength,
and the rest-mass energy difference between a free neutron
and proton, respectively, and ωνe and ων̄e are the electron-
neutrino and electron-antineutrino energies in the rest-
frame of the fluid motion, respectively. Θ denotes the
Heaviside step function. WM̄ðωνeÞ and WMðων̄eÞ are the
corrections for weak magnetism and recoil introduced

in [133]. Fe and F̄e are the normalized Dirac distribution
functions given by

FeðωνeÞ ¼
1

e
ωνe
kBT−ηe þ 1

; F̄eðω̄νeÞ ¼
1

e
ω̄νe
kBTþηe þ 1

; ð25Þ

where ηe is the degeneracy parameter of electrons.
Absorption rates of electron neutrinos and electron

antineutrinos by free protons and neutrons, αabs;νe and
αabs;ν̄e , respectively, are obtained from the neutrino/anti-
neutrino emissivity introduced above by using the
Kirchhoff’s law. Employing the so-called “stimulated
absorption” prescription [132] to take the Fermi-blocking
effect into account, the effective absorption rates, α�abs;νe and
α�abs;ν̄e are given by

α�abs;νe ¼
h3jec
Fβ
νe

; α�abs;ν̄e ¼
h3jpc
F̄β
νe

; ð26Þ

where Fβ
νe and F̄β

νe are the normalized Dirac distribution
functions of neutrinos/antineutrinos in the β-equilibrium
state given by

Fβ
νeðωÞ¼

1

e
ωνe
kBT−η

β
νe þ1

; F̄β
νeðω̄νeÞ¼

1

e
ω̄νe
kBTþηβνe þ1

; ð27Þ

with ηβνe ¼ ηe þ ðμp − μnÞ=kBT the degeneracy parameter
of electron-neutrinos in the β-equilibrium. Here, μp and μn
are the chemical potentials of free proton and neutron,
respectively.

2. Neutrino/antineutrino pair process

In the following, we describe how we handle neutrino-
antineutrino pair process in our simulation. In particular, we
consider neutrino-antineutrino pair annihilation with taking
the effect of the nonthermal distributions into account. We
explain the method by focusing on the interaction rates for
neutrinos; those for antineutrinos can be obtained easily by
swapping the roles of neutrinos and antineutrinos. The
absorption rate of neutrino/antineutrino annihilation proc-
ess for neutrinos is given by [131],

αpairðQÞ ¼ c
Z

d3Q̄f̄ðQ̄ÞRannðω; ω̄; μÞ; ð28Þ

where Q and Q̄ represent the spatial momentum of the
neutrino and antineutrino, respectively. ω, ω̄, and μ are
the neutrino energy, antineutrino energy, and cosine of the
angle between the spatial momentum of the neutrino and
antineutrino, and f̄ is the distribution function of antineu-
trinos. Note that Q, Q̄, ω, ω̄, and μ are defined in the fluid
rest-frame. Rann denotes the interaction kernel of neutrino/
antineutrino pair annihilation defined by
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Rannðω; ω̄;μÞ

¼ 2G2
Fc

6

ð2πÞ2ðℏcÞ4ωω̄
Z

d3p
E

Z
d3p̄
Ē

× δ4ðqþ q̄−p− p̄Þ× ½1−FeðEÞ�½1− F̄eðĒÞ�
× ½ðCV þCAÞ2p̄μqμpνq̄ν þ ðCV −CAÞ2pμqμp̄νq̄ν�; ð29Þ

where q, q̄, p, and p̄ are the four-momentum of the
neutrino, antineutrino, electron, and positron, respectively.
E and Ē are the electron and positron energies in the fluid
rest-frame, respectively, CV ¼ 1=2þ sin2 θW for νe and ν̄e,
CV ¼ −1=2þ sin2 θW for heavy-lepton type neutrinos, and
CA ¼ 1=2 with sin2 θW ≈ 0.2319.
In our present work, we approximate Rann by employing

fitting functions ϕ1 and ϕ2 as

Rannðω; ω̄; μÞ ≈ Rann;fitðω; ω̄; μÞ

¼ 2G2
Fc

4

3πðℏcÞ4ωω̄ ðC2
V þ C2

AÞqμqνq̄μq̄ν

× ½ϕ1ðxÞϕ1ðx̄Þ − ϕ2ðxÞϕ2ðx̄Þ�; ð30Þ

where x ¼ ω=kBT and x̄ ¼ ω̄=kBT. We note that ϕ1 and ϕ2

are functions dependent also on ηe. The fitting functions ϕ1

and ϕ2 are optimized so that Rann;fit reproduces the values of
Rann in the wide range of parameters (see Appendix C for
the motivation of the function form, optimization of ϕ1 and
ϕ2, and the accuracy of the model).
Employing Rann;fit, the neutrino absorption rate is sim-

plified as

αpairðQÞ

¼ 2G2
Fc

3

3πðℏcÞ4 ðC
2
V þ C2

AÞ½ϕ1ðxÞΦ̄μν
1 − ϕ2ðxÞΦ̄μν

2 � qμqν
ω

ð31Þ

where Φ̄μν
i is defined by

Φ̄μν
i ¼ c2

Z
d3Q̄f̄ðQ̄Þϕiðx̄Þ

q̄μq̄ν

ω̄
: ð32Þ

We note that ϕ1 and ϕ2 are given so that ϕ1Φ̄
μν
1 − ϕ2Φ̄

μν
2

reduces to the energy momentum tensor of the neutrino
radiation field in the limit of nondegenerate electrons and
high neutrino energies (see Appendix C), and αpairðQÞ
agrees with the exact expression for the neutrino absorption
rate in such a limit [105,116].
Since Φ̄μν

i is independent of the neutrino energy and
momentum, practically in the simulations, Φ̄μν

i is calculated
before the evolution of neutrino MC packets using the
values obtained in the previous substep. The emissivity of
pair process is also determined by employing the neutrino
and antineutrino number densities obtained in the previous
substep. This enables us to effectively treat pair annihilation
as the one-body interaction with taking those nonthermal

distribution effects into account, and hence, the neutrino
MC packets can be evolved independently of the evolution
of the antineutrino MC packets. However, as a drawback,
the balance between neutrinos and antineutrinos that have
been involved in pair process is not numerically guaran-
teed. This is problematic because the total numbers of
neutrinos and antineutrinos which are emitted or absorbed
through pair process should be the same. Such an imbal-
ance can induce an unphysical Ye evolution in the matter
field. To address this problem, a correction procedure
described in Sec. II E 4 is applied at the end of each substep.
The neutrino emissivity by electron-positron pair anni-

hilation is also computed employing Rann;fit but with the
simplification that the antineutrinos involved in the Fermi-
blocking factor are in thermal equilibrium. While in
principle we can employ the antineutrino distribution
function directly from the calculated MC packets, we
apply this simplification because the absolute value of
the neutrino degeneracy parameter for νe and ν̄e is not high
(≤0.1) for the problems studied in this paper (we note,
however, this is not the case in the presence of a remnant
massive NS). This treatment significantly simplifies the
numerical implementation by allowing the application of
the Kirchhoff’s law. The neutrino absorption rate of pair
annihilation for the case that antineutrinos are in thermal
equilibrium is given by

αpair;thðωÞ

¼ 2G2
Fc

3

3πðℏcÞ4 ðC
2
V þ C2

AÞ½ϕ1ðxÞΨ̄1 − ϕ2ðxÞΨ̄2�ω; ð33Þ

where Ψi is define by

Ψ̄i ¼
16π

3c3

Z
dω̄f̄thðω̄Þω̄3ϕiðx̄Þ: ð34Þ

Here, f̄thðω̄Þ is the thermal distribution function of anti-
neutrinos which is given by

f̄thðω̄Þ ¼ 1

h3
F̄thðω̄Þ ¼ 1

h3
1

e
ω̄

kBTþην þ 1
; ð35Þ

where ην is the degeneracy parameter of neutrinos obtained
by the local neutrino/antineutrino number density and
temperature. We note that F̄th is the thermal distribution
realized under the fixed local neutrino/antineutrino number
difference (and hence F̄th ≠ F̄β) because the changes in the
local neutrino/antineutrino numbers are balanced for pair
process. Then, the neutrino emissivity by electron-positron
pair annihilation, jpair, can be calculated with the “stimu-
lated absorption” correction by

jpairðωÞ ¼ αpair;thðωÞ 1

h3
FthðωÞ

1 − FthðωÞ ; ð36Þ
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where

FthðωÞ ¼ 1

e
ω

kBT−ην þ 1
: ð37Þ

Finally, employing the expression for jpair, the effective
absorption rates of neutrinos by pair annihilation including
the stimulated absorption correction, α�;pairðQÞ, is given by

α�;pairðQÞ ¼ αpairðQÞ þ h3jpairðωÞ: ð38Þ

3. Elastic scattering by free protons and neutrons

The differential cross section of elastic scattering by free
protons and neutrons is given by [132]

dσs
dμ

¼ σ0sð1þ δsμÞðs ¼ p; nÞ; ð39Þ

where μ ¼ cos θsct with θsct being the angle between the
spatial momenta in the fluid rest-frame before and after
scattering. σ0s denotes the total cross section of the scatter-
ing process, which is given by

σ0p¼
G2

F

πðℏcÞ4
�
g2V þ3g2A

4
þ4sin4 θW −2sin2 θW

�
ω2 ð40Þ

for scattering by protons and

σ0n ¼
G2

F

πðℏcÞ4
g2V þ 3g2A

4
ω2 ð41Þ

by neutrons. δs is ≈ − 0.2 and ≈ − 0.1 for scattering by
protons and neutrons, respectively [132].

4. Limiter to the radiative feedback

By employing the implicit MC method, the emissivity
and absorption rates of neutrinos in each hydrodynamics
cell are controlled so that the energy-momentum equations
are solved numerically stably. However, even under this
prescription, the source term in the electron fraction
evolution equation sometimes becomes very large because
the timescales of the energy-momentum change and elec-
tron number change are not necessarily the same. In such a
situation, the correct thermal equilibrium is not realized or
the calculation even becomes numerically unstable.
Another serious problem can arise for the case that νeν̄e

pair process is considered in the calculation. The net
electron number change has to be zero for each νeν̄e pair
process. However, neutrino and antineutrino are evolved
effectively separately in our code, and hence, the balance
between the radiative feedback on the electron number
from neutrinos and antineutrinos is not numerically guar-
anteed. This induces an unphysical change in the matter

electron fraction, which avoids the system to reach a correct
thermal equilibrium state.
To overcome these problems, in each substep of the time

evolution, we employ a limiter to the radiative feedback so
that (a) the net electron number change induced by νeν̄e
pair process is guaranteed to be zero and (b) the absolute
net change in the electron fraction is limited to be within a
given value (ΔYe;tol).
First, we describe our prescription to achieve the con-

dition (a). After solving the radiation fields in each substep
of time evolution, the radiative feedbacks from electron
neutrinos and electron antineutrinos to the matter energy-
momentum equations, Gνe

μ and Gν̄e
μ , respectively, and

electron number equation, Λνe and Λν̄e , respectively, are
recorded for each hydrodynamics cell. We also separately
record the fractions of these radiative feedbacks due to pair
process: Gνe;pair

μ and Gν̄e;pair
μ , respectively, for the matter

energy-momentum equations, and Λνe;pair and Λν̄e;pair,
respectively, for the electron number equation.
The conditionof (a) can be expressedbyΛpair

e;νe þ Λpair
e;ν̄e ¼ 0.

To achieve this condition for every hydrodynamics cells, we
modify the weight of the MC packets for electron neutrinos
and electron antineutrinos at the end of the evolution. The
number densities of electron neutrinos and electron antineu-
trinos in a givenhydrodynamics cell,nνe andnν̄e , respectively,
are given by

nνe ¼
1ffiffiffiffiffiffi−gp Δ3x

X
k

wνe
k ; nν̄e ¼

1ffiffiffiffiffiffi−gp Δ3x

X
k

wν̄e
k ; ð42Þ

where wνe
k and wν̄e

k are the weights of electron neutrino and
electron antineutrino MC packets, respectively, and Δ3x
denotes the coordinate spatial volume of the hydrodynamics
cell. The summations are taken for theMC packets located in
thegiven cell. Inourprescription,wemodifyΛνe andΛν̄e with
correction factors, fνecrr and fν̄ecrr by

Λνe → Λνe þ fνecrr
munνe
ρΔt

;

Λν̄e → Λν̄e − fν̄ecrr
munν̄e
ρΔt

; ð43Þ

with also modifying the weights of the MC packets by

wνe
k → ð1 − fνecrrÞwνe

k ; wν̄e
k → ð1 − fν̄ecrrÞwν̄e

k ; ð44Þ

so that the total lepton number of the cell is conserved. We
note that fνecrr and f

ν̄e
crr shouldmanifestly be less than unity.We

further restrict the values to be within ½−0.9; 0.9� so that to
suppress the artifact due to this prescription.At the same time,
we also modify Gνe

μ and Gν̄e
μ by
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Gνe
μ → Gνe

μ þ fνecrr
Tνe;t
rad;μ

Δt
;

Gν̄e
μ → Gν̄e

μ þ fν̄ecrr
T ν̄e;t
rad;μ

Δt
; ð45Þ

so that the total energy and momentum of the cell are
conserved. Here, Tνe

rad;μν and T ν̄e
rad;μν denote the energy

momentum tensors of electron neutrinos and electron anti-
neutrinos, respectively. The values of the correction factors,
fνecrr and fν̄ecrr, are chosen so that to satisfy

Λpair
e;νe þ Λpair

e;ν̄e þ fνecrr
munνe
ρΔt

− fν̄ecrr
munν̄e
ρΔt

¼ 0 ð46Þ

while minimizing the change in the source term of the
laboratory-frame energy

jΔGt
crrj ¼ jfνecrrTνe;tt

rad þ fν̄ecrrT
ν̄e;tt
rad j: ð47Þ

Unfortunately, the solutions for fνecrr and fν̄ecrr do not
always exist (for instance, for the case that nνe ¼ nν̄e ¼ 0

with Λpair
e;νe þ Λpair

e;ν̄e ≠ 0). For such a case, we create new
electron neutrino or electron antineutrino MC packets in the
cell to balanceΛνe;pair andΛν̄e;pair by the radiative feedbacks
induced by the MC packet creation. For this prescription,
the neutrino energy of the newly created packets is
basically chosen from the thermal distribution of the local
temperature and neutrino/antineutrino number densities.
The prescription to achieve the condition (b) is essen-

tially the same as that for (a), expect for that fνecrr and f
ν̄e
crr are

chosen to satisfy����Λe;νe þ Λe;ν̄e þ fνecrr
munνe
ρΔt

− fν̄ecrr
munν̄e
ρΔt

���� ≤ ΔYe;tol

Δt
ð48Þ

under the condition minimizing the change in the source
term of the Laboratory-frame energy jΔGt

crrj. In the case
that no solution exist within the given ranges of fνecrr and
fν̄ecrr, we simply gave up to exactly satisfy Eq. (48) but
employ the values of fνecrr and fν̄ecrr which the left-hand side
of Eq. (48) is the smallest.
This prescription obviously induces artificial emission

and absorption of neutrinos. However, we find that the
values of fνecrr and fν̄ecrr are at most as large as 10−2 and
typically much smaller than 10−3. Hence, we consider that
the artifact due to this prescription is always minor.

F. Parallelization

Our current MC radiative hydrodynamics code is paral-
lelized using a hybrid of MPI and OpenMP programming.
The computation for hydrodynamics evolution is parallel-
ized by dividing the computational domain equally among
MPI nodes, and the computation of the domain assigned for

each node is further parallelized by OpenMP. On the other
hand, the computation for evolving the radiation field is
parallelized packet-wise by assigning the MC packets to
each OpenMP thread in each MPI node regardless of the
MC packet positions. In order to evolve the MC packets
located outside the hydrodynamics domain assigned to the
MPI node, the thermodynamic quantities such as the
baryon mass density, ρ, temperature, T, and electron
fraction, Ye, as well as the four-velocity information, uμ,
in the entire computational domain are collected and shared
among all MPI nodes after each substep of the hydro-
dynamics evolution. After all the evolution of the MC
packets is finished, the radiation feedback to the matter
field as well as the statistical information of the radiation
field are summed up for each hydrodynamics cell, and they
are collected and shared among the MPI nodes. Note that in
this way the full information of the MC packets is not
needed to be communicated among different MPI nodes.

G. Validation

Our code has been validated from various aspects. Since
the hydrodynamics solver and basic infrastructure of the
radiative transfer solver are tested in our previous
studies [127,134], in this paper, we focus on examining
the microphysics implementation and matter-radiation
interaction in the presence of multiple neutrino species.
We validate our implementation of the EOS and neutrino
interaction rates by reproducing the emission equilibrium
value of Ye discussed in the previous study [69]. We
confirm by comparison with Fig. 1 in [69] that the emission
equilibrium value of Ye with the weak magnetism and
recoil correction is reproduced by our code for the temper-
ature above 2 MeV. For the temperature below 2 MeV we
find some deviation from their results due to the neglect of
the electron mass effect and the limited NSE ensembles in
our microphysics implementation. Nevertheless, the dis-
crepancy in the equilibrium Ye value at 1 MeV is still within
∼10%. We also note that the discrepancy below 1 MeV
does not affect the present results, because the timescale of
weak interaction is very long (≳10 s) compared to the
simulation time (i.e., evolution timescale of the system).
We then validate that our code correctly solves the thermal-
ization of matter and radiation fields in one-zone tests in
various situations (see Appendix B).

III. MODEL

A. Grid setups and simulation parameters

In this paper, we solve a BH-torus system under the
assumption of axisymmetry and equatorial-plane sym-
metry. The cylindrical coordinate system is employed for
solving the viscous-hydrodynamics, and x and z are
assigned to the cylindrical radius and the vertical coor-
dinate, respectively. The grid is set to be nonuniform in
both x and z directions, of which grid-spacing increasing

KAWAGUCHI, FUJIBAYASHI, and SHIBATA PHYS. REV. D 111, 023015 (2025)

023015-10



outward with a constant rate of 1.0125. The innermost (and
hence the finest) grid-spacing is determined so that for each
coordinate the grid covers from 0 to 2500M⊙ ≈ 3750 km
with 320 grid-cells, that is, Δx0 ≈ 0.6M⊙ ≈ 900 m. (Note
that the BH mass isMBH ¼ 3M⊙ and thus Δx0 ≈ 0.2MBH.)
The time interval of the simulation,Δt, is determined by the
Courant–Friedrichs–Lewy condition with respect to the
finest grid-spacing, and in this work we set the Courant
number to be 0.5.
For a numerically stable simulation, an atmosphere of

which baryon mass density, temperature, and Ye are
10 g=cm3, 0.036 MeV, and 0.5, respectively, is artificially
added outside the torus in the initial data following [24]. We
also set the floor values for the baryon mass density and
temperature, of which values are given by 1 g=cm2 ×
min ½ðr=300M⊙Þ−1; 1� and 300 eV, respectively. We note
that the maximum baryon mass density and temperature of
the torus are larger than 1011 g=cm3 and 6 MeV, and hence,
the values of the atmosphere are much lower than them
(cf. Fig. 1).
For solving the radiation fields, we set Ntrg ¼ 120 and

rabs ¼ 0.1. With this setup, ≈107–108 MC packets are
solved in each time step. We confirm that the results are
approximately unchanged even for Ntrg ¼ 32 (see
Appendix D). To reduce the computational cost, we limit
the region of solving the radiation fields within r ≤ rext ¼
300M⊙ ≈ 450 km in this work with r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
being

the coordinate spherical radius. We justify this treatment by
checking that the absorption and emission timescales are
always more than an order of magnitude longer than the
simulation time.
To check the dependence of the results on the viscous

parameter, the numerical simulations are performed for
αvis ¼ 0.05 and 0.15 employing the initial condition of an
equilibrium torus around a rotating BH. The simulations
are followed up to t ≈ 1.6 s and ≈1.2 s for the models with
αvis ¼ 0.05 and 0.15, respectively. The simulations are run
on the Sakura and Momiji clusters at Max Planck
Computing and Data Facility with each employing 32
nodes and 1280 cores. The total computational cost is
≈1 million CPU hours for each simulation, and hence,
≈1 kilo CPU hours per 1 ms simulation time.

B. Initial conditions

In this paper, we prepare an axisymmetric equilibrium
torus around a rotating BH as the initial condition of our
numerical simulation. This is motivated by the fact that,
although the merger remnant has a nonaxisymmetric
structure in an early phase after the merger, it gradually
relaxes to a nearly axisymmetric quasistationary state
within the dynamical timescale (∼10 ms). We first compute
the initial condition in the absence of neutrino radiation
fields following the method of [24]. Then, to minimize the
artifact due to the relaxation of the neutrino radiation fields,

we solve neutrino radiative transfer on the hydrodynamics
solution freezing its profile except for Ye. Finally, we
employ the obtained matter profile and neutrino radiation
fields as the initial condition of the dynamical simulation
after they have settled into the approximately stationary
configuration.
The line element is given in the Kerr-Schild coordinates

in the 3þ 1 form of Eq. (1). Then the nonzero components
of the metric in the spherical polar coordinates are α, βr, the
diagonal component of γij, and γrφ ¼ γφr where r and φ
denote the radial and toroidal angle coordinates of the
spherical polar coordinates. We set the BH mass and
dimensionless spin parameter to be 3M⊙ and χ ¼ 0.8,
respectively. We assume that the fluid is isentropic and the
coordinate velocity given by vi ¼ ui=ut satisfies vφ ¼ Ω
and vx ¼ 0 ¼ vz (i.e., vr ¼ vθ ¼ 0). Under stationary and
axisymmetric conditions, the first integral of the Euler’s
equation for an isentropic fluid gives [135]

h
ut

þ
Z

huφdΩ ¼ C; ð49Þ

where C is a constant parameter. Here, uφ can be
obtained by

uφ ¼ utγφiðvi þ βiÞ
¼ ut½γφφðΩþ βφÞ þ γφxβ

x þ γφzβ
z�: ð50Þ

From the normalize condition of the four velocity
gμνuμuν ¼ −1, we have

ut ¼ ½α2 − γijðvi þ βiÞðvj þ βjÞ�−1=2: ð51Þ

By assuming the specific angular momentum of the
fluid, huφ, in the form of

j ¼ huφ ¼ AΩ−n; ð52Þ

where n is a constant, Eqs. (50) and (49) can be rewritten as

hut½γφφðΩþ βφÞ þ γφxβ
x þ γφzβ

z�Ωn ¼ A; ð53Þ

and

h

�
1

ut
−
AΩ−nþ1

n − 1

�
¼ h

�
1

ut
−

uφΩ
n − 1

�
¼ C; ð54Þ

respectively. The value of h is identical at the inner and
outer radii of the torus in the equatorial plane, xin and xout,
respectively. This gives the conditions that

fut½γφφðΩþ βφÞ þ γφxβ
x þ γφzβ

z�Ωngin
¼ fut½γφφðΩþ βφÞ þ γφxβ

x þ γφzβ
z�Ωngout; ð55Þ
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and

�
1

ut
−

uφΩ
n − 1

�
in
¼

�
1

ut
−

uφΩ
n − 1

�
out
: ð56Þ

Ωin ¼ ΩðxinÞ and Ωout ¼ ΩðxoutÞ can be determined by
solving the algebraic Eqs. (55) and (56). Then, constants A
and C are determined from Eqs. (53) and (54) under the
condition that h ¼ hmin where hmin denotes the minimum
specific enthalpy. Here, h ¼ hmin is given by Eqs. (21) and
(22) for a given value of Ye and for the floor values of the
baryon mass density and temperature (by which the
minimum enthalpy value among the baryon mass density
and temperature above our setups of the floor values is
indeed obtained).
In a binary NS merger, matter is also present in the

vicinity of a BH just after the collapse of the remnant
massive NS. Hence, it is desirable to have the inner edge of
the torus to be located as close as possible to a BH. For this
purpose, we impose a condition that the inner edge of the
torus is cusplike, and we determine xin by the condition of

1

∂h
∂x

����
x¼xin; z¼0

¼ 0: ð57Þ

h is obtained as a function of coordinates from Eqs. (53)
or (54) for a given value of xout under the condition of
Eq. (57). Then, for a given value of h, the baryon mass
density, ρ, is determined from a given EOS under a fixed
value of specific total entropy, s, and the condition on Ye.
In this paper, we set the outer radius to be xout ¼
40MBH ≈ 180 km, specific total entropy to be 6kB per
baryon, and n ¼ 1=7, and assume the empirical relation
between Ye and ρ given by

YeðρÞ ¼

8>><
>>:

0.5 ρ ≤ ρ1

0.07þ 0.43 log10ðρ=ρ2Þ
log10ðρ1=ρ2Þ ρ1 ≤ ρ ≤ ρ2

0.07 ρ2 ≤ ρ

ð58Þ

with ρ1 ¼ 1011 g=cm3 and ρ2 ¼ 1.2 × 107 g=cm3 follow-
ing [24]. We then compute the initial configuration of the
matter without neutrino radiation fields by employing the
EOS described in Eq. (15).
To obtain the initial configuration with the neutrino

radiation fields, we solve neutrino radiative transfer on the
hydrodynamics solution freezing its profile but still
allowing the evolution of the local Ye. After neutrino

radiation fields have relaxed, we recompute the matter
configuration in the equilibrium state in the same manner as
described above, but with the newly obtained Ye profile.
We also consider the contribution of neutrinos in the EOS
in addition to the contribution from electron/positron,
nuclei, and photons described in Eq. (15), for which case
the EOS can be written as

P ¼ Pe þ Pion þ Pγ þ Pν ð59Þ

and

ϵ ¼ ϵe þ ϵion þ ϵγ þ ϵν ð60Þ

with

ϵν ¼ 3
Pν

ρ
: ð61Þ

Here, Pν consists of the contributions from electron
neutrino, electron antineutrino, and heavy-lepton type
neutrinos described by

Pν ¼ cνePνe þ cν̄ePν̄e þ cνxPνx ; ð62Þ

where

Pνe ¼
1

2π2ðℏcÞ3 ðkBTÞ
4F3ðηeÞ ð63Þ

Pν̄e ¼
1

2π2ðℏcÞ3 ðkBTÞ
4F3ð−ηeÞ ð64Þ

Pνx ¼
2

π2ðℏcÞ3 ðkBTÞ
4F3ð0Þ; ð65Þ

with F3 being the third-order Fermi-Dirac integral. cνe , cν̄e ,
and cνx are factors introduced to describe how strongly
neutrinos are coupled to matter, and these values become 0
and 1 for the optically thin and thick limits, respectively.
We assume the following form of expression for cνi
ðνi ¼ νe; ν̄e; νxÞ:

cνi ¼ ð1 − e−α
abs
νi

tdynÞ min

�
uνi
uβνi;th

; 1

�
: ð66Þ

Here, αabsνi , uνi , and u
β
ν;th denote the Planck-mean absorption

rate, comoving energy density, and comoving energy
density in the β-equilibrium of the neutrino species νi,
and tdyn denotes the local dynamical timescale, which we
approximate it with tdyn ≈ 2πðr3=MBHÞ1=2.
To recompute the matter configuration in the equilibrium

state, we note that, while we keep using the same fixed
value for the outer radius (40MBH ≈ 180 km) and specific

1In this work, we found a convergence problem in the
determination of xin. As a result, the initial condition of the
simulations was determined as a quasistationary state employing
xin with a value ≈5% larger than that of xin determined by
Eq. (57). Nevertheless, we confirm that this does not affect the
results in Sec. V by more than ≈5%.
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total entropy (6kB per baryon), we take into account the
contribution of neutrinos to the total entropy.
Figure 1 shows the baryon mass density, temperature,

entropy per baryon, and Ye profiles obtained by the above
procedure. The total mass, maximum baryon mass density,
and maximum temperature of the torus are ≈0.10M⊙,
7.6 × 1011g=cm3, and 6.3 MeV, which are broadly con-
sistent with the initial condition calculated in [24].

IV. DIAGNOSTICS

Here, we briefly summarize various quantities used in
this work for the analysis of the simulation results. The
mass accretion rate on the BH, Ṁfall, is determined by
integrating the mass flux on the event horizon as

Ṁfall ¼
Z
EH

dSiρ�vi; ð67Þ

where dSi is the surface element. The total mass accreted
on the BH, Mfall is obtained by the time integral of Ṁfall as

Mfall ¼
Z

dtṀfall: ð68Þ

In this work, the ejecta matter is determined by employ-
ing the so-called Bernoulli criterion: the matter in the
hydrodynamics cell at which −hut is larger than hmin is
considered to be gravitationally unbound and becomes
ejecta. Here, ut denotes the lower time component of the
4-fluid velocity.
During the evolution of the system, the mater escapes

from the computational domain. To determine the total
ejecta mass taking into account the escaped components, we
define the “bulk” region of the computational domain as the
region where the cylindrical radius (i.e., the x-coordinate)
and the half height (i.e., the z-coordinate) are smaller than
Lext. Then, we compute the contributions from the “bulk”

region and that escaped from the surface of the “bulk”
region as

Meje ¼ Meje;bulk þ
Z

dtṀeje;esc; ð69Þ

Meje;bulk ¼
Z
bulk

d3xρ�Θð−hut − hminÞ; ð70Þ

Ṁeje;esc ¼
Z
∂bulk

dSiρ�viΘð−hut − hminÞ: ð71Þ

In our work, we take Lext ¼ 2000 km, while the results are
approximately unchanged by increasing Lext even up to
3500 km.
The asymptotic kinetic energy of the ejecta, Ekin;eje, is

measured by the same way as in Eq. (71), but by
substituting ρ� in the integrand with ρ�ð−h=hminut − 1Þ.
The mass-averaged Ye value of the ejecta is also measured
from a quantity defined by Eq. (71) but with ρ� → ρ�Ye
divided by the total ejecta mass.
Neutrino luminosity and number emission rate for νi

neutrino species (Lνi and Ṅνi , respectively) are obtained
from the MC packets escaped at r ¼ rext

Lνi ¼ −
1

Δt

X
k;escape

wνi
k pðkÞ;t; ð72Þ

Ṅνi ¼
1

Δt

X
k;escape

wνi
k : ð73Þ

Here, pðkÞ;t denotes the lower time components of the
neutrino 4-momentum for kth escaped MC packets. The
average energy of emitted neutrinos, hωνiiems, is calculated
by hωνiiems ¼ Lνi=Ṅνi.
The total pair annihilation energy deposition rate is

calculated by

Lpair ¼
X
νi

Z
d3x

ffiffiffi
γ

p
max ð−Gpair

νi;t ; 0Þ; ð74Þ

where γ and Gpair
νi;t denote the determinant of the spatial

metric and the lower time component of the radiation
4-force density contributed by neutrino pair process,
respectively.
We note that there is a time delay until emitted neutrinos

are observed and reflected in the luminosities due to the
propagation to the extraction radius. Hence, for direct
comparison with other instantaneously determined quan-
tities, we shift the time origin of the neutrino luminosities
by the propagation timescale, i.e., t → t − rext=c. On the
other hand, the mass accretion rate and pair annihilation
energy deposition rate are measured instantaneously, and
hence, the time shift is not applied to these quantities.

FIG. 1. The baryon mass density, temperature, entropy per
baryon, and Ye profiles of the initial condition.
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V. RESULTS

In this section, we present the results of the simulations
for a BH-torus system. We also compare our results with
the models in the previous study [24] with similar setups
(K8 and K8s). The main differences between the previous
simulation setups and the present work are as follows: In
the previous work, (1) the spacetime is dynamically
evolved, (2) neutrino radiative transport is solved by a
gray moment scheme in combination with a leakage
method [76,116,136], (3) neutrino interactions with heavy
nuclei, nucleon-nucleon bremsstrahlung, and plasmon
decay are considered in addition to those considered in
the present work while νeν̄e pair process is neglected, and
(4) the DD2 EOS [137] extended to low-density and low-
temperature ranges by an EOS of [138] is employed with
taking larger NSE ensembles of heavy nuclei into account.
In both previous and present studies, the initial condition is
prepared employing the same BH and torus masses and BH
spin with similar setups for the inner and outer radii of the
torus. On the other hand, the self-gravity of the torus is
taken into account for constructing the initial condition,
and the initial radiation fields are set to be zero in the
previous study.

A. Evolution process

Figure 2 shows the total accreted mass and mass
accretion rate on to the BH as functions of time. Based
on the α-thin or Shakura-Sunyaev disk model [130], the
viscous timescale can be estimated by

τvis ¼
R2

hν
∼ 0.7 s

�
αvis
0.05

�
−1
�

hcs
0.075c3

�
−1

×

�
H

9 km

�
−1
�

R
85 km

�
2

: ð75Þ

Here, we employed the typical mass-averaged values for
the torus radius, R, and specific enthalpy weighted sound

speed, hcs measured at t ¼ 20 ms when the system settled
into a quasistationary evolution phase. Figure 2 shows that
more than ≈70% of the initial torus mass is accreted onto
the BH within the viscous timescale. The accretion is more
rapid for the model with a large value of αvis due to more
efficient angular momentum transport. The accretion rate
decreases with time due to the decrease in the torus mass
and outward expansion of the torus. In particular, the
accretion rate is strongly suppressed after the onset of the
outflow (≈1 s and ≈0.3 s for αvis ¼ 0.05 and 0.15, respec-
tively, see Fig. 6), at which the neutrino cooling timescale
becomes longer than the viscous timescale (see below for
more details). The evolution of the total mass of the
accreted matter agrees within ≈5% with the similar models
in the previous study [24] (K8 and K8s).
Figure 3 displays the evolution of the baryon mass

density, temperature, entropy per baryon, and Ye profiles
for the model with αvis ¼ 0.05. The system evolution is
broadly in agreement with that found in the previous
study [24]. In the first few tens of ms, the outer layer of
the torus blows up due to the relaxation from the initial
condition. After that, the system gradually settles into a
quasistationary evolution phase, in which the torus gradu-
ally expands due to the angular momentum transport by the
viscosity. The Ye values also increase in time due to weak
interaction following the decrease in the baryon mass
density [24]. During this phase, the viscosity contentiously
heats-up the torus, but the outflow is still suppressed
because neutrino cooling is efficient. This quasistationary
expansion phase lasts up to ≈1 s for the model with
αvis ¼ 0.05. But as the torus expands and the baryon mass
density and temperature of the torus decrease, neutrino
cooling becomes inefficient. Then after ≈1 s, eventually
convective motions in the torus are activated and the
outflow starts to form.
Figure 4 displays the same as in Fig. 3 but for the model

with αvis ¼ 0.15. The evolution process is broadly the same
as for the model with αvis ¼ 0.05, although the transient

FIG. 2. Total accreted mass (left) and mass accretion rate (right) onto the BH as functions of time.
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FIG. 3. Snapshots for the baryon mass density, temperature, entropy per baryon, and Ye profiles for the model with αvis ¼ 0.05.

FIG. 4. The same as Fig. 3 but for the model with αvis ¼ 0.15.
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behavior during the relaxation from the initial condition is
more violent. The evolution timescale for this model is
shorter than with αvis ¼ 0.05 due to more efficient angular
momentum transport. In the quasistationary evolution
phase after a few tens of ms, the torus expands more
rapidly than the model with αvis ¼ 0.05, and the outflow is
launched at ≈0.3 s. Since the mass ejection sets in earlier
than for the model with αvis ¼ 0.05, the material ejected
from the system typically has a lower value of Ye for the
model with αvis ¼ 0.15.
To take a close look at the evolution of the system more

quantitatively, we show in Fig. 5 various quantities defined
for the matter outside the event horizon. The top left
panel of Fig. 5 shows that the mass-averaged cylindrical
radius gradually increases with time reflecting the expan-
sion of the torus due to the angular momentum transport.
The increase rate sharply rises after ≈1 s and ≈0.3 s for
αvis ¼ 0.05 and 0.15, respectively, reflecting the onset of
the mass ejection. The average entropy per baryon also
increases with time due to entropy generation by viscous
heating while neutrino cooling plays a role in reducing the
entropy increase. The rate of increase becomes higher after
the onset of mass ejection reflecting the fact that neutrino

cooling becomes inefficient after this point. The average Ye
value also increases with time. This reflects the fact that
the Ye value at the emission equilibrium [e.g., [24,69]]
increases as the baryon mass density and temperature
decrease. This change in the Ye value continues until the
onset of the mass ejection, but the increase in the Ye
value slows down thereafter because the weak interaction
timescale becomes longer than the viscous evolution
timescale.
The time evolution of the averaged radius is faster by a

factor of ≈3 for the model with αvis ¼ 0.15 than with 0.05.
This reflects the dependence of the viscous timescale on the
αvis parameter, and indeed, the factor of the difference
approximately matches to the difference in the value of αvis.
This is also the case for the evolution of average entropy per
baryon and Ye. Independent of the value of αvis, the average
radius, entropy per baryon, maximum temperature, and
average Ye value are 400–500 km, 12–13kB, 3–4 MeV, and
≈0.3, respectively, at the onset time of the mass ejection.
However, the model with the different value of αvis shows
the different subsequent evolution. In particular, the Ye
value shows different evolution after the onset of the mass
ejection: the increase of the Ye value slows down after the

FIG. 5. Time evolution of various quantities for the matter outside the event horizon: the mass-averaged cylindrical radius (top left),
mass-averaged entropy per baryon (top right), maximum temperature (bottom left), and mass-averaged Ye (bottom right). We note that
the sudden decreases in the average radius and entropy per baryon at 0.4 s found in the results of the αvis ¼ 0.15model are caused by the
escape of the matter from the outer boundary. On the other hand, the contribution from the escaped matter is also taken into account for
the average Ye value, and hence, it shows a smooth evolution.

KAWAGUCHI, FUJIBAYASHI, and SHIBATA PHYS. REV. D 111, 023015 (2025)

023015-16



onset of the mass ejection. This slowing down is more
significant for the model with a larger αvis parameter.
The average Ye values for the present simulations are

typically larger by ≈0.05 than those at the similar epochs
for the models with the similar setups in the previous
study [24] (model K8 and K8s). This may be due to the fact
that the electron mass is neglected for neutrino/antineutrino
absorption by neutrons/protons in the present work. By
neglecting the electron mass, the neutrino/antineutrino
absorption rates for low energy neutrinos/antineutrinos
can be enhanced, and hence, the Ye evolution in the torus
can be accelerated. In fact, Ref. [24] shows that the
absorption of streaming neutrinos/antineutrinos plays a
role in enhancing the Ye values (see Fig. 7 of [24]).
We also find quantitative differences in the onset time of

mass ejection. While mass ejection sets in at ≈1 sð0.3 sÞ
for the present model, it happens at ≈0.5 sð0.1 sÞ for the
model with αvis ¼ 0.05ð0.15Þ in the previous study, and
hence, there is a factor of ≈2 delay in the present result.
One possible reason for this difference may be due to the
difference in the employed EOS. In our study, we only
consider protons, neutrons, and α particles for the NSE
ensemble elements. On the other hand, in the previous
study, the NSE ensembles of nuclei also heavier than α
particle are taken into account in the EOS [137]. This
difference can lead to a non-negligible difference in the
nuclear binding energy (1–2 MeV per baryon). Since the
NSE ensemble setup in this paper gives less binding energy
release in the recombination of the nuclei when the baryon
mass density drops, the present setup tends to work to
suppress the ejecta formation.
To clarify the reason for these quantitative discrepancies,

a detailed comparison varying the microphysical setup
under the same initial condition is needed. We should also
note that not only the difference in the microphysical setups
but also the difference in the radiation transfer solver may
be responsible for the quantitative difference between the
present and previous results. For example, taking into
account the effect of the energy dependent absorption rates
under the nonthermalized distribution function may cause
some difference in the lepton number transfer in the torus.
Thus, also to evaluate the impact of the difference in the
radiative transfer solver, it is crucial to make a comparison
with the same microphysical setup, and we leave this as a
future work.

B. Ejecta

Figure 6 shows the various quantities for the ejecta
matter. The top left panel of Fig. 6 shows the time evolution
of the ejecta mass. The ejecta mass increases for ∼10−3M⊙
in the first few 10 ms. We interpret this component as a
consequence of the relaxation of the system from the initial
condition and hence not physical. After the initial tran-
sition, the ejecta mass is kept constant until t ≈ 1 s and 0.2 s
for αvis ¼ 0.05 and 0.15, respectively, reflecting the fact

that the mass ejection is suppressed as the consequence of
efficient neutrino cooling. Thereafter, the ejecta mass
shows a rapid increase and continues to increase until
the end of the simulations. The total ejecta mass at the end
of simulations is 0.002M⊙ and 0.013M⊙ for αvis ¼ 0.05
and 0.15, respectively. These values are smaller than the
ejecta mass obtained in the similar models of the previous
study (K8 and K8s in [24]) due to the shorter simulation
time in the present work. In fact, the previous study shows
that it is necessary to follow a few seconds of the evolution
until the mass ejection to be saturated. Nevertheless, the
comparison shows that the time evolution of the ejecta mass
is broadly in agreement with the previous results [24].
The bottom left panel of Fig. 6 shows the ejecta mass

distribution as a function of the ejected latitudinal angle. The
ejecta matter is mostly ejected toward θ ≈ π=6–π=4. For a
lager value of αvis, the distribution tends to peak in larger
latitudinal angle, and for αvis ¼ 0.15, a substantial ejecta
component is present in the equatorial plane. It should be
noted that it is difficult to make a fair comparison with the
previous results, since the present simulations are not
performed until mass ejection is saturated. Nevertheless,
this dependence on the αvis parameter is so far broadly
consistent with the trend found in the previous study [24].
The top middle panel of Fig. 6 shows the time evolution

of the average ejecta velocity. After the onset of mass
ejection (≈1 s and 0.3 s for αvis ¼ 0.05 and 0.15, respec-
tively), the average ejecta velocity settles down to an
approximately constant value: 0.05c and 0.08c for αvis ¼
0.05 and 0.15, respectively. The model with higher value of
αvis has larger ejecta velocity, which reflects an efficient
acceleration of the matter in the outer part of the torus. The
average ejecta velocity is in quantitative agreement with the
previous results (see Fig. 10 of [24]). The bottom middle
panel of Fig. 6 shows the ejecta mass distribution as a
function of the ejecta velocity. For both cases of αvis, the
ejecta matter has its velocity peak around 0.05c, and the
ejecta matter with the velocity larger than 0.15c is minor
(an order of magnitude smaller than the peak). These results
also agree broadly with those in the previous study [24].
The top right panel of Fig. 6 shows the time evolution of

the average ejecta Ye, which is 0.41 and 0.35 for αvis ¼
0.05 and 0.15, respectively, at the end of simulations. They
decrease continuously because the matter ejected from the
inner part of ejecta, which typically has relatively high
velocity and Ye value, is counted as ejecta first, and the
matter ejected from the edge of the torus at the onset of
mass ejection, which typically has relatively low velocity
and Ye value, is counted as ejecta later. The bottom left
panel of Fig. 6 shows the ejecta mass distribution as a
function of Ye. The ejecta Ye distribution shows a peak at
≈0.4 and 0.3 and spreads with a range of more than 0.1 and
0.2, respectively. For the higher value of αvis, the ejecta Ye
value tends to be smaller. This result is in agreement with
the previous study [24].
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However, the ejecta Ye values of the present simulations
are higher by more than 0.05 than the similar models of the
previous study (see Fig. 10 of [24]). One reason for this is
the difference in the Ye evolution of the torus. The average
Ye evolution of the matter is more rapid for the models in
the present work (see Fig. 5). In addition, the time at which
the mass ejection sets in is delayed by a factor of ≈2 in the
present models compared to the previous results. Hence,
the Ye values at the onset of mass ejection is higher for the
models in the present work than for those in the previous
study with the similar setups. However, we note again that a
fair comparison with the previous results is not easy
because the present simulations are not performed until
mass ejection is saturated.

C. Neutrinos

We next focus on the property of neutrino emission from
the system. Figure 7 shows the time evolution of various
quantities related to neutrino emission. The neutrino
luminosity of electron antineutrinos is always higher than
those of other species by more than a factor of 2 at t ¼
0.01 s and becomes dominant for t > 0.3 s thereafter. This
is also the case for the number emission rate. This indicates
that the matter is kept leptonized during the evolution.
Heavy-lepton type neutrinos always have the smallest
contribution to the total luminosity, and it is typically more
than an order of magnitude smaller than that of electron
neutrinos.
For the first 20 ms, the model with αvis ¼ 0.15 shows

higher luminosity than the model with αvis ¼ 0.05 due to

the higher mass accretion rate (see Fig. 2). However, the
model with αvis ¼ 0.15 shows more rapid decline in the
luminosity, which becomes fainter than for αvis ¼ 0.05 for
t > 0.03 s because the torus expands more rapidly. The
neutrino luminosity at the onset of mass ejection is larger
for the model with the larger value of αvis. We can
understand this from the fact that mass ejection sets in
approximately at the time that the neutrino cooling rate
drops below the total viscous heating rate (t ≈ 1 s for αvis ¼
0.05 and t ≈ 0.3 s for αvis ¼ 0.15), which comes earlier for
the model with the larger value of αvis due to the larger
heating rate. We also note that the total viscous heating rate
at the onset of mass ejection is lower for αvis ¼ 0.05 due to
the torus expansion and mass decrease, which further
reduces the neutrino luminosity at that time. After the
mass ejection sets in, the neutrino luminosity decreases
even steeper reflecting that the rapid decrease in the density
and temperature due to the accelerated matter expansion.
The average energy of neutrinos emitted is largest for

heavy-lepton type neutrinos, followed by electron antineu-
trinos, and finally electron neutrinos. This reflects the fact
that the respective last scattering surfaces of the neutrinos
are located further inside with higher matter temperature.
The average neutrino energy shows approximately the
same evolution regardless of the value of αvis until the
onset of mass ejection. However, at onset of the mass
ejection, which happens earlier for the model with larger
values of αvis, the neutrino energy rapidly decrease reflect-
ing the rapid decrease in the matter temperature (see Fig. 5).
The neutrino emission efficiency with respect to the mass

accretion rate is at most 6% independent of the values

FIG. 6. Top panels: time evolution of the ejecta mass (left), average velocity of ejecta (middle), and mass-averaged Ye (right). Bottom
panels: ejecta mass distribution as a function of latitudinal angle (left), velocity (middle), and Ye (right) at the end of simulations (1.6 and
1.2 s for the models with αvis ¼ 0.05 and 0.15, respectively).
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of αvis. However, the timescale on which the efficiency is
maintained is more than 5 times longer for the model with a
smaller value of αvis, indicating that the smaller value of
αvis leads to more efficient neutrino emission in the BH-
torus system.
We find that the time evolution of the neutrino lumi-

nosity agrees well with the results of similar models in the

previous study employing the leakage and moment
schemes [24]. In fact, we found that for both models with
αvis ¼ 0.05 and 0.15, the total neutrino luminosity of the
present simulations agrees with the results of the K8 and
K8s models in the previous study within ≈30% after
t ¼ 20 ms and up to the onset of mass ejection. Since
the radiative transfer schemes in [24] and this paper are

FIG. 7. Time evolution of various quantities related to neutrino emission: the neutrino luminosity (top left), neutrino number emission
rate (top right), average energy of emitted neutrino (middle left), neutrino emission efficiency with respect to the mass accretion rate
(middle right), total neutrino luminosity and pair annihilation rate (bottom left), and pair annihilation efficiency with respect to the total
neutrino luminosity (bottom right).
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developed independently, this approximate agreement
indicates a good treatment of neutrino radiative transfer
employed in both works.
The total pair annihilation energy deposition rate is

higher than 1051 erg=s for the first few 10 ms, but steeply
declines thereafter, and it becomes smaller than 1049 erg=s
after 0.1 s. We should note that the high deposition rate in
the first few 10 ms can be the artifact of the initial condition
in the relaxation phase. The pair annihilation efficiency
with respect to the total neutrino luminosity is smaller than
3% after 20 ms. This result is a factor of few larger than the
findings in the previous study [139], which may due to the
fact that the inner region in the vicinity of the BH within
the radius of 10 km, in which the pair annihilation energy
deposition rate is the highest, is not solved in Ref. [139].
We note that the our treatment of neglecting the electron
mass in the deposition rate could also result in the

overestimation the deposition rate, although the effect may
be minor considering that the average neutrino energy is
much higher than 1MeV (see also [107] for the discussion).
The total energy deposited by pair annihilation is

8.8 × 1049 erg and 9.8 × 1049 erg for the models with
αvis ¼ 0.05 and 0.15, respectively. However, most of the
energy is deposited within the first 20 ms, and as is
discussed above, the values may suffer from the artifact
of the initial condition. The total energy deposited after
20 ms is found to be 2.4 × 1049 erg and 9.4 × 1048 erg for
αvis ¼ 0.05 and 0.15, respectively. These values are also
consistent with the findings in the previous study [139].
The top panels of Fig. 8 show the energy distributions

of emitted neutrinos at t ¼ 0.093 s and t ¼ 0.30 s for
αvis ¼ 0.05. The energy distributions are well fitted by
the zero chemical potential black-body distributions with
the temperature of 4.3, 6.0, and 7.2 MeV at t ¼ 0.093 s,

FIG. 8. Top panels: energy distributions of emitted neutrinos at t ¼ 0.093 ms (left) and t ¼ 0.30 ms (right). The dotted curves denote
the distribution obtained by only employing MC packets without the residual flag. The dashed curves denote the fitted results employing
the zero-chemical potential black-body distribution. Bottom panels: the angular distributions of emitted neutrinos normalized with the
total luminosity at t ¼ 0.093 ms (left) and t ¼ 0.30 ms (right). Both energy and angular distributions are obtained by correcting MC
packets in r ¼ 428–450 km.

KAWAGUCHI, FUJIBAYASHI, and SHIBATA PHYS. REV. D 111, 023015 (2025)

023015-20



and 3.7, 5.4, and 5.8 MeV at t ¼ 0.30 s for electron
neutrinos, electron antineutrinos, and heavy-lepton type
neutrinos, respectively (see also [107] for the similar
results). These values are smaller by a factor of 2–3 than
the average energy of emitted neutrinos, which are 11.3,
14.6, and 16.3 MeV at t ¼ 0.093 s and 10.5, 12.3, and
12.6 MeV at t ¼ 0.30 s for electron neutrinos, electron
antineutrinos, and heavy-lepton type neutrinos, respec-
tively (see Fig. 7), and is approximately consistent with
the fact that the average energy of the zero-chemical
potential black-body distribution of the temperature of
TBB is given by ≈3.1TBB.
We note that the bumplike features found around

10 MeV in the energy distributions are the artifact of the
residual packet prescription (see Sec. II). In fact, these
features disappear for the distributions employing MC
packets without the residual flag (see the dotted curves
in the top panels of Fig. 8). This happens because the MC
packets with the residual flag are corrected and recreated
with a limited number of MC packets at the beginning of
the time step. Since the recreation of the residual packets is
done so that the energy-momentum and neutrino numbers
are conserved, the neutrino energy of the recreated packets
is concentrated in the certain energy. Nevertheless, the total
radiation energy of such MC packets with the residual flag
is at most ≈10% of the total, and the modification of the
energy distribution is minor.
The bottom panels of Fig. 8 show the angular distribu-

tion of emitted neutrinos at t ¼ 0.093 s and t ¼ 0.30 s for
αvis ¼ 0.05. At t ¼ 0.093 s, all neutrino species show a
similar angular dependence. Neutrino energy is emitted
preferentially in the polar direction, reflecting the fact that
the projected area of the neutrino last scattering surface
becomes the maximum for the face-on view of the torus.
Electron neutrinos show a stronger angular dependence
than the other species, indicating that electron neutrinos are
more optically thick and the last scattering surface has a
more oblate shape than that of the other species. At
t ¼ 0.3 s, the angular dependence becomes less significant
due to the decrease in the neutrino optical depth of the
torus. In particular, electron antineutrinos show approx-
imately isotropic emission, while electron neutrinos still
show a mild angular dependence because the optical depth
is larger than that for others. Interestingly, heavy-lepton
type neutrinos show the opposite angular dependence from
the early phase: the more energy is emitted in the equatorial
direction than in the polar direction. By checking the
neutrino emissivity and energy flux, we find that this is
because heavy-lepton type neutrinos are emitted in the
vicinity of the BH, and those propagated in the equatorial
direction are boosted with the orbital motion.
To investigate the role of the νeν̄e pair process in the

dynamics, we performed a simulation with αvis ¼ 0.05 but
with neglecting νeν̄e pair process (note that νxν̄x pair
process is kept turned on). We find that the overall

dynamics and evolution of key quantities, such as the
mass accretion rate, neutrino luminosity and energy, and
mass-averaged thermodynamical valuables, are approxi-
mately unchanged regardless of whether νeν̄e pair process
is taken into account or not (see Appendix D).
The most and only significant difference which νeν̄e pair

process induces is the presence of a relativistic outflow in
the early phase. The top panels in Fig. 9 show the snapshots
of the baryon mass density, local pair annihilation energy
deposition rate, αut profiles, and hαut profiles for the
model with αvis ¼ 0.05 at t ¼ 0.1 s with and without taking
νeν̄e pair process. Here, αut and hαut can be regarded as the
Lorentz factor taking into account the effect of gravitational
potential and terminal Lorentz factor for which case all the
thermal energy is converted into the kinetic energy,
respectively. We can observe the presence of the relativistic
outflow for the case that νeν̄e pair process is taken into
account. In fact, the local pair annihilation deposition rate
becomes as large as 1031 erg=s=cm3 in the vicinity of the
event horizon with νeν̄e pair annihilation, which is suffi-
ciently large for the local matter with the density of
≤106 g=cm3 to be relativistic within the dynamical time-
scale (a few 10 ms).
The bottom left panel of Fig. 9 shows the polar profile of

hαut at t ¼ 0.05 s for the model with νeν̄e pair process
being taken into account. We find that the matter with
hαut > 100 is collimated within θ ≈ 0.05–0.1 rad with θ
being the angle measured from the z-axis in the presence of
the dense torus matter. The right panel of Fig. 9 shows the
time evolution of hαut at the pole (x ¼ 0) for z ¼ 1000,
2000, and 3000 km. A relativistic outflow of which hαut

exceeds 100 is formed around the pole and sustained up to
0.15 s. However, the value of hαut steeply decreases with
time and is larger than 10 only up to ≈0.2 s.
We find that the outflow luminosity in the polar region

for which hαut is larger than 100 varies from ∼1049 erg=s
to ∼1048 erg=s for t ¼ 0.02–0.1 s, which is more than an
order of magnitude lower than the total neutrino pair
annihilation deposition rate (see Fig. 7). This happens
because the region with the highest neutrino pair annihi-
lation deposition rate is located in the vicinity of the BH’s
horizon, and the matter there accretes to the BH without
being ejected. In fact, we find that the outflow luminosity
with hαut > 100 approximately agrees with the total
neutrino pair annihilation deposition rate of the region in
which the baryon mass density is less than 106 g=cm3 and
the fluid velocity is directed outward. By integrating in
time, the total energy of the relativistic outflow with hαut >
100 is found to be 3 × 1047 erg for t ≥ 20 ms, and this
corresponds to the isotropic-equivalent outflow energy of
≈3 × 1050 erg for the collimation angle of 0.05 rad. This
suggests that the relativistic outflow found in our model is
energetic enough to explain some of short-hard gamma-ray
bursts and the precursors (e.g., [41] and [119,120]; see
also Fig. 9).
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There are several caveats to our results of the relativistic
outflow. In the presence of the relativistic outflow, the
baryon mass density in the polar region reaches the floor
value, and hence, the values of the Lorentz factor and
outflow energy are not very reliable. The presence of the
high Lorentz factor outflow in the early time (t ≤ 50 ms)
could also be the artifact of the initial condition. We also
note that, while the matter density outside the torus is set to
be a very low value (10 g=cm3) in our initial condition, the
matter density in the polar region may have higher density
in the realistic situation (see, e.g., [6]). In such a situation,
the formation of a relativistic outflow would be suppressed
due to the heavy baryon loading [139]. In fact, we do not
observe the formation of a relativistic outflow for
αvis ¼ 0.15. We interpret this as the consequence that
the higher density in the polar region is realized for the
model with larger value of αvis due to more rapid expansion
of the torus. However, the matter distribution in the polar
region and at the torus limb, which is also essential for the
collimation of the relativistic outflow, may also suffer from
the initial transient behavior at the beginning of the
simulations. Hence, the presence of the relativistic outflow

can be dependent on the property of the remnant system,
and the further investigation is necessary to understand the
systematic errors and quantitative dependence.
Neutrino distribution functions are directly obtained in

our simulation. Such information is useful to indicate the
possible occurrence of the fast flavor instability (FFI).
Following a previous study [113], we compute the crossing
depth, D, and crossing ratio, R, defined by

D ¼
ffiffiffiffiffiffiffiffiffiffi
IþI−

p
nνe þ nν̄e

;

R ¼ min

�
Iþ
I−

;
I−
Iþ

�
; ð76Þ

where

I� ¼
Z

dΩGΘð�GÞ;

G ¼
Z

dωω2fνe −
Z

dω̄ω̄2fν̄e ; ð77Þ

FIG. 9. Top panels: snapshots of the baryon mass density, local pair annihilation energy deposition rate, αut, and hαut profiles for the
model with αvis ¼ 0.05 at t ¼ 0.1 s. The left and right panels denote the results with and without taking νeν̄e pair process, respectively
(note that νxν̄x pair process is kept turned on). Bottom left panel: polar profile of hαut for αvis ¼ 0.05 at t ¼ 0.05 s in which νeν̄e pair
process is taken into account. Bottom right panel: time evolution of hαut at the pole (x ¼ 0) for z ¼ 1000, 2000, and 3000 km.
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with fνe and fν̄e being the distribution functions of electron
neutrinos and electron antineutrinos. Here, the crossing
depth is related to the growth rate of the instability by
∼

ffiffiffi
2

p
GFDðnνe þ nν̄eÞ, and the crossing ratio indicates the

relative amount of electron neutrino and electron antineu-
trino excess which is related to the total amount of flavor
change [113].
Figure 10 shows the snapshots of the crossing depth and

crossing ratio for the model with αvis ¼ 0.05 at t ¼ 0.1 s
and at t ¼ 0.3 s. We note that the value of the crossing
depth around the polar region is not reliable due to the MC
shot noise. We find that the crossing depth is always larger
than 0.05 for the latitudinal angle larger than 2π=3 at both
t ¼ 0.1 and 0.3 s. The large value of the crossing depth is
found particularly around the equatorial plane, and the
position of the peak is shifted slightly outward from the
point of the maximum baryon mass density, as found in
the previous study [113]. The crossing ratio is the highest
around the location where electron neutrino and electron
antineutrino number density equates, and the location
approximately matches to the edge of the region where
the crossing depth is larger than 0.05. The crossing ratio is
high (>0.5) around the peak of crossing depth while it is
relatively low (<0.2) around the equatorial plane. This
suggests that the neutrino flavor conversion may efficiently
take place around the peak of the crossing depth.
The latitudinal extent of the region of which the crossing

depth value is larger than 0.05 is slightly shrinking and the
peak position shifts outward with its peak value decreasing
as the time evolves from t ¼ 0.1 to 0.3 s. This indicates that
the system tends to evolve in a direction where the FFI is
less likely to occur. This trend in the time evolution is also
broadly consistent with the previous study [118].

VI. SUMMARY

In this paper, we presented our new general relativistic
MC-based neutrino radiation hydrodynamics code
designed to solve axisymmetric systems, for which we
made the improvement for several implementation from the
previous studies [23,35,39,117,118]. The major improve-
ments are as follows: first, we derived and implemented an
extended version of the implicit MC method for multi-
species radiation fields. Second, a new numerically effi-
cient and asymptotically correct fitting function for the
neutrino pair process kernel function is derived and
employed for absorption rates and emissivity. Finally, we
introduce new numerical limiters for radiation-matter
interaction to ensure stable and physically correct evolution
of the system. A higher-order MC scheme for matter-
radiation interaction introduced in our previous study [127]
is also employed in the code. We demonstrate that the
thermalization of one-zone systems is correctly solved by
our code for various situations.
We applied our code to a BH-torus system with the BH

mass of 3M⊙, dimensionless spin of 0.8, and torus mass of
0.1M⊙, which mimics a postmerger remnant of a binary NS
merger for the case that the massive NS collapses to a BH
within a short timescale (∼10 ms). We find that the
evolution of the system and the various key quantities,
such as neutrino luminosity, ejecta mass, torus Ye, and pair
annihilation luminosity are in broad agreement with the
results of the previous studies employing the leakage or
moment schemes [e.g., [24,69] ] (and also the studies based
on MC schemes [23,35,39,107,117,118]). Quantitatively,
we found some differences from the results of the previous
studies with similar setup: For example, the average torus
Ye values of the present simulation results are found to be

FIG. 10. Snapshots of the baryon mass density, sum of electron neutrino and electron antineutrino number density, crossing depth, and
crossing ratio for the model with αvis ¼ 0.05 at t ¼ 0.1 s (left) and at t ¼ 0.3 s (right). The black solid curves denote the location where
electron neutrino and electron antineutrino number density are identical. To suppress the statistical error, we take sum of the MC packets
in the neighbor 10 × 10 hydrodynamics cells and take 1.5 ms average to obtain the neutrino distribution function. We note that the
profiles of the crossing depth and ratio are truncated above the radius of r ¼ 300M⊙ ≈ 450 km because neutrino radiation fields are
solved only within that radius. We also note that the value of the crossing depth around the polar region is not reliable due to the
MC shot noise.
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larger (≈0.05) than in the previous study [24]. While our
simplification in the microphysics may be responsible for
the difference, the difference in the radiation transfer solver
may also be responsible for the quantitative difference
between the present and previous results. To clarify the
reason for the discrepancy, a detailed comparison under the
same initial condition and microphysical setups is crucial.
We found that amildly relativistic outflow is formed in the

polar region for the model with αvis ¼ 0.05. We confirmed
that the relativistic outflow is launched νeν̄e by pair
annihilation. In fact, we found that the relativistic outflow
is absent for the case that νeν̄e pair process is switched off in
the simulation. Except for the presence of the relativistic
outflow, the other dynamics and evolution of the system are
found to be approximately the same (see Appendix D).
For the model with αvis ¼ 0.05, the outflow with the

terminal Lorentz factor larger than 100 is sustained up to
≈0.1 s, and the region is collimated within ≈0.05–0.1 rad
due to the funnel-like matter distribution at the torus limb.
The total energy of the relativistic outflow is found to be
≈3 × 1047 erg. Our result is also broadly in agreement with
the result of the model in [139] in which a relativistic
outflow is launched (their model TM1-1415) except for the
smaller outflow energy and narrower opening angle. For
the collimation angle of ≈0.05 rad, the isotropic-equivalent
energy of the relativistic outflow is ≈3 × 1050 erg. The
relativistic outflow found in our model is energetic enough
to explain some of short-hard gamma-ray bursts ([41], see
also Fig. 9). The timescale and energy of the relativistic
outflow are also consistent with the precursors of gamma-
ray bursts [119,120]. Our result suggests that neutrino pair
annihilation can contribute to launch a relativistic outflow
in the early phase (∼0.01–0.1 s) of the remnant BH-torus
evolution, which may be comparable to the timescale of the
magnetic field amplification [140]. Therefore, investigating
the potential role of a pair annihilation driven outflow for
explaining the central engine of short gamma-ray bursts in
combination with magnetic field dynamics is an important
future task.
We should caution that the quantitative properties of the

relativistic outflow found in our result may not be very
reliable since the baryon mass density in the polar region
touches the floor value and the high energy deposition rate
by pair annihilation in the very early phase (≲10 ms) of the
evolution can be the artifact of the initial condition. We also
found that whether or not a relativistic outflow is launched
can depend on the effective viscous parameter and the
initial profile of the remnant system. The matter distribu-
tion in the polar region and at the torus limb, which is also
essential for the collimation of the relativistic outflow,
may also suffer from the initial transient behavior at the
beginning of the simulations. Hence, more systematic
studies are necessary to understand the systematic errors
and quantitative dependence on the property of the remnant
system.

The direct determination of the full distribution function
is one of the advantages of employing the MC-based
method. To demonstrate its usefulness, we calculated the
indicators of the neutrino FFI introduced in [113] directly
employing the obtained distribution functions. Our analysis
of the FFI showed that neutrino crossing is strongly
indicated particularly around the equatorial plane. We
found that the profile and strength of the indicator are
broadly in agreement with the previous studies employing
MC radiative transfer codes [113,118].
There are several tasks remaining for the development of

our code. For example, other than the implementation of
more realistic microphysics, numerical techniques to
reduce the computational cost in the high absorption/
scattering opacity regions will be important to study
optically thicker systems such as a remnant massive NS
by MC schemes. For this purpose, the implementation of
the discrete diffusion technique [101,102,109] or the hybrid
method [88,89] with moment schemes could significantly
help to reduce the computational costs.
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APPENDIX A: IMPLICIT MONTE CARLO
METHOD FOR MULTIPLE SPECIES

In this section, we describe a generalization of the
implicit MC method introduced in [128] to multispecies
radiation fields.
The time evolution of the monochromatic intensity, Iaν , in

the fluid rest-frame for the radiation field a is given by

dIaν
dt

¼ −αaν
�
Iaν −

1

4π
uaν;th

�
; ðA1Þ

where d=dt is the time derivative in the fluid rest-frame, ν is
the energy (wavelength) of the radiation, and αaν is the
absorption rate. Note that the curvature of the space time
and spatial dependence of the fluid velocity are neglected in
Eq. (A1) considering the case that the mean free path of the
radiation is small. By integrating out the angular depend-
ence of Iaν , we obtain the evolution equation for the
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monochromatic energy density, uaν , as

duaν
dt

¼ −αaνðuaν − uaν;thÞ; ðA2Þ

where uν;th is the monochromatic energy density of the
radiation field in the thermal equilibrium, which is deter-
mined by the local thermodynamics quantities of the matter.
For the case that the change in the matter internal energy

is dominated by the interaction with the radiation fields,
the evolution of the matter internal energy density ufl is
given by

dufl
dt

¼
X
a

Z
dναaνðuaν − uaν;thÞ: ðA3Þ

Assuming that the change in uν;th is the primary factor for
changing ufl during the evolution, the time derivative of ufl
can be written as

duaν;th
dt

¼ duaν;th
dufl

dufl
dt

ðA4Þ

¼ βaν
X
b

Z
dν0αbν0 ðubν0 − ubν0;thÞ; ðA5Þ

where βnua is given by βaν ¼ duaν;th
dufl

. By integrating Eq. (A5)

in time from t ¼ tn to tnþ1 ¼ tn þ Δt gives

ua;nþ1
ν;th − ua;nν;th

Δt
¼ βaν

X
b

Z
dν0αbν0 ðūbν0 − ūbν0;thÞ: ðA6Þ

Here, the quantities with the superscription of n and nþ 1

denote the values at t ¼ tn and tnþ1, respectively, and the
quantities with overlines are defined by the time average

X̄b
ν ¼

1

Δt

Z
tnþ1

tn
dtXb

ν : ðA7Þ

Note that in derive Eq. (A6) it was assumed that the change
in αaν and βaν are not significant during the time evolution
from t ¼ tn to tnþ1.
By employing a parameter, λaν , we can express ūaν;th by

ūaν;th ¼ ua;λν;th ¼ ð1 − λaνÞua;nν;th þ λaνu
a;nþ1
ν;th : ðA8Þ

We note that, while λaν is yet unspecified, regardless of the
choice of λaν , the evolution of uaν;th given by substituting
ūbν0;th in Eq. (A6) by Eq. (A8) is accurate in the linear order
of Δt. In particular, λaν ¼ 0 and 1 correspond to the fully
explicit and implicit scheme with respect to uaν;th. Hence, λ

a
ν

can be regarded as the parameter to control the numerical
stability of the scheme.

By substituting ūbν0;th in Eq. (A6) with Eq. (A8), multi-
plying αaνλ

a
ν to whole the equation, integrating over ν, and

taking the summation for the species, we obtain

X
a

Z
dναaνλaνu

a;nþ1
ν;th

¼
X
a

Z
dναaνλaνu

a;n
ν;th þ

P
b

R
dν0αbν0β

b
ν0λ

b
ν0Δt

1þP
b

R
dν0αbν0β

b
ν0λ

b
ν0Δt

×

�X
b

Z
dν0αbν0 ū

b
ν0 −

X
b

Z
dν0αbν0u

b;n
ν0;th

�
: ðA9Þ

We can use Eq. (A9) to remove ub;nþ1
ν0;th in the right hand

side of Eq. (A6) which appears after substituting ūbν0;th
employing Eq. (A8). Then, again employing Eq. (A8),
we get

αaνu
a;λ
ν;th¼ αaνu

a;n
ν;thþ

αaνβ
a
νλ

a
νΔt

1þP
b

R
dν0αbν0β

b
ν0λ

b
ν0Δt

×

�X
b

Z
dν0αbν0 ū

b
ν0 −

X
b

Z
dν0αbν0u

b;n
ν0;th

�
: ðA10Þ

By introducing a parameter gaν which satisfies

gaναaνu
a;n
ν;th ¼ αaνu

a;n
ν;th

−
αaνβ

a
νλ

a
νΔt

1þP
b

R
dν0αbν0β

b
ν0λ

b
ν0Δt

X
b

Z
dν0αbν0u

b;n
ν0;th;

ðA11Þ

Eq. (A10) can be simplified in the following form:

αaνu
a;λ
ν;th ¼ gaναaνu

a;n
ν;th þ faνð1 − hgiÞ

X
b

Z
dν0αbν0 ū

b
ν0 : ðA12Þ

Here, faν and hgi are given by

faν ¼
ð1 − gaνÞαaνua;nν;thP

b

R
dν0ð1 − gbν0 Þαbν0ub;nν0;th

;

hgi ¼
P

b

R
dν0gbν0α

b
ν0u

b;n
ν0;thP

b

R
dν0αbν0u

b;n
ν0;th

: ðA13Þ

Since gaν provides simpler expression, we actually control
gaν instead of λaν as the parameter of the scheme to control
the numerical stability.
Finally, by integrating Eq. (A1) in time from t ¼ tn to

tnþ1 and employing Eqs. (A6) and (A12) we obtain

Ia;nþ1
ν − Ia;nν

Δt
¼ −hgiαaν Īaν þ

1

4π
gaναaνu

a;n
ν;th − ð1 − hgiÞαaν Īaν

þ 1

4π
faν
X
b

Z
dν0ð1 − hgiÞαbν0 ūbν0 : ðA14Þ
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Here, we note that Īaν and ūaν are not replaced by the
expression using λaν [Eq. (A8)] because those quantities are
directly obtained by solving the MC transport. The first two
terms in the right-hand side of this equation can be
interpreted as the absorption and emission terms, for
which the absorption rate and emissivity are modified by
αaν → hgiαaν and αaνua;nν;th → gaναaνu

a;n
ν;th. The last two terms can

be interpreted as isotropic and inelastic scattering process
with the rate of ð1 − hgiÞαaν , and for which the energy
distribution of scattered particles is given by faν. Indeed, we
can easily find that the last two terms cancel out with each
other if we integrate the whole equation with respect to
the energy and angular dependence and taking the sum-
mation for the species. It is worth noting that, for the case
that the radiation fields are in thermal equilibrium (i.e.,
Iaν ¼ Īaν ¼ 1

4π u
a;n
ν;th), the right-hand side of the equation

vanishes; this guarantees that the system is stationary in
the thermal equilibrium state.
To determine how we control gaν , we focus on the case

that the system is very optically thick. For αaνΔt ≫ 1, the
monochromatic intensity should be immediately thermal-
ized, and hence, Ia;nþ1

ν ≈ Īaν → 1
4π u

a
ν;th with uaν;th being the

energy density in thermal equilibrium. Then, by integrating
out the energy and angular dependence and taking the
summation for the species, αaνΔt ≫ 1 we obtain

uth − un ≈ −hgihαiΔtðuth − unthÞ
¼ hgihαitotβΔtðuth − unÞ: ðA15Þ

Here, uth, un, and β are obtained from uaν;th, u
a;n
ν , and βaν by

integrating out the energy and angular dependence and
summing all the species of the radiation field, respectively.
hαitot is the total Planck-mean of the absorption rate
defined by

hαitot ¼
P

b

R
dν0αbν0u

b;n
ν0;thP

b

R
dν0ub;nν0;th

: ðA16Þ

Equation (A15) suggests that hgi → 1=hαitotβΔt for
αaνΔt ≫ 1. This condition can be satisfied by taking gaν
to be

gaν ¼ ga ¼ min

�
1

hαiað1þ βÞΔt ; 1
�

ðA17Þ

where hαia denotes the Planck-mean of the absorption rate
for the radiation field of a defined by

hαia ¼
R
dν0αaν0u

a;n
ν0;thR

dν0ua;nν0;th
: ðA18Þ

We note that the factor β is slightly modified by 1þ β
motivated by the derivation in [105]. We also note that Δt
should be taken as the time interval in the comoving frame.

APPENDIX B: ONE-ZONE
THERMALIZATION TEST

To validate our radiative transfer method and implemen-
tation of microphysics, we perform several test calculations
following the thermalization of effectively one-zone systems.
For all the models, the initial conditions are composed of

matter fields with a uniform baryon mass density, temper-
ature, and electron fraction with no neutrino radiation fields
at the beginning. A cylinder-shape computational domain
of which cylindrical radius and half-height are given by
≈15 km is considered imposing the axisymmetry and
equatorial symmetry. Uniform 20 grids are employed to
resolve the cylindrical radius and half of height in the
vertical direction. The Courant number is set to be 0.5,
which gives a time interval to be ≈1 μs. Ntrg ¼ 120 and
rabs ¼ 0.1 are employed in these tests, and as the result,
total packet numbers vary from 106 to 108.
Table I lists the model parameters for the one-zone

systems examined in this test. The baryon mass density and
temperature for model THtest1 broadly agree with those at
the peak of the baryon mass density in the initial profile
employed in this paper (see Fig. 1). Those of model
THtest2 broadly agree with those at the peak baryon mass
density in the inner edge of the merger remnant torus in the
presence of a hypermassive NS [116]. Model THtest3 is set
to have the same density and electron fraction as in model
THtest2 but with lower temperature to examine the code in
a high electron degeneracy case. Finally, model THtest4 is

TABLE I. List of the baryon mass density, initial temperature, and initial Ye values employed in the one-zone
thermalization tests. Δτνiðνi ¼ νe; ν̄e; νxÞ denotes the initial Planck-mean optical depth in each hydrodynamics cell
for each neutrino species.

Model ρ½g=cm3� T [MeV] Ye;ini ðΔτνe ;Δτν̄e ;ΔτνxÞ
THtest1 1011 10 0.5 ð0.52; 0.30; 4.0 × 10−3Þ
THtest2 1013 30 0.5 ð4.8 × 102; 1.3 × 102; 0.91Þ
THtest3 1013 10 0.5 ð10; 1.7; 4.0 × 10−4Þ
THtest4 102 20 0.1 (0.61, 0.61, 0.13)
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FIG. 11. Time evolution of the radiation energy density for each neutrino species (left) and electron fraction, Ye (right) for the one-
zone thermalization test problems. The radiation energy density and Ye values at the β-equilibrium are also plotted.
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employed to examine our code in the situation of low
baryon mass density and large neutrino numbers.
Figure 11 displays the time evolution of the radiation

energy density for each neutrino species, urad, and electron
fraction, Ye. The values in the β-equilibrium state (ueq;βrad and

Yeq;β
e , respectively) are also plotted. Figure 11 shows that

the radiation energy density for each neutrino species and
electron fraction correctly converge to the β-equilibrium
values in the corresponding weak-interaction timescale as
the time evolves: We confirm that the timescale for the
radiation field settles into the equilibrium state is consistent
with that estimated from the absorption rate. Note that the
radiation energy density of νx for model THtest3 does not
reach the equilibrium value within the simulation time
(≈1000 μs), as the absorption and emission timescale is
quite long (>2000 μs). We also note that the actual
absorption/emission timescales of νe and ν̄e for model
THtest2 and THtest3 are much shorter than the time
interval of the calculation (1 μs), and hence, those are
artificially elongated to be comparable to the time interval
under the implicit MC method. The oscillative feature
found in the radiation energy density of ν̄e for model
THtest3 is due to the MC shot noise but it is many orders of
magnitude smaller than the energy density of other species.

Figure 12 displays the energy distribution of the neutrino
radiation field at the end of the one-zone thermalization
simulations. The thermal distribution in the β-equilibrium
calculated from the matter temperature and electron degen-
erate parameter is also shown in the figure. Figure 12 shows
that the neutrino radiation fields are settled into equilibrium
with correct thermal distributions. Exceptionally, as is
found in Fig. 11, νx of model THtest3 does not follow
the thermal distribution, as the radiation field is not yet
thermalized due to its long absorption/emission time-
scale (see Table I). We note that discrepancies between
the analytical and simulated distributions are due to
the error induced by the finite resolution of the energy
binning.

APPENDIX C: PAIR ANNIHILATION KERNEL

For given temperature, T, and electron degeneracy
parameter, ηe, the kernel function of pair annihilation,
Rann, in the limit of ignoring the electron mass can be given
by Eq. (29) as a function of the neutrino energy, ω,
antineutrino energy, ω̄, and cosine of the angle between
the spatial momentum of neutrino and antineutrino, μ,
respectively. Rann can be rewritten as [131]

FIG. 12. The energy distribution of neutrino radiation fields of the one-zone thermalization problems at the end of simulations.
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Rannðω; ω̄; μÞ ¼ 2G2
Fc

4

3πðℏcÞ4ωω̄ qμq̄μqνq̄ν

× ½ðC2
V þ C2

AÞIsymðx; x̄; μÞ
þ 2CVCAIasymðx; x̄; μÞ�

¼ 2G2
F

3πðℏcÞ4 ωω̄ð1 − μÞ2

× ½ðC2
V þ C2

AÞIsymðx; x̄; μÞ
þ 2CVCAIasymðx; x̄; μÞ�; ðC1Þ

where x ¼ ω=kBT, x̄ ¼ ω̄=kBT, and Isymðx; x̄; μÞ and
Iasymðx; x̄; μÞ are given by

Isymðx; x̄; μÞ ¼ 3πðℏcÞ4
2ðC2

V þ C2
AÞG2

Fωω̄ð1 − μÞ2
× ½Rannðω; ω̄; μÞ þ Rannðω̄;ω; μÞ�; ðC2Þ

Iasymðx; x̄; μÞ ¼ 3πðℏcÞ4
4CVCAG2

Fωω̄ð1 − μÞ2
× ½Rannðω; ω̄; μÞ − Rannðω̄;ω; μÞ�: ðC3Þ

Obviously, Isymðx; x̄; μÞ and Iasymðx; x̄; μÞ have the follow-
ing property:

Isymðx; x̄; μÞ ¼ Isymðx̄; x; μÞ
Iasymðx; x̄; μÞ ¼ −Iasymðx̄; x; μÞ: ðC4Þ

We also note that Isym and Iasym depend on ηe but not on T
for fixed values of x and x̄. In particular, Isym depends only
on the absolute value of ηe. Interestingly, although we do
not use them directly in the present work, the exact
analytical expressions for Isym and Iasym are found (see
Appendix E).
We define the angle average, hIi, and the standard

deviation around the angle average σI for both I ¼ Isym

and I ¼ Iasym by

hIiðx; x̄Þ ¼
R
1
−1 dμð1 − μÞ2Iðx; x̄; μÞR

1
−1 dμð1 − μÞ2 ðC5Þ

and

σIðx; x̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
−1 dμð1 − μÞ2½Iðx; x̄; μÞ − hIiðx; x̄Þ�2R

1
−1 dμð1 − μÞ2

s
; ðC6Þ

respectively.
Figure 13 shows hIi and σI for I ¼ Isym and I ¼ Iasym as

functions of x ¼ ω=kBT for several values of x̄ ¼ ω̄=kBT
and ηe. We find that the angle averaged value of I ¼ Isym is
always much larger than that of I ¼ Iasym. It is also shown
that the standard deviation of I ¼ Isym around the angle
averaged value is always within ≈10%. Motivated by these
facts, we approximate Isym and Iasym by

Isymðx; x̄; μÞ ≈ hIsymiðx; x̄Þ
Iasymðx; x̄; μÞ ≈ 0; ðC7Þ

in our code.
In our code, we further approximate hIsymiðx; x̄; μÞ by

employing two fitting functions ϕ1 and ϕ2 as

hIsymiðx; x̄Þ ≈ hIsymmodeliðx; x̄Þ
¼ ϕ1ðxÞϕ1ðx̄Þ − ϕ2ðxÞϕ2ðx̄Þ: ðC8Þ

Here, we remark that, since hIsymiðx; x̄; μÞ depends on the
absolute value of ηe, ϕ1 and ϕ2 also depend on the absolute
value of ηe. We require ϕ1 and ϕ2 to satisfy the following
conditions:
(1)

Z
xmax

xmin

dxϕ1ðxÞϕ2ðxÞ ¼ 0: ðC9Þ
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FIG. 13. hIi for I ¼ Isym and I ¼ Iasym as functions of x ¼ ω=kBT for several values of x̄ ¼ ω̄=kBT and ηe. The purple filled regions
denote the range of the standard deviation, σI , for I ¼ Isym.
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(2) For x ≫ 1; x̄ ≫ 1 and ηe ≪ 1

ϕ1ðxÞϕ1ðx̄Þ − ϕ2ðxÞϕ2ðx̄Þ ≈ 1: ðC10Þ

(3)

∂

∂x
½ϕ1ðxÞϕ1ðx̄Þ − ϕ2ðxÞϕ2ðx̄Þ� > 0: ðC11Þ

(4) Z
xmax

xmin

dx
Z

xmax

xmin

dx̄Kðx; x̄Þ½ϕ1ðxÞϕ1ðx̄Þ−ϕ2ðxÞϕ2ðx̄Þ�

¼
Z

xmax

xmin

dx
Z

xmax

xmin

dx̄Kðx; x̄ÞhIsymiðx; x̄Þ; ðC12Þ

where

Kðx; x̄Þ ¼ x4

ex þ 1

x̄3

ex̄ þ 1
þ x3

ex þ 1

x̄4

ex̄ þ 1
: ðC13Þ

Here, xmin and xmax denote the minimum and maximum of
the fitting range. The condition (1) is required to uniquely
determine ϕ1 and ϕ2. The condition (2) is required so that
the exact expression of the kernel function in the limit of
neglecting the phase space blocking for electrons and
positrons and the electron mass is reproduced [105,116].
The condition (3) is also required so that the kernel function
approximated employing ϕ1 and ϕ2 has the appropriate
asymptotic behavior with respect to the neutrino energy.
The condition (4) is required so that the total neutrino/
antineutrino emissivity is well reproduced for ην ¼ 0 case.
We tabulate ϕ1 and ϕ2 for the range of x∈ ½xmin; xmax� ¼

½10−2; 102� in a logarithmically uniform manner. For ηe ¼ 0
and each value of ηe logarithmically selected in the range of
[0.3, 14], we determine the values of ϕ1 and ϕ2 by
minimizing the following quantity under the conditions
given above:

Z
xmax

xmin

dx
Z

xmax

xmin

dx̄Δðx; x̄Þ2 ðC14Þ

with

Δðx; x̄Þ ¼ W½hIsymiðx; x̄Þ�
−W½ϕ1ðxÞϕ1ðx̄Þ − ϕ2ðxÞϕ2ðx̄Þ�: ðC15Þ

Here, W is a function introduced to control the weight of
the fitting. After several trial, we decided to use the
following form of W to ensure that ϕ1 and ϕ2 have the
desired asymptotic behavior

WðIÞ ¼ − ln

�
1

I
− 1

�
: ðC16Þ

Figure 14 shows the values of ϕ1 and ϕ2 as functions of x
and ηe obtained by the fitting. We can see that both ϕ1 and
ϕ2 become small for a large value ηe. This reflects the fact
that the cross section of pair annihilation is suppressed for
the case that electrons are highly degenerate.
Figure 15 compares hIsymi and hIsymmodeli for several values

of ηe and x̄ as functions of x. For ηe ≤ 3, we find that
hIsymmodeli and hIsymi agree within the standard deviation of
Isym around the angle averaged. For ηe ≥ 10, the deviation
of hIsymmodeli from hIsymi is large particularly when hIsymi
shows the steep change in its value. However, the asymp-
totic values for x ≪ 1 and x ≫ 1 are still correctly
reproduced.
Neglecting the Fermi blocking effect of neutrinos, the

energy-integrated neutrino emissivity and number emis-
sivity of pair process in the thermal equilibrium,Qpair;th and
Λpair;th, respectively, are given by

FIG. 14. ϕ1 and ϕ2 as functions of x and ηe obtained by the numerical fitting.
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Qpair;thðT;ηe;ηνÞ

¼c
Z

d3Q
Z

d3Q̄ωfthðωÞf̄thðω̄ÞRannðω;ω̄;μÞ

¼32πG2
Fc=ðℏcÞ4

3ðhcÞ6 ðkBTÞ9

× ½ðC2
VþC2

AÞΘsymðηe;ηνÞþ2CVCAΘasymðηe;ηνÞ� ðC17Þ
and

Λpair;thðT; ηe; ηνÞ

¼ c
Z

d3Q
Z

d3Q̄fthðωÞf̄thðω̄ÞRannðω; ω̄; μÞ

¼ 32πG2
Fc=ðℏcÞ4ðC2

V þ C2
AÞ

3ðhcÞ6 ðkBTÞ8λðηe; ηνÞ: ðC18Þ

Here, Θsym, Θasym, and λ are given by

Θsym=asymðηe; ηνÞ ¼
Z

dx
Z

dx̄
Z

1

−1
dμð1 − μ2Þ

× Isym=asymðx; x̄; μÞ x4

ex−ην þ 1

x̄3

ex̄þην þ 1

ðC19Þ

and

λðηe; ηνÞ ¼
Z

dx
Z

dx̄
Z

1

−1
dμð1 − μ2Þ

× Isymðx; x̄; μÞ x3

ex−ην þ 1

x̄3

ex̄þην þ 1
: ðC20Þ

Note the emissivity of antineutrino, Q̄pair;th is given by
Qpair;th with ην → −ην and Θasym → −Θasym, and the
number emissivity of antineutrino, Λ̄pair;th, agrees with
Λpair;th because λðηe; ηνÞ ¼ λðηe;−ηνÞ.
Figure 16 compares Θsym and λ calculated from the exact

expression of Isym and those calculated from hIsymmodeli
employing fitting functions ϕ1 and ϕ2 (Θsym;model and
λmodel). Θasym calculated from the exact expression of
Iasym is also plotted in Fig. 16, which shows that Θsym

and λ employing fitting functions ϕ1 and ϕ2 reproduce the
exact values for ηe ≤ 10 and jηνj ≤ 10 very well. For
ηe ≥ 10, Θsym;model and λmodel show discrepancy from the
exact values. However, we note that this discrepancy in the
emissivity may not affect the dynamics since the emissivity
is nevertheless small. Figure 16 also shows that Θasym is
always a few order of magnitudes smaller than Θsym,
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FIG. 15. Comparison of hIsymi and hIsymmodeli for several values of ηe and x̄ as functions of x. The purple filled regions denote the range
of the standard deviation, σI , for I ¼ Isym.

FIG. 16. Comparisons of Θsym (right and middle) and λ (left) calculated from the exact expression of Isym and those calculated from
hIsymmodeli employing fitting functions ϕ1 and ϕ2 (Θsym;model and λmodel). The horizontal axis denotes the electron degeneracy parameter.
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suggesting that the error neglecting the term of Iasym in the
kernel has only a minor effect in the results.

APPENDIX D: COMPARISON AMONG
DIFFERENT SIMULATION SETUPS

To clarify how the results depend on the simulation
setups, we perform the BH-torus simulations varying the
setups. Here, the cases with a smaller grid resolution of 280
cells in each direction and smaller MC packet number of
Ntrg ¼ 32 for both models with αvis ¼ 0.05 and 0.15 (“low
res.” in Fig. 17), the case with larger grid resolution of 480
for the model with αvis ¼ 0.05 (“high res.”), and the case in
which νeν̄e pair process is turned off for the model with
αvis ¼ 0.05 (“no νe pair”) are considered with other setups
being the same as described in the main text (νxν̄x pair
process is kept turned on). Note that, for the smaller and
larger resolution runs, the increasing rates of the grid-
spacing are taken to be 1.0143 and 1.0083, respectively.
Figure 17 compares the time evolution of the mass

outside the BH (top: solid), ejecta mass (top: dashed), total
neutrino luminosity (middle: solid), total pair annihilation
rate (middle: dashed), mass-averaged Ye outside the BH
(bottom: solid), and mass-averaged ejecta Ye (bottom:
dashed) for various different simulation setups. This shows
that all the quantities are approximately in agreement
among different setups. Exceptionally, the total pair anni-
hilation rate for the case that νeν̄e pair process is switched
off shows significantly small values because pair annihi-
lation of heavy-lepton type neutrinos is only considered.

APPENDIX E: EXACT ANALYTICAL
EXPRESSION FOR THE PAIR PROCESS

KERNEL FUNCTION IN THE ZERO
ELECTRON MASS LIMIT

We define a tensor Iμν by

Iμν ≔
Z

d3p
2p0

Z
d3p̄
2p̄0

δ4ðQ − p − p̄ÞfðEÞf̄ðĒÞpμp̄ν; ðE1Þ

where E ¼ −uμpμ and Ē ¼ −uμp̄μ. We consider the case
that pμ and p̄μ are future directed timelike or null vectors.
We employ the following ansatz for Iμν

Iμν ¼ A
Q4

E2
Q
uμuν þ B1

Q2

EQ
uμQν þ B2

Q2

EQ
Qμuν

þ CQμQν þDQ2gμν; ðE2Þ

where EQ ¼ −uμQμ and Q2 ¼ gμνQμQν. A, B1, B2, C, and
D are the dimensionless functions of EQ and Q2. By
evaluating Iμνuμuν, IμνuμQν, IμνQμuν, IμνQμQν, and Iμνgμν,
A, B1, B2, C, and D are obtained by

FIG. 17. Comparisons of the time evolution of the mass outside
the BH (top: solid), ejecta mass (top: dashed), total neutrino
luminosity (middle: solid), total pair annihilation rate (middle:
dashed), mass-averaged Ye outside the BH (bottom: solid), and
mass-averaged ejecta Ye (bottom: dashed) for various different
simulation setups.
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Iμνuμuν, IμνuμQν, IμνQμuν, IμνQμQν, and Iμνgμν are evalu-
ated in the subsequent paragraphs. In the following we
consider the case that pμ and p̄μ are null vectors (i.e., mass-
less particle). For the case thatQμ is a spacelike vector (i.e.,
Q2 > 0), the arguments of the delta function in Iμν will be
0. Hence, for such a case, Iμν ¼ 0. In the following, we only
consider the case that Qμ is a future-directed vector, since
otherwise Iμν is always 0.
For the case that Qμ is a null or timelike vector (i.e.,

Q2 ≤ 0), there always exists a frame in which the spatial
components of Qμ vanish [i.e., Q0μ ¼ ðQ00; 0Þ]. Taking
such a frame, we have

I0μν ¼
Z

d3p0

2p00

Z
d3p̄0

2p̄00 δ
3ðp0 þ p̄0Þ

× δðQ00 − p00 − p̄00ÞfðEÞf̄ðĒÞp0μp̄0ν: ðE4Þ

We focus first on Iμνgμν.

I0μνgμν ¼
Z

d3p0

2p00

Z
d3p̄0

2p̄00 δ
3ðp0 þ p̄0Þ

× δðQ00 − p00 − p̄00ÞfðEÞf̄ðĒÞp0μp̄0νg0μν

¼ −
1

2

Z
d3p0δðQ00 − 2p00ÞfðEÞf̄ðĒÞ

¼ −π
Z

∞

0

dp00
Z

1

−1
dμðp00Þ2δðQ00 − 2p00ÞfðEÞf̄ðĒÞ

¼ −
π

8
ðQ00Þ2

Z
1

−1
dμfðEÞf̄ðĒÞ: ðE5Þ

Here, μ denotes the cosine of the angle between the spatial
components of p0μ and uμ. After integrating the delta
functions, E can be written as

E ¼ −u0μp0μ ¼ u00p00ð1 − βμÞ

¼ 1

2
u00Q00

�
1 − μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ðu00Þ2
s �

¼ 1

2
u00Q00

�
1 − μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðQ00Þ2
ðu00Þ2ðQ00Þ2

s �
; ðE6Þ

and similarly, Ē can be written as

Ē ¼ 1

2
u00Q00

�
1þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðQ00Þ2
ðu00Þ2ðQ00Þ2

s �
: ðE7Þ

Here, β denotes the norm of the spatial component of uμ,
and we used the normalization condition of uμ, that is
ðu00Þ2 ¼ 1þ ðu00Þ2β2. ðQ00Þ2 and u00Q00 can be written in
the gauge invariant manner as −Q2 and EQ, respectively,
and hence, we have

Iμνgμν ¼ −
π

8
ð1 − α2ÞE2

Q

Z
1

−1
dμ

× f

�
1

2
EQð1 − αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
ðE8Þ

with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

E2
Q

r
. Note that α∈ ½0; 1�.

Iμνuμuν, IμνQμuν,IμνuμQν, and IμνQμQν can be also
evaluated in the similar manner, and the results are as
follows:

Iμνuμuν ¼
π

16
E2
Q

Z
1

−1
dμ

× ð1− α2μ2Þf
�
1

2
EQð1− αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
;

ðE9Þ

IμνuμQν ¼
π

16
ð1 − α2ÞE3

Q

Z
1

−1
dμ

× ð1 − αμÞf
�
1

2
EQð1 − αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
;

ðE10Þ

IμνQμuν ¼
π

16
ð1 − α2ÞE3

Q

Z
1

−1
dμ

× ð1þ αμÞf
�
1

2
EQð1 − αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
;

ðE11Þ

IμνQμQν ¼
π

16
ð1 − α2Þ2E4

Q

Z
1

−1
dμ

× f

�
1

2
EQð1 − αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
: ðE12Þ

Defining Gs ¼ GnðEQ; αÞ by

Gn ¼
Z

1

−1
dμμnf

�
1

2
EQð1 − αμÞ

�
f̄

�
1

2
EQð1þ αμÞ

�
; ðE13Þ

the results above can be further simplified as
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Iμνuμuν
E2
Q

¼ π

16
ðG0 − α2G2Þ ðE14Þ

IμνuμQν

E3
Q

¼ π

16
ð1 − α2ÞðG0 − αG1Þ ðE15Þ

IμνQμuν
E3
Q

¼ π

16
ð1 − α2ÞðG0 þ αG1Þ ðE16Þ

IμνQμQν

E4
Q

¼ π

16
ð1 − α2Þ2G0 ðE17Þ

Iμνgμν
E2
Q

¼ −
π

8
ð1 − α2ÞG0 ðE18Þ

and A, B1, B2, C, and D can be determined as

0
BBBBB@

A

B1

B2

C

D

1
CCCCCA ¼ π

32

8>>>>><
>>>>>:

0
BBBBB@

0

0

0

G0 þ G2

G0 −G2

1
CCCCCAþ 2G1

α

0
BBBBB@

0

−1
1

0

0

1
CCCCCAþ G0 − 3G2

α2

0
BBBBB@

1

1

1

1

0

1
CCCCCA

9>>>>>=
>>>>>;
: ðE19Þ

Note that G0 − G2, α−1G1, and α−2ðG0 − 3G2Þ have the following asymptotic form for α → 0

G0 −G2 ¼
4

3
f
�
1

2
EQ

�
f̄
�
1

2
EQ

�
; ðE20Þ

G1

α
¼ −

2

3
EQ

�
df
dE

�
1

2
EQ

�
f̄

�
1

2
EQ

�
− f

�
1

2
EQ

�
df̄
dĒ

�
1

2
EQ

��
ðE21Þ

G0 − 3G2

α2
¼ −

1

15
E2
Q

�
−2

df
dE

�
1

2
EQ

�
df̄
dĒ

�
1

2
EQ

�

þ d2f
dE2

�
1

2
EQ

�
f̄

�
1

2
EQ

�
þ f

�
1

2
EQ

�
d2f̄
d2Ē

�
1

2
EQ

��
ðE22Þ

1. Fermi-Dirac case

Consider the case that fðEÞ and f̄ðĒÞ are given by the
Fermi-Dirac distribution functions with the degenerate
parameter of η and −η, respectively, that is

fðEÞ ¼ 1

e
E

kBT−η þ 1
and f̄ðĒÞ ¼ 1

e
Ē

kBTþη þ 1
: ðE23Þ

Then, Gn can be written as Gn ¼ Gnðx; α; ηÞ with

Gnðx; α; ηÞ ¼
1

ðαxÞnþ1ðe2x − 1Þ
× ½F c

nðx − η; αxÞ − ð−1ÞnF c
nð−xþ η; αxÞ

−F c
nð−x − η; αxÞ þ ð−1ÞnF c

nðxþ η; αxÞ�
ðE24Þ

and x ¼ EQ

2kBT
. Here, F n denotes the complementary incom-

plete Fermi-Dirac integral defined by

F c
nðx; sÞ ¼

Z
s

0

dt
tn

et−x þ 1
: ðE25Þ

F c
nðx; sÞ can be also written as F c

nðx; sÞ ¼ FnðxÞ −
F nðx; sÞ with the complete Fermi-Dirac integral and
incomplete Fermi-Dirac integral define by

FnðxÞ ¼
Z

∞

0

dt
tn

et−x þ 1
; ðE26Þ

F nðx; sÞ ¼
Z

∞

s
dt

tn

et−x þ 1

¼
Xn
k¼0

�
n

k

�
sn−kFkðx − sÞ; ðE27Þ

respectively.
Gnðx; α; ηÞ has the following property:

Gnð−x; α; ηÞ ¼ ð−1Þne2xGnðx; α; ηÞ ðE28Þ

Gnðx;−α; ηÞ ¼ ð−1ÞnGnðx; α; ηÞ ðE29Þ
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Gnðx; α;−ηÞ ¼ ð−1ÞnGnðx; α; ηÞ ðE30Þ

It is useful also to derive the form of Gn for the case that
fðEÞ and f̄ðĒÞ are the Pauli blocking factors

fðEÞ ¼ 1 −
1

e
E

kBT−η þ 1
¼ 1

e−
E

kBTþη þ 1
; ðE31Þ

f̄ðĒÞ ¼ 1 −
1

e
Ē

kBTþη þ 1
¼ 1

e−
Ē

kBT−η þ 1
: ðE32Þ

For this case, Gn can be obtained by substituting x → −x
and η → −η in the results for the case of the Fermi-Dirac
distribution functions, that is, Gn ¼ Gnð−x; α;−ηÞ ¼
e2xGnðx; α; ηÞ.

2. Application to neutrino pair
production/annihilation rate

For the case that electron and positron are in the pair-
thermal equilibrium states, the production and absorption

kernels of neutrino/antineutrino in the limit of zero electron
mass are given by

R ¼ 2G2
F

ð2πÞ2ωω̄
Z

d3p
p0

Z
d3p̄
p̄0

× δ4ðqþ q̄ − p − p̄ÞfðEÞf̄ðĒÞ
× ½ðCV þ CAÞ2p̄μqμpνq̄ν þ ðCV − CAÞ2pμqμp̄νq̄ν�

¼ 8G2
F

ð2πÞ2ωω̄ ½ðC2
V þ C2

AÞIμνðqμq̄ν þ q̄μqνÞ

−2CVCAIμνðqμq̄ν − q̄μqνÞ�: ðE33Þ

Here, ω ¼ −uμqμ, ω̄ ¼ −uμq̄μ, and fðEÞ and f̄ðĒÞ are
given by the Fermi-Dirac distribution or the Pauli blocking
factor with the degeneracy parameter of electron and
antielectron depending on whether production or absorp-
tion is considered.
We can rewrite Iμνðqμq̄ν þ q̄μqνÞ and Iμνðqμq̄ν −

q̄μqνÞ as

Iμνðqμq̄ν þ q̄μqνÞ ¼ A
Q4

E2
Q
uμuνðqμq̄ν þ q̄μqνÞ þ ðB1 þ B2Þ

Q2

EQ
uμQνðqμq̄ν þ q̄μqνÞ

þ CQμQνðqμq̄ν þ q̄μqνÞ þDQ2gμνðqμq̄ν þ q̄μqνÞ

¼
�
A

2ωω̄

ðωþ ω̄Þ2 −
1

2
ðB1 þ B2Þ þ

1

2
CþD

�
Q4

¼ π

64

�
3G0 − G2 −

G0 − 3G2

α2
δ2
�
Q4 ðE34Þ

and

Iμνðqμq̄ν − q̄μqνÞ ¼ B1

Q2

EQ
uμQνðqμq̄ν − q̄μqνÞ þ B2

Q2

EQ
Qμuνðqμq̄ν − q̄μqνÞ

¼ −
1

2
ðB1 − B2Þ

ω − ω̄

ωþ ω̄

¼ π

16

G1

α
δQ4; ðE35Þ

respectively, with δ ¼ ω−ω̄
ωþω̄. Then, R is given in the form,

R ¼ G2
F

32πωω̄

�
ðC2

V þ C2
AÞ
�
3G0 −G2 −

G0 − 3G2

α2
δ2
�
− 8CVCA

G1

α
δ

�
Q4 ðE36Þ

¼ 2G2
F

3π

�
ðC2

V þ C2
AÞ

3

16

�
3G0 − G2 −

G0 − 3G2

α2
δ2
�
−
3

2
CVCA

G1

α
δ

�
ωω̄ð1 − μÞ2: ðE37Þ

Here, μ is the cosine of the angle between the spatial part of qμ and q̄μ in the fluid rest-frame, which satisfies

qμq̄μ ¼ ωω̄ð1 − μÞ. For given δ and μ, α can be given as α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ð1 − δ2Þð1 − μÞ

q
. Hence, also with the fact

that x ¼ EQ

2kBT
¼ ωþω̄

2kBT
, R is given as a function of ω, ω̄, and μ as well as the temperature, T, and electron degeneracy

parameter, η.
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