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We construct magnetized stars composed of a fluid stably stratified by entropy gradients in the

framework of general relativity, assuming ideal magnetohydrodynamics and employing a barotropic

equation of state. We first revisit basic equations for describing stably stratified stationary axisymmetric

stars containing both poloidal and toroidal magnetic fields. As sample models, the magnetized stars

considered by Ioka and Sasaki [23], inside which the magnetic fields are confined, are modified to the ones

stably stratified. The magnetized stars newly constructed in this study are believed to be more stable than

the existing relativistic models because they have both poloidal and toroidal magnetic fields with

comparable strength, and magnetic buoyancy instabilities near the surface of the star, which can be

stabilized by the stratification, are suppressed.
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I. INTRODUCTION

Recent observations established that soft-gamma repeat-
ers (SGRs) and anomalous x-ray pulsars (AXPs) are the so-
called magnetars, i.e., highly magnetized neutron stars
whose surface field strength is as large as �1014–1015 G
[1–5]. The presence of the magnetars has activated studies
on equilibrium configurations of magnetized stars, which
have a long history.

Since the pioneering work by Chandrasekhar and Fermi
[6], an enormous number of studies has been done for
exploring structures of magnetized stars: Prendergast [7]
and Woltjer [8] calculated equilibrium configurations
of magnetized stars having mixed poloidal-toroidal
fields, where the magnetic fields are treated as first-order
perturbations around a spherical star (see also Ref. [9]).
Monaghan [10] studied magnetized stars containing purely
poloidal magnetic fields. Ioka [11] developed the works by
Prendergast and Woltjer into those of second-order pertur-
bations to study magnetic effects on the stellar structures.
He also employed the results obtained to explain magnetar
activities. Miketinac obtained magnetized stars containing
purely toroidal fields [12] and purely poloidal fields [13] by
solving exact master equations numerically. Tomimura and
Eriguchi developed a numerical method for obtaining mag-
netized stars with mixed poloidal-toroidal fields using a
nonperturbative technique [14] (see also Refs. [15–17]).
Duez and Mathis variationally considered the lowest-
energy equilibrium states for a fixed magnetic helicity and
constructed equilibria of magnetized stars having mixed
poloidal-toroidal fields by a perturbation technique [18].

General relativistic models of magnetized neutron stars
have been also explored. Bocquet et al. [19] and Cardall
et al. [20] obtained relativistic neutron star models with
purely poloidal magnetic fields. Using a perturbative tech-
nique, Konno et al. [21] calculated similar models. Kiuchi
and Yoshida [22] computed magnetized stars with purely

toroidal fields. Ioka and Sasaki [23], Colaiuda et al. [24],
and Ciolfi et al. [25,26] derived relativistic stellar
models having both toroidal and poloidal magnetic fields
with a perturbative technique. Although progress has been
achieved in this field, further studies are required because
all the magnetized star models are constructed by some
special magnetic-field configurations which may not be
realistic. In particular, it is not clear at all whether their
models are stable.
The stability of the magnetized star is an important

issue, because only stable equilibrium models are viable.
Stability analyses of magnetized stars have been performed
by many works, since the pioneering work by Tayler [27],
who showed that stars having purely toroidal magnetic
fields are unstable. Wright [28] subsequently showed that
there is the same type of the instability, the so-called pinch-
type instability, for stars containing purely poloidal mag-
netic fields. He also suggested the possibility that stars
having mixed poloidal-toroidal magnetic fields may be
stable if the strength of both components is comparable
(see also Refs. [29,30]). Assche et al. [31] proved that the
pinch-type instability, in general, arises in magnetized stars
with purely poloidal fields, and Wright [28] and Markey
and Tayler [29] studied this instability for particular
magnetic-field configurations. Flowers and Ruderman
[32] found that another type of instability occurs in purely
poloidal magnetic-field configurations.
All those classical stability analyses have been done

by a method of an energy principle in the framework of
Newtonian dynamics (see also Refs. [33,34]). Another
approach is a local analysis, with which Acheson [35]
investigated the stability of rotating magnetized stars con-
taining purely toroidal fields in detail in the framework of
Newtonian dynamics (see also Refs. [36,37]) and derived
detailed stability conditions for purely toroidal magnetic
fields buried inside rotating stars with dissipation. Note
that although it is an approximate approach, the local
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analysis can take account of realistic effects on the stability
like rotation, heat conduction, and resistivity, which cannot
be included in a method of the energy principle. Bonanno
and Urpin analyzed the axisymmetric stability [38] and
the nonaxisymmetric stability [39] of cylindrical equilib-
rium configurations possessing mixed poloidal-toroidal
fields, while ignoring compressibility and stratification of
the fluid.

Recently, the stability problem of the magnetized star
has been approached from another direction. By following
the time evolution of small random initial magnetic fields
around a spherical star in the framework of Newtonian
resistive magnetohydrodynamics, Braithwaite and Spruit
[40,41] obtained stable configurations of a magnetized star
which are formed as a self-organization phenomenon.The
resulting stable magnetic fields have both poloidal and
toroidal components with comparable strength, and their
results support the conjecture for stability conditions of the
magnetized star given by the classical studies mentioned
before. By using the numerical magnetohydrodynamics
simulation, Braithwaite [42] studied stability conditions
for the magnetized stars and obtained a stability condition
for his models given in terms of the ratio of the poloidal
magnetic energy to the total magnetic energy which is of
order unity. Duez et al. showed that magnetized stars
constructed in Ref. [18] exhibit no instability for several
Alfvén time scales in their numerical simulations [43].
This fact reconfirms the results given by Braithwaite.
Lander and Jones explored the stability of magnetized stars
by numerically solving the time evolution of linear pertur-
bations around the stars in their series of papers [44–46].
For the purely toroidal/poloidal field cases, their results are
consistent with those of the classical stability analysis, i.e.,
the pinch-type instability is observed near the symmetry
and the magnetic axes for the purely toroidal and purely
poloidal field cases, respectively. They also assessed the
stability of various magnetized stars with mixed poloidal-
toroidal fields and found that all their models considered
suffer from the pinch-type instability even for the cases in
which the poloidal and toroidal components have compa-
rable strength [46]. It is obvious that the results by Lander
and Jones are incompatible with those by Braithwaite and
his collaborators [42,43]. Lander and Jones discussed the
possibility that some physics missing in their study would
suppress the instability they found. We infer that in par-
ticular, stratification of the fluid will be a key ingredient,
which is taken into account in the analyses of Refs. [42,43]
but not in the analyses of Ref. [46]. We will return to this
point later.

General relativistic magnetized stars have been also
analyzed recently. By numerical-relativity simulations,
Kiuchi et al. [47,48] investigated the stability of the
magnetized stars with purely toroidal magnetic fields
obtained by Kiuchi and Yoshida [22]. They showed that
the stars with some specific distributions of magnetic fields

are stable against axisymmetric perturbations, but all the
models considered are unstable against nonaxisymmetric
perturbations due to the strong magnetic buoyancy insta-
bility near the surface of the stars. The initial behavior of
the instability observed in Refs. [47,48] is consistent with
that expected by the Newtonian linear analyses by Acheson
[35]. Lasky et al. [49] and Ciolfi et al. [50] showed
by numerical-relativity simulations that the purely poloidal
magnetic fields, obtained by Bocquet et al. [19], are
unstable due to the pinch-type instability near the magnetic
axis as predicted by the Newtonian linear analyses [28,29].
All these recent general relativistic magnetohydrody-

namics simulations have contributed a lot to the progress
of the stability analyses of general relativistic magnetized
stars. However, the numerical simulations have been per-
formed for equilibrium stars composed of nonstratified
fluids. The assumption of nonstratification is often used
and quite reasonable as a first approximation for exploring
cold neutron stars, even though the cold neutron star is
expected to be highly stably stratified by the composition
gradient (see, e.g., Refs. [51–53]). If the effects of mag-
netic fields are taken into account for the neutron star
models in their stability analysis, however, the situation
changes drastically. As discussed by many authors, e.g.,
Reisenegger [54] and Kiuchi et al. [48], it has long been
known that the magnetic buoyancy makes the magnetized
star unstable and that the stable stratification is necessary to
remove the magnetic buoyancy instability (the so-called
Parker instability [55]). It should be emphasized that in the
assumption that the stellar matter is stably stratified,
Braithwaite and Spruit [40,41] obtained stable magnetized
stars of simple magnetic configurations in their numerical
simulations. Therefore, we infer that a stable stratification
is one of the key ingredients for stable configurations of
the magnetized stars. Note that Lander and Jones [46]
indicated the possibility that for stars containing mixed
poloidal-toroidal magnetic fields, some weak instability
associated with poloidal magnetic fields may not be
removed by stable stratification (see also Ref. [38]).
However, at the moment, no definite conclusion has been
obtained. A reason that nonstratified magnetized stars are
employed for the stability analyses in general relativity is
that no model of stratified magnetized stars has been con-
structed, although in the framework of Newtonian dynamics,
magnetized stars with stable stratification due to composition
gradients have been obtained [56–58].
In this paper, thus, we study stably stratified and mag-

netized stars in the framework of general relativity aiming
at giving a prescription for constructing them. First of all,
we describe a general formulation to obtain stationary
axisymmetric magnetized stars composed of both toroidal
and poloidal magnetic fields with stratification due to
entropy gradients assuming ideal magnetohydrodynamics
and employing a barotropic equation of state. As sample
models, the magnetized stars considered by Ioka and
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Sasaki [23], which contain poloidal and toroidal fields of
comparable strength only inside the stars, are modified to
be the ones stably stratified. Note that, to date, no general
relativistic magnetized stars containing mixed poloidal-
toroidal fields have been constructed with a nonperturba-
tive approach because of difficulties in the treatment of
noncircular spacetimes (see, e.g., Ref. [59]). Finally, we
describe the reason that the magnetized stars obtained in
the present study are more stable than the existing relativ-
istic models.

II. BASIC EQUATIONS FOR THE
GENERAL RELATIVISTIC IDEAL
MAGNETOHYDRODYNAMICS

We consider perfect fluids coupled with electromagnetic
fields, described by the basic equations summarized as
follows. The baryon mass conservation equation is

r�ð�u�Þ ¼ 0; (1)

where � and u� are the rest-mass density and the fluid four-
velocity, respectively, with r� being the covariant deriva-

tive associated with the metric g��. The two sets of the

Maxwell equations are

r�F�� þr�F�� þr�F�� ¼ 0; (2)

r�F
�� ¼ 4�J�; (3)

where F�� and J� are the Faraday tensor and the current

four vector, respectively. The total energy-momentum
conservation law is

r�T
�� ¼ 0; (4)

where T�� is the total energy-momentum tensor,
defined by

T�� ¼ �hu�u� þPg�� þ 1

4�

�
F��F�

� � 1

4
g��F��F��

�
;

(5)

with h and P being the specific enthalpy and the pressure,
respectively. Here, the specific enthalpy is written, in terms
of the specific internal energy ", the pressure P, and the
rest-mass density �, by

h � 1þ "þ P=�: (6)

It is convenient to introduce the electric field E� and the

magnetic field B� observed by an observer associated with

the matter four-velocity u�, defined by

E� ¼ F��u
�; (7)

B� ¼ � 1

2
�����u

�F��; (8)

where ����� is the Levi-Civita tensor with �0123 ¼ ffiffiffiffiffiffiffi�g
p

with g being the determinant of the metric g��. In a large

number of intriguing astrophysical problems, fluids
coupled with electromagnetic fields can be approximated
with perfectly conductive ones. Thus, we further assume
the condition of perfect conductivity,

E� ¼ F��u
� ¼ 0: (9)

The dual tensor of F�� is then

F��� ¼ 1

2
�����F�� ¼ B�u� � B�u�: (10)

Equation (4) is often decomposed into two sets of equa-
tions, i.e., the energy equation and the momentum equation
in the fluid rest frame, respectively, given by

�u�r�T
�� ¼ u�r�f�ð1þ "Þg þ �hr�u

�

¼ �u�r�"þ Pr�u
� ¼ 0; (11)

q��r�T
�� ¼ �hu�r�u� þ q��r�P� F��J

� ¼ 0; (12)

where q�� � g�� þ u�u�. The perfect conductivity con-

dition has been used to derive Eqs. (11) and (12). Using
Eq. (1) and the first law of thermodynamics,

d" ¼ P

�2
d�þ TdS; (13)

Eq. (11) is recast into the entropy equation,

u�r�S ¼ 0; (14)

where S and T are the specific entropy and the temperature,
respectively.
To construct a magnetized star, we employ barotropic

equations of state given by

P ¼ Pð�Þ; " ¼ "ð�Þ: (15)

This equation of state is often used when studying a
realistic star.
It should be noted that nonstratified isentropic fluids,

characterized by d" ¼ ��2Pd�, have been assumed
in a large number of studies of neutron stars in general
relativity. When studying cold neutron stars in a chemical
equilibrium, this simplification may be accepted. However,
this is not the case if effects of magnetic fields are taken
into account. As pointed out by many authors (see, e.g.,
Refs. [48,54]), the stable stratification is a necessary con-
dition for magnetized stars to be stable. The reason is that
magnetic flux tubes inside the star basically suffer from
magnetic buoyancy and are forced to move toward their
surface, resulting in a desperate instability of the stars. To
counteract this magnetic buoyancy and to stabilize the
stars, the stable stratification is required. For sufficiently
cold neutron stars, the proton-neutron composition gra-
dient is a candidate for the stratification [51]. When study-
ing the structure of a magnetized star, therefore, it is crucial
to take into account this effect. Thus, the condition, d" ¼
��2Pd�, which implies that the star is nonstratified, should
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not be a priori assumed. Note that whether the star is
barotropic or not is independent of whether the star is
stably stratified or not. With the one-parameter equation
of state (15), it is possible to have a stably stratified star.

III. MASTER EQUATIONS FOR EQUILIBRIUM
MAGNETIZED STARS WITH STABLE

STRATIFICATIONS

In this section, we derive the master equations for
describing stably stratified axisymmetric rotating stars
composed of mixed poloidal-toroidal magnetic fields.
We take the time and azimuthal coordinates as x0 ¼ t
and x3 ¼ ’, respectively. Then, components of the two
Killing vectors may be written as t� ¼ ��

0 and ’� ¼ ��
3 ,

where ��
� is the Kronecker delta. The other two spatial

coordinate variables are written as x1 and x2 in this section.
Thus, the quantities describing the equilibrium stars are
basically functions of x1 and x2 only. Henceforth, capital
Latin indices (A; B; C; � � � ) run from 1 to 2.

Because of the assumption of the axial symmetry and
stationarity, Eq. (14) is written as

uA@AS ¼ 0: (16)

This equation means that the specific entropy has to be
constant along streamlines on the stellar meridional plane
unless uA ¼ 0. However, the constant specific entropy
distribution along streamlines is not realized for stable
magnetized stars because of the following reason: For
stationary axisymmetric stars, streamlines on the meri-
dional plane, in general, are closed curves. Thus, it is
inevitable that there exits an unstably stratified region
(convectively unstable region) where ðr�PÞðr�SÞ< 0 is

satisfied. To construct a stably stratified (convectively sta-
ble) star, thus, we have to assume

uA ¼ 0: (17)

Then, we have no condition for S apart from the assump-
tion of the stationarity and the axial symmetry. In other
words, we can freely choose a functional form of S if
uA ¼ 0 is assumed.

The assumption, uA ¼ 0, is an essential difference be-
tween our study and the study of Ref. [23] in which the
isentropic meridional flow is taken into account. The fluid
four-velocity is, thus, given by

u� ¼ 	ðt� þ�’�Þ; (18)

where � is the angular velocity of the fluid and 	 ¼ u0.
From Eqs. (2) and (9), and the integrability condition

for the momentum equation (12), we have the following
relations:

FA3 ¼ @

@xA
�; (19)

F03 ¼ 0; (20)

F0A ¼ ��Fð�ÞF3A; (21)

ffiffiffiffiffiffiffi�g
p

F12 ¼ �̂ð�Þ; (22)

��Fð�Þu0 þ u3 ¼ 0; (23)

� ln	þ
Z dP

�h
�

Z
�ð�Þd�þ Ĉ ¼ 0; (24)

J3 ��FJ
0 ¼ �hf�ð�Þ þ 	u3�

0
Fg þ

F12

4�
ffiffiffiffiffiffiffi�g

p �̂0; (25)

where �F, �̂, and � are arbitrary functions of the flux
function �, which is the azimuthal component of the
vector potential A� associated with F�� as shown in

Eq. (19). Here, Ĉ is an integral constant, and the prime
denotes the derivative with respect to �. Note that �F is
sometimes called the angular velocity of the magnetic field
line. Substituting Eq. (18) into Eq. (23), we obtain

�F ¼ �: (26)

Equation (24) corresponds to the equation of the hydro-
static equilibrium.
For cases of nonstratified stars, the present formulation

may be derived from that of Ioka and Sasaki [23] by taking
a limit. First, we focus on Eqs. (16)–(18) of Ref. [23].
Using a relation

	ðu0 þ�u3Þ ¼ �1; (27)

or u�u� ¼ �1, we may rewrite Eq. (24) as

ðu0 þ�u3Þe
R
ðdP=�hÞ ¼ �e

R
�ð�Þd��Ĉ; (28)

which corresponds to Eq. (16) of Ref. [23]. We, therefore,
found that functions � and D in Ref. [23] correspond to

expðR dP
�hÞ and expðR�ð�Þd�� ĈÞ, respectively. Note

that � of Ref. [23] is exactly the same as h of the present
study and that h�1dh ¼ ð�hÞ�1dP in the isentropic case
d" ¼ ��2Pd�. Equations (17) and (18) of Ref. [23] are,
respectively, derived from the energy and angular momen-
tum conservation equations,

r�ðT�
�t

�Þ ¼ 0; r�ðT�
�’

�Þ ¼ 0: (29)

These may be explicitly written by

r�ð�hu�
�u�Þ þ r�

�
1

4�
F��F��


�

�
¼ 0; (30)

with 
� being t� or ’�. Since we assume the condition
(17), the first term in the left-hand side of Eq. (30) auto-
matically vanishes, and we obtain two relations,

X ¼ ffiffiffiffiffiffiffi�g
p

F12�; Y ¼ ffiffiffiffiffiffiffi�g
p

F12; (31)

where X and Y are arbitrary functions of the flux
function �. These relations were already derived in

Eqs. (21) and (22). Thus, we find that X¼�̂� and Y ¼ �̂.
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The functions X and Y are, in terms of the functions of
Ref. [23], C, E, and L, given by

X ¼ �4�
E

C
; Y ¼ �4�

L

C
: (32)

From Eq. (20) of Ref. [23], we haveD=C ¼ E=C��L=C.
As argued in Ref. [23], the no-meridional flow limit of
magnetized stars with mixed poloidal-toroidal magnetic
fields is given by the limit C ! 1 with D, L=C and E=C
kept finite. Thus, we find that D=C ¼ E=C��L=C
becomes 0 ¼ �4�E=Cþ 4��L=C ¼ X ��Y in this
limit, which is automatically satisfied by Eq. (31) in the
present situation.

Once the metric coefficients are given, all the compo-
nents of F�� are written as functions of � and @�=@xA

through the two arbitrary functions of the flux function,�F

and �̂. Using the Maxwell equation (3), thus, J0 ��FJ
3

appearing in the left-hand side of Eq. (25) can be written as
a second-order elliptic-type partial differential operator for
�ðx1; x2Þ. Equation (3) in conjunction with Eq. (25) may
then be solved to obtain a distribution of the magnetic
fields around a star. This equation is often called the
Grad-Shafranov (GS) equation [60] when it is written as
a partial differential equation for �.

It is useful to introduce some global quantities to char-
acterize equilibrium solutions of stars. For equilibrium
states of magnetized stars, the total baryon rest mass ~M�,
the internal thermal energy ~Eint, and the electromagnetic
energy ~EEM may be defined as

~M � ¼
Z

�	
ffiffiffiffiffiffiffi�g

p
d3x; (33)

~E int ¼
Z

�"	
ffiffiffiffiffiffiffi�g

p
d3x; (34)

~E EM ¼ 1

8�

Z
B�B�	

ffiffiffiffiffiffiffi�g
p

d3x: (35)

(see, e.g., Ref. [22].)

IV. MAGNETIC FIELDS AROUND A SPHERICAL
STAR AND THEIR EFFECTS ON
THE STELLAR STRUCTURES

A. Spherical stars with no magnetic field

We assume that the magnetic energy density is much
smaller than the matter density and pressure so that the
magnetic-field effects can be treated as perturbations on a
spherical nonmagnetized star. The background metric is
then given by

ds2 ¼ �e2�dt2 þ e2�dr2 þ r2ðd�2 þ sin2�d’2Þ; (36)

where � and � are functions of r [61]. The function 	 for
the spherical stars is written as

	 ¼ e��: (37)

The equilibrium state of a star is described by the set of the
following Tolman-Oppenheimer-Volkov equations [61]:

dm

dr
¼ 4�r2�ð1þ "Þ; (38)

dP

dr
¼ �e2��h

mþ 4�Pr3

r2
; (39)

d�

dr
¼ � 1

�h

dP

dr
; (40)

where m is defined by

m � r

2
ð1� e�2�Þ: (41)

For the unperturbed spherical stars, the gravitational
mass M, the total baryon rest mass M�, and the internal
thermal energy Eint are given by

M ¼ mðRÞ; (42)

M� ¼ 4�
Z R

0
�e�r2dr; (43)

Eint ¼ 4�
Z R

0
�"e�r2dr; (44)

where R denotes the circumferential radius of the star
defined by PðRÞ ¼ 0. The gravitational potential energy
W for the unperturbed stars is defined by

jWj ¼ M� þ Eint �M: (45)

B. Magnetic field around a spherical star

A profile of magnetic fields is determined by specifying

the functional forms of �F, �̂, and �, which are the
arbitrary functions of �. Following Ioka and Sasaki [23],
we assume that these three functions as well as the integral

constant, Ĉ, are given by

�F ¼ � ¼ �2�
2; (46)

� ¼ C1; (47)

�̂ ¼ L�; (48)

Ĉ ¼ C0 þ C2; (49)

where �2, C0, C1, C2, and L are constants. Because we
consider weak magnetic fields around a spherical star, it is
useful to introduce a smallness parameter  for which
� ¼ OðÞ. For the constants appearing in Eqs. (46)–(49),
we further assume that

�2 ¼ Oð1Þ; C0 ¼ Oð1Þ; C1 ¼ OðÞ;
C2 ¼ Oð2Þ; L ¼ Oð1Þ; (50)
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C0 is determined in the background equation for Eq. (24).
Then, up to the first order in , F�� is written as

F�� ¼

0 0 0 0

0 0 e���L csc�� @r�

0 �e���L csc�� 0 @��

0 �@r� �@�� 0

0
BBBBB@

1
CCCCCA;

(51)

and Eq. (25) becomes

J3 ¼ �hC1 þ e�2�L2�

4�r2sin2�
: (52)

Note that the contribution of �2 is neglected because it is a
higher-order quantity. In terms of �, J3 is given by

J3 ¼ 1

4�
r�F

3�

¼ � 1

4�e�þ�r2sin2�

�
@

@r

�
e��� @

@r
�

�

þ e�þ�

r2
sin�

@

@�

�
1

sin�

@

@�
�

��
: (53)

From Eqs. (52) and (53), we obtain the master equation for
the flux function � (the GS equation),

e���

�
@

@r

�
e��� @

@r
�

�
þ e�þ�

r2
sin�

@

@�

�
1

sin�

@

@�
�

��
þ 4�r2sin2��he2�C1 þ e2ð���ÞL2� ¼ 0: (54)

Because it is the azimuthal component of the vector poten-
tial, the flux function � may be expanded by the vector
harmonics with the axial parity as

� ¼ 4�C1

X1
l¼1

rlþ1c lðrÞ sin� @

@�
Plð�Þ; (55)

where Pl is the Legendre polynomial (see, e.g., Ref. [62]).
Substituting Eq. (55) into the GS equation (54) yields

d2c l

dr2
þ

�
dð�� �Þ

dr
þ 2ðlþ 1Þ

r

�
dc l

dr

þ
�
e2ð���ÞL2 þ lðlþ 1Þ

r2
ð1� e2�Þ

þ dð�� �Þ
dr

lþ 1

r

�
c l � �he2��1

l ¼ 0: (56)

Regular solutions of Eq. (56) near the center of the star
can be written as

c l ¼ a0 þ a2r
2 þ � � � ; (57)

where a0 and a2 are constants with a2 given by

a2 ¼�e�2�0L2�2ðlþ1Þ½ðlþ1Þ�2��2�
2ð2lþ3Þ a0þ 1

10
�0h0�

1
l :

(58)

Here, constants �0, �2, �2, �0, and h0 are defined in the
power-series expansion of the background quantities near
r ¼ 0 as follows:

� ¼ �0 þ �2r
2 þ � � � ; (59)

� ¼ �2r
2 þ � � � ; (60)

h ¼ h0 þ h2r
2 þ � � � ; (61)

� ¼ �0 þ �2r
2 þ � � � : (62)

Following Ref. [23], we focus on magnetized stars
whose exterior is vacuum and whose surface has no mag-
netic field. At the surface of the star, then, we need to
require two boundary conditions for the flux function,
given by

c l ¼ 0;
dc l

dr
¼ 0; at r ¼ R; (63)

where R is the radius of the unperturbed star. For the l � 1
cases, Eq. (56) becomes a homogeneous equation. In gen-
eral, then, the three boundary conditions, the regularity
condition at the center of the star and the surface boundary
conditions given by Eq. (63), cannot be satisfied simulta-
neously. In other words, we have to require c l ¼ 0 for
l � 1. For the l ¼ 1 case, due to the two boundary con-
ditions at the stellar surface, given in Eq. (63), the GS
equation becomes an eigenvalue equation with respect to
the two parameters a0 and L. The other parameter C1 can
be assigned freely and determines the strength of the
magnetic fields. The remaining constant C2 is related to
the pressure perturbation as discussed below.
The r and � components of the vector potential A� may

be obtained straightforwardly. If we set A� ¼ 0 by using a
gauge degree of freedom, F12 is given by

F12 ¼ �@�Ar ¼ e���L csc��

¼ 4�C1e
���Lr2c 1ðrÞ @

@�
P1ð�Þ: (64)

Requiring the regularity on the symmetry axis, we have

Ar ¼ �4�C1e
���Lr2c 1ðrÞP1ð�Þ: (65)

If another gauge condition is required, we may make a
gauge transformation

A� ! A� � @�ffðrÞP1ð�Þg; (66)

to obtain the vector potential which satisfies a required
gauge condition.

C. Stellar deformation due to the magnetic fields

As discussed before, the flux function in the present
situation is given by
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� ¼ 4�C1r
2c 1ðrÞ sin� @

@�
P1ð�Þ

� 4�C1�1ðrÞ
�
2

3
P2ð�Þ � 2

3

�
:

(67)

Thus, the energy-momentum tensor associated with the
electromagnetic fields TðemÞ�

�, defined by

TðemÞ�
� ¼ 1

4�

�
F��F�� � 1

4
�
�
� F��F��

�
; (68)

induces a deviation of the order of Oð2Þ from the back-
ground spherical matter distribution. The line element is
then perturbed as follows:

ds2 ¼ �e2�
�
1þ 2

X
i¼0;2

ð4�C1Þ2HiðrÞPið�Þ
�
dt2

þ e2�
�
1þ 2

e2�

r

X
i¼0;2

ð4�C1Þ2MiðrÞPið�Þ
�
dr2

þ r2f1þ 2ð4�C1Þ2K2ðrÞP2ð�Þgðd�2 þ sin2�d’2Þ
þ 2ð4�C1Þ2W2ðrÞ sin�@�P2ð�Þdrd’; (69)

where Hi, Mi, Ki, Ii, Vi, Wi ¼ Oð1Þ because C1 ¼ OðÞ.
Here, we employ the Regge-Wheeler gauge. In this per-
turbed spacetime, the function 	 in Eq. (18) is given by

	 ¼ e��

�
1� X

i¼0;2

ð4�C1Þ2HiðrÞPið�Þ
�

(70)

because �uA ¼ 0 and �u3 is the second-order quantity [see
Eqs. (17) and (46)]. Here, we have omitted the terms higher
thanOð2Þ. From Eq. (24), the pressure perturbation �P is,
in terms of the metric and the flux functions, written as

�P � ð4�C1Þ2
X
i¼0;2

�PiðrÞPið�Þ

¼ �h

�
C1�� C2 �

X
i¼0;2

ð4�C1Þ2HiðrÞPið�Þ
�
: (71)

Thus, we have

�P0 ¼ �h

�
� 1

6�
�1ðrÞ �H0ðrÞ � ~C2

�
; (72)

�P2 ¼ �h

�
1

6�
�1ðrÞ �H2ðrÞ

�
; (73)

where ~C2 � C2=ð4�C1Þ2.
We then obtain a set of the metric perturbation equations

as follows:

dM0

dr
¼ 4�r2�h

�
dð�þ �"Þ

dP

��
�P0

�h

�
þ 1

3
e�2�

�
d�1

dr

�
2

þ 1

3r2
ð2þ L2r2e�2�Þð�1Þ2; (74)

dH0

dr
¼ 4�re2��h

�
�P0

�h

�
þ e2�

r2

�
1þ 2r

d�

dr

�
M0

þ 1

3r

�
d�1

dr

�
2 þ e2�

3r3
ð�2þL2r2e�2�Þð�1Þ2; (75)

W2 ¼ 2

3
Le���ð�1Þ2; (76)

H2 þ e2�M2

r
¼ 2e�2�

3

�
d�1

dr

�
2 � 2e�2�

3
L2ð�1Þ2; (77)

1

r

�
dH2

dr
þdK2

dr

�
þd�

dr

dK2

dr
� 2

e2�

r2
ðK2þH2Þ

� e2�

r2
H2� e2�

r3

�
1þ 2r

d�

dr

�
M2

¼ 4�e2��P2� 1

3r2

�
d�1

dr

�
2� e2�

3r4
ð4þL2r2e�2�Þð�1Þ2;

(78)

dH2

dr
þ dK2

dr
þ 1

r

�
�1þ r

d�

dr

�
H2 � e2�

r2

�
1þ r

d�

dr

�
M2

¼ 4

3r2
�1

d�1

dr
: (79)

For the perturbation with l ¼ 0, it is convenient to obtain
M0 and �P0=ð�hÞ first. The equation for determining
�P0=ð�hÞ is derived from Eqs. (72) and (75) as

d

dr

�
�P0

�h

�
¼ � 1

6�

d�1

dr
� dH0

dr

¼ � 1

6�

d�1

dr
� 4�re2��h

�
�P0

�h

�

� e2�

r2

�
1þ 2r

d�

dr

�
M0 � 1

3r

�
d�1

dr

�
2

� e2�

3r3
ð�2þ L2r2e�2�Þð�1Þ2: (80)

Following Ref. [23], a new dependent variable Y2 is, for the
perturbation with l ¼ 2, introduced by

Y2 � H2 þ K2 � e�2�

6

��
d�1

dr

�
2 þ 4

r
�1

d�1

dr

þ 4e2�

r2
ð�1Þ2

�
; (81)

which facilitates the numerical computation. Then, two
independent variables Y2 and H2 may be determined by
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dY2

dr
¼ �2

d�

dr
H2 � r�h

3

�
2�1 þ r

d�1

dr

�

� 2

3
e�2�L2 d�

dr
ð�1Þ2 þ e�2� d�

dr

�
d�1

dr

�
2

þ 1

3r2

�
�2þ 2e�2�

�
1þ r

dð�þ �Þ
dr

�

þ e�2�L2r2
�
�1

d�1

dr
; (82)

d�

dr

dH2

dr
¼

�
1

r2
ð1� e2�Þ� 2

�
d�

dr

�
2 þ 4�e2�h�

�
H2

� 2
e2�

r2
Y2 � 2

3
e2��h�1

þ 2

3
e�2�

�
d�

dr

�
2
�
d�1

dr

�
2 þ 4

3r2
d�

dr
�1

d�1

dr

þ e�2�L2

3r2

�
e2�� 2r2

�
d�

dr

�
2
�
ð�1Þ2: (83)

Once�1, �P0=ð�hÞ,M0, Y2, andH2 are obtained, the other
perturbation quantities may be calculated algebraically
through Eqs. (72), (73), (76), (77), and (81).

Near the center of the star, the physically acceptable
solutions may be expanded in the power series of r as

�P0=ð�hÞ ¼ h00 þ h02r
2 þ � � � ; (84)

M0 ¼ r3ðm00 þm02r
2 � � �Þ; (85)

Y2 ¼ r4ðy20 þ y22r
2 þ � � �Þ; (86)

H2 ¼ r2ðh20 þ h22r
2 þ � � �Þ: (87)

Here, we have two options for determining a value of h00.
One is to set h00 ¼ 0, which corresponds to considering
sequences of the magnetized stars characterized by the
fixed central density. The other is to use h00 to keep the
total baryon mass ~M� constant for the magnetized stars.
This corresponds to considering sequences of the magne-
tized stars characterized by the fixed total baryon mass.
Following Ref. [23], we choose the latter option, i.e., on the
constant baryon mass sequences of the magnetized stars.

Outside the star, the master equations become

dM0

dr
¼ 0; (88)

dH0

dr
¼ M0

ðr� 2MÞ2 ; (89)

W2 ¼ 0; (90)

H2 þ M2

r� 2M
¼ 0; (91)

dY2

dr
¼ � 2M

rðr� 2MÞH2; (92)

dH2

dr
¼ �2

�
1

r
þ M

rðr� 2MÞ
�
H2 � 2

M
Y2: (93)

For the l ¼ 0 perturbation, the vacuum solutions are
given by

M0 ¼ M0ðRÞ ¼ const; H0 ¼ � M0ðRÞ
r� 2M

: (94)

As for the l ¼ 2 perturbation,manipulating Eqs. (92) and (93)
yields

� ðyþ 1Þðy� 1Þ d
2H2

dy2
� 2y

dH2

dy

þ
�
6þ 4

ðyþ 1Þðy� 1Þ
�
H2 ¼ 0; (95)

where y � r=M� 1. This is the associated Legendre
equation. Since lim

y!1H2 ¼ 0 for physically acceptable

solutions, we obtain

H2 ¼ DQ2
2ðyÞ; (96)

whereQm
l andD are the associated Legendre function of the

second kind and a constant, respectively. With a recurrence
relation forQm

l ,

dQm
l

dy
¼ ðlþmÞðl�mþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p Qm�1

l � my

y2 � 1
Qm

l ; (97)

we have

Y2 ¼ � 2Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p Q1
2ðyÞ: (98)

At the surface of the star, the outer solutions, given by
Eqs. (94), (96), and (98), are matched to the inner solutions
integrated from the center of the star with the boundary
conditions (84)–(87).

D. Global quantities characterizing magnetized stars

As mentioned before, the global physical quantities
(33)–(35) are useful for exploration of the magnetized
star. Perturbations due to the magnetic effects in the gravi-
tational mass, the total baryon rest mass ~M�, and the
internal thermal energy ~Eint are, respectively, given by

�M ¼ ð4�C1Þ2M0ðRÞ; (99)

�M� ¼ 4�ð4�C1Þ2
Z R

0
�e�r2

�
d ln�

dP
�P0 þ e2�M0

r

�
dr;

(100)

�Eint¼4�ð4�C1Þ2
Z R

0
�"e�r2

�
dlnð�"Þ

dP
�P0þe2�M0

r

�
dr:

(101)

SHIJUN YOSHIDA, KENTA KIUCHI, AND MASARU SHIBATA PHYSICAL REVIEW D 86, 044012 (2012)

044012-8



As already mentioned, we study the sequences of equilib-
rium states of the magnetized star characterized by the
fixed total baryon mass. Thus, the condition of �M� ¼ 0
is employed for determining values of h00 in Eq. (84),
which is related to the perturbations in the central density
of the star, ��c, through the relation

��c ¼ ð4�C1Þ2�h d�dP
��������r¼0

h00: (102)

The electromagnetic energy EEM is decomposed as

EEM ¼ EðpÞ
EM þ EðtÞ

EM; (103)

where EðpÞ
EM and EðtÞ

EM are the poloidal and toroidal
magnetic-field energies, respectively, given by

EðpÞ
EM ¼ 16�2C2

1

3

Z R

0

�
e��

�
d

dr
ðr2c 1Þ

�
2 þ 2e�r2c 2

1

�
dr;

(104)

EðtÞ
EM ¼ 16�2C2

1

3

Z R

0
L2e��2�r4c 2

1dr: (105)

Multipole moments are also global and physical quantities
characterizing the equilibrium star. The constant D
appearing in the outer solutions, Eqs. (96) and (98), is
related to the mass quadrupole moment �Q, defined by
�Q � 8M3D=5 (see, e.g., Refs. [23,62]).

Characteristic quantities for the stellar deformation due
to magnetic stress also feature the magnetized stars. The
surface of the star is defined by PðrÞ þ ð4�C1Þ2ð�P0ðrÞ þ
�P2ðrÞP2ð�ÞÞ ¼ 0. Thus, the radial displacement of the
fluid elements on the stellar surface, �r, is given by

�r ¼ ð�rÞ0 þ ð�rÞ2P2ð�Þ;
¼ �ð4�C1Þ2ð�P0ðRÞ þ �P2ðRÞP2ð�ÞÞ drdP ðRÞ: (106)

Here, ð�rÞ0 may be interpreted as an average change in the
radius of the star induced by the magnetic effects. The
degree of the quadrupole surface deformation due to
the magnetic stress is well-described by the ellipticity,
given by

e� ¼ � 3

2
ð4�C1Þ2

�ð�rÞ2
R

þ K2ðRÞ
�
; (107)

where e� is defined as a relative difference between
the equatorial and polar circumference radii of the star
[23]. Thus, e� < 0 (e� > 0) means that the star is prolate
(oblate).

Another physically important quantity of magnetized
objects is the total magnetic helicity H , which is con-
served in ideal magnetohydrodynamics, and is defined by

H �
Z

H0 ffiffiffiffiffiffiffi�g
p

d3x; (108)

where H0 is the time component of the magnetic helicity
four-current H�, defined by

H� � � 1

2
�����A�F��: (109)

Taking the covariant derivative of Eq. (109) yields

r�H
� ¼ � 1

2
F���F��: (110)

Thus,r�H
�¼0 if F��u

�¼0, i.e., F��� ¼ B�u� � B�u�,

and we confirm that the magnetic helicity H is a con-
served quantity in ideal magnetohydrodynamics. For the
present models, the total magnetic helicity is explicitly
written as

H ¼ 16�

3
ð4�C1Þ2L

Z R

0
e���r4c 2

1dr; (111)

where the surface boundary condition (63) has been
used. The dimensionless magnetic helicity, defined by
HM � H =M2, is used when its numerical value is
shown. The magnetic helicity is a measure of the net twist
of a magnetic-field configuration. Thus, the magnetic he-
licity vanishes for purely poloidal fields and for purely
toroidal fields. Some experiments and numerical computa-
tions show an interesting fact that the total magnetic
helicity is likely to be conserved even when the resistivity
cannot be ignored [40,63]. If this fact is retained for
the neutron star formation process, the total magnetic
helicity has to be approximately conserved during its for-
mation process.

V. NUMERICAL RESULTS

In this section, we present some numerical examples of
stably stratified stars composed of mixed poloidal-toroidal
magnetic fields. As one-parameter equations of state, we
employ the following one,

P ¼ ��ð1þð1=nÞÞ; (112)

" ¼ 1

�� 1

P

�
; (113)

where � and n are the polytropic constant and index,
respectively, and � denotes the adiabatic index, which is
defined by � ¼ ð@ lnP=@ ln�ÞS. �, n, and � are constants
and may be specified independently for the construction of
equilibrium stars, i.e., � is not 1þ 1=n, in general. We
define a general relativistic Schwarzschild discriminant A
for nonmagnetized spherical stars by

A � 1

�h

d��

dr
� 1

�

1

P

dP

dr
; (114)

where �� is the total energy density, defined by
�� � �þ �". Note that there is no unique definition for
the general relativistic Schwarzschild discriminant.
However, in the present context, only its sign matters.
For other definitions of it, see, e.g., Refs. [64–66].
Following Ipser and Lindblom [66], we employ a definition
of the Brunt-Väisälä frequency N � ffiffiffiffiffiffiffiffiffiffiffi�gA

p
with
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g � �e2ð���Þ 1

�h

dP

dr
: (115)

If there is a region of A > 0, the star has an unstably
stratified region and becomes convectively unstable there.
For the standard stars whose density profile everywhere
satisfies d�=dr < 0, the condition of the stable stratifica-
tion for the equations of state (112) and (113) is given by

�>
nþ 1

n
: (116)

Note that for the isentropic case, defined by �¼ðnþ1Þ=n,
the star is not stratified (marginally stable against convec-
tion), as already mentioned.

Hereafter, we consider the n ¼ 1 case for simplicity,
while we employ � ¼ 2 and 2.1: The � ¼ 2 models are
nonstratified ones, whose results are compared with those
given in Ref. [23] to check our numerical results. The
choice of � ¼ 2:1 comes form the following reason: As
argued by Reisenegger and Goldreich [51], the Brunt-
Väisälä frequency N from the proton-neutron composition
gradient inside neutron stars is approximated by

N �
ffiffiffi
x

2

r ffiffiffiffiffiffiffi
d�

dP

s
g; (117)

where x denotes the ratio of the number densities of
protons to neutrons. From Eq. (117), it is found that the
� ¼ 2:1 models have Brunt-Väisälä frequencies at the
stellar center similar to those of Reisenegger and
Goldreich’s models with x � 0:1, which is a reasonable
value for sufficiently cold neutron stars. Note that the
origins of the buoyancy in our models and normal neutron
stars are different. In our models, the buoyancy results
from the entropy gradient not the composition gradient.

First, we describe properties of the unperturbed stars. In
the Newtonian framework, the profiles of a star like a
density distribution are independent of values of � because
Newtonian gravity is determined only by the rest mass
density, and the pressure is assumed to be a function of
the rest mass density only. Thus, we may calculate ther-
modynamical structures of a star like an internal energy for
any value of � after determining the structure of a star. In
general relativity, by contrast, the profiles of the star do
depend on the value of � because P and " are a source of
gravity. Thus, we have to recalculate stellar profiles in
general relativity whenever a value of � is changed.

In Fig. 1, the gravitational mass M and the baryon mass
M� are plotted as functions of the central density of the star
q0 � �ðr ¼ 0Þ. Throughout this paper, we use units of
� ¼ 1 when showing numerical results. This figure shows
that values of M and M� for the � ¼ 2:1 models are larger
than those for the � ¼ 2 models for the same central
density. Figure 2 plots relative differences between the
� ¼ 2:1 and the � ¼ 2 models in the gravitational
mass M, the baryon mass M�, and the stellar radius R, as

functions of the central density q0. This shows that the
radius of the star increases with increasing � if one keeps
the central density constant. The reason is that an increase
in � reduces the total internal energy of the star and leads to
a decrease in an effective gravitational attraction force.
Figure 2 also shows that �M� > �M> �R for all the
values of q0 calculated in the present study and that a
typical value of the relative difference in the baryon mass
for a standard neutron star model with q0 � 0:2 is within
several percents. Thus, we may conclude that the � ¼ 2:1
model has properties quite similar to those of the � ¼ 2
model, except for the stability against convection: We
emphasize again that the stratification condition of the
� ¼ 2:1 model is absolutely different from that of the
� ¼ 2 model. Figures 1 and 2 show that the gravitational
mass, baryon mass, and radius of the stars tend to be
independent of � as q0 ! 0, i.e., in the Newtonian limit.

FIG. 1. Gravitational mass M and baryon mass M�, given as
functions of the central density q0.

FIG. 2. Relative differences of the gravitational mass M, the
baryon mass M�, and the radius R, given as a function of the
central density q0. Here, the relative difference of the physical
quantity Q½�� is defined by �Q � 2ðQ½2:1� �Q½2�Þ=ðQ½2:1� þ
Q½2�Þ.
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Henceforth, we will focus on the compact models with
M=R ¼ 0:1 and 0.2. The models having M=R ¼ 0:2 will
be a reasonable model of a neutron star. In Table I, some
global and physical quantities for the � ¼ 2 and 2.1 models
are tabulated.

Next, we explore the magnetic-field profile around the
background spherical stars and its effects on the stellar
structures. As already mentioned in the previous section,
the magnetic-field profile is determined by solving an
eigenvalue equation with respect to the eigenvalue L,
which is related to the toroidal magnetic-field strength
through L ¼ F12 sin�e

�����1. Then, a discrete sequence
of L is allowed for the magnetized stars satisfying the
boundary conditions (57) and (63). Table II lists a sequence
of the dimensionless eigenvalues L in units of R�1 for the
first six eigensolutions, where Li means the ith eigenvalue
L satisfying 0<L1 <L2 <L3 < � � � . For the models
with � ¼ 2, the values of L in units of R�1 are compared
with those given in Table I of Ref. [23], and we confirm that
our results are in excellent agreement with theirs.

Here, we should remark the following point. In the
study of Ref. [23], the meridional flow is, in general,
present. However, the meridional flow may be absent in
the solutions of Ref. [23]. This no-meridional-flow limit

is given by the limit j ~Cj ! 1 with ~L kept constant, in the
notation of Ref. [23]. Even if we take this limit, the
magnetic field remains unchanged (see Eqs. (83)–(86)
of Ref. [23]) although the meridional flow vanishes (see
Eqs. (88) and (89) of Ref. [23]). By using a relation

he�¼ const, which is satisfied for nonmagnetized ‘‘isen-
tropic’’ spherical stars, we also show for isentropic stars with
no meridional flow that basic equations of Ref. [23],
Eqs. (75), (94), (95), and (100)–(103), become equivalent
to our basic equations, Eqs. (56) and (74)–(79), (but note
some differences in notation and definition of physical quan-
tities, e.g., their ~L corresponds to our L). Here, it should be

emphasized that the parameter ~C associatedwith the strength
of the meridional flow does not appear in the equations of
Ref. [23], Eqs. (75), (94), (95), and (100)–(103), which fully
determine the structure of magnetized stars with no meri-
dional flow.
Table II shows that the dimensionless eigenvalues R� L

for the � ¼ 2:1model are approximately equal to those for
the � ¼ 2 model. The same result is found in the flux
function � if one regards �ðr; �Þ as a function of r=R
not as r. These facts imply that slight changes in � do not
affect values of R� L and �ðr=R; �Þ distributions.
Figures 3 and 4 display the profiles of magnetic fields;

eigensolutions of � and F12 with L ¼ L1 � L6 for the
spherical star with M=R ¼ 0:2 and � ¼ 2:1 (see the cor-
responding eigenvalues in Table II). Figure 3 shows how
lines of the magnetic force on the meridional cross section
behave, because an equi-� line corresponds to a line of the
magnetic force. These figures suggest that higher-order
eigensolutions have more nonuniform structures of the
magnetic fields. Figure 3 also shows that there is a negative
region of� for the models with L2, L4, and L6, while� is
everywhere non-negative for the models with L ¼ L1, L3,
and L5.
For analyzing properties of magnetic-field profiles, it is

helpful to introduce an orthonormal tetrad component of
the magnetic field, B�, given by

BðtÞ ¼ 0; BðrÞ ¼ �8�C1c 1 cos�;

Bð�Þ ¼ 4�C1e
��ðrc 0

1 þ 2c 1Þ sin�;
Bð�Þ ¼ 4�C1e

��Lrc 1 sin�

(118)

Then, we can define that Bc � jBðr ¼ 0Þj ¼ 8�C1c 1ð0Þ.
As mentioned before, profiles of Bð�Þ for the � ¼ 2:1

models are very similar to those for the � ¼ 2 models.
Their difference cannot be visible if Bð�Þ are plotted as

functions of r=R in the same figure even though no figure is
given in this paper. To show the dimensionless total mag-
netic helicity of the magnetized stars, HM, we follow
Ioka and Sasaki [23] and use a dimensionless parameter
which represents magnetic-field strength, defined by

TABLE I. Global and physical quantities for the background stars in units of � ¼ 1.

� M=R q0 M M� Eint=jWj
2.000 0.1000 0.070 27 0.1062 0.1118 0.4078

0.2000 0.255 82 0.1623 0.1780 0.5633

2.100 0.1000 0.069 83 0.1066 0.1124 0.3076

0.2000 0.248 93 0.1643 0.1820 0.5104

TABLE II. Dimensionless low-order eigenvalues Li in
units of R�1.

� Mode order M=R ¼ 0:1000 M=R ¼ 0:2000

2.000 RL1 5.792 3.907

RL2 8.315 5.601

RL3 10.80 7.257

RL4 13.26 8.903

RL5 15.71 10.54

RL6 18.16 12.18

2.100 RL1 5.787 3.909

RL2 8.316 5.619

RL3 10.80 7.283

RL4 13.26 8.937

RL5 15.71 10.59

RL6 18.16 12.23
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FIG. 3. Equi—� contours on the meridional cross section for the models characterized by L ¼ L1, L2, L3, L4, L5, and L6. Here,
z and$ are defined by z � r cos� and$ ¼ r sin�, respectively. The thick quarter circle shows the surface of the star, on which� ¼ 0
is, by the boundary condition, required. The black and white regions, respectively, correspond to the maximum and minimum values of
�. Since � vanishes outside the star, it can be seen that there is a negative region of � for the models with L2, L4, and L6, while� is
always positive for the models with L ¼ L1, L3, and L5.

FIG. 4. Equi—F12 contours on the meridional cross section for the models characterized by L ¼ L1, L2, L3, L4, L5, and L6. Here,
z and $ are defined by z � r cos� and $ ¼ r sin�, respectively. The thick quarter circle shows the surface of the star, on
which F12 ¼ 0 is, by the boundary condition, required. The black and white regions, respectively, correspond to the maximum
and minimum values of F12. Since F12 vanishes outside the star, it can be seen that there is a negative region of F12 for the models with
L2, L4, and L6, while F12 is always positive for the models with L ¼ L1, L3, and L5.
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RM � B2
cR

4

4M2
; (119)

which is as large as the ratio of the magnetic energy to the
gravitational energy.

Table III lists global physical quantities characterizing
the magnetized stars with mixed poloidal-toroidal fields;
the changes in the central density ��c, the gravitational
mass �M, the quadrupole moment �Q, the mean radius
ð�rÞ0, the ellipticity e�, the magnetic helicity HM, the
magnetic energy EEM, and the ratio of the poloidal mag-

netic energy EðpÞ
EM to the total magnetic energy EEM. In this

table, the results for the first six eigensolutions are shown,
and all the quantities are normalized to be nondimensional,
as given in the first row. By comparing the results shown in
Table III with those in Table 2 of Ref. [23], we can again
check the reliability of our results; ours are in agreement
with theirs for the � ¼ 2 models in an acceptable level.

Although there are slight numerical differences between
them, there is no qualitative difference between the results
of the � ¼ 2:1 and � ¼ 2 models (see Table III). Thus,
basic properties of the magnetized star described in
Ref. [23] hold for the present � ¼ 2:1 models, although
the convective stability is different and also any meridional
flow is absent in the present models. For the magnetized-
star sequences, characterized by the fixed baryon mass and
magnetic helicity, shown in Table III, the total gravitational

mass and the total magnetic energy increase with the mode
number i (or the eigenvalue L). This property is reasonable
due to the following reason: As found in Figs. 3 and 4,
higher-order eigensolutions, characterized by a lager
eigenvalue, have more nonuniform structures of the mag-
netic fields, which can usually store larger magnetic-field
energy. From Table III, we also find that all the models
obtained in this study are toroidal-magnetic-field-dominant

and that the value of EðpÞ
EM=EEM decreases as the mode

number i increases. The later property is well-explained
by the fact that L is interpreted as the ratio of the toroidal
magnetic-field strength to the poloidal magnetic-field one,
and it increases as the mode number i increases. The
magnetic hoop stress around the symmetry axis due to
the toroidal magnetic field tends to make the star prolate
like a rubber belt fastening around the waist of a star. This
is consistent with the facts that all the stars obtained in this
study have negative ellipticity e�, i.e., the star is prolate,
and that the degree of the quadrupole deformation mea-
sured by je�j becomes more pronounced for higher-order
solutions, as shown in Table III.

VI. DISCUSSION: THE STABILITY OF THE STARS

Checking the stability is an important issue to be ex-
plored after obtaining an equilibrium state of a magnetized
star, because unstable solutions lose their physical meaning

TABLE III. Global and physical quantities characterizing the magnetized stars with mixed poloidal-toroidal fields; the changes in
the central density��c, the gravitational mass�M, the quadrupole moment�Q, the mean radius ð�rÞ0, the ellipticity e�, the magnetic

helicityHM, the magnetic energy EEM, and the ratio of the poloidal magnetic energy EðpÞ
EM to the total magnetic energy EEM. Here, all

the quantities are normalized to be nondimensional, as given in the first row.

(�;M=R) L ��c=q0HM �M=MHM �Q=MR2HM ð�rÞ0=RHM e�=HM HM=RM EEM=jWjHM EðpÞ
EM=EEM

(2, 0.2) L1 0.2545 2:446� 10�2 �6:163� 10�3 �2:601� 10�2 �1:505� 10�2 2:556� 10�1 0.1903 0.3684

L2 0.4063 3:067� 10�2 �1:875� 10�2 9:007� 10�2 �4:580� 10�2 4:346� 10�1 0.2222 0.2785

L3 0.5307 3:634� 10�2 �3:293� 10�2 4:156� 10�2 �8:043� 10�2 1:153� 10�1 0.2606 0.2097

L4 0.6736 4:202� 10�2 �4:719� 10�2 7:387� 10�2 �1:153� 10�2 1:690� 10�1 0.3000 0.1607

L5 0.7967 4:780� 10�2 �6:120� 10�2 1:051� 10�1 �1:495� 10�1 7:632� 10�2 0.3404 0.1255

L6 0.9303 5:372� 10�2 �7:490� 10�2 1:353� 10�1 �1:829� 10�1 1:026� 10�1 0.3818 0.09996

(2, 0.1) L1 �0:042 12 1:777� 10�2 �1:957� 10�2 9:053� 10�2 �3:654� 10�2 2:777� 10�1 0.2488 0.3541

L2 0.1186 2:223� 10�2 �6:018� 10�2 1:845� 10�1 �1:123� 10�1 5:802� 10�1 0.3043 0.2588

L3 0.1856 2:650� 10�2 �1:036� 10�1 2:797� 10�1 �1:935� 10�1 1:349� 10�1 0.3612 0.1913

L4 0.3061 3:074� 10�2 �1:467� 10�1 3:733� 10�1 �2:738� 10�1 2:208� 10�1 0.4188 0.1444

L5 0.3825 3:507� 10�2 �1:886� 10�1 4:649� 10�1 �3:521� 10�1 9:250� 10�2 0.4777 0.1116

L6 0.4846 3:953� 10�2 �2:295� 10�1 5:547� 10�1 �4:284� 10�1 1:338� 10�1 0.5378 0.08816

(2.1, 0.2) L1 0.2227 2:417� 10�2 �6:186� 10�3 �1:747� 10�2 �1:511� 10�2 2:571� 10�1 0.1912 0.3694

L2 0.3599 3:047� 10�2 �1:892� 10�2 2:124� 10�2 �4:622� 10�2 4:146� 10�1 0.2245 0.2810

L3 0.4711 3:604� 10�2 �3:340� 10�2 5:790� 10�2 �8:158� 10�2 1:146� 10�1 0.2632 0.2120

L4 0.6008 4:162� 10�2 �4:800� 10�2 9:407� 10�2 �1:172� 10�1 1:638� 10�1 0.3029 0.1627

L5 0.7115 4:730� 10�2 �6:233� 10�2 1:292� 10�1 �1:523� 10�1 7:549� 10�2 0.3435 0.1272

L6 0.8324 5:311� 10�2 �7:635� 10�2 1:631� 10�1 �1:865� 10�1 9:981� 10�2 0.3851 0.1014

(2.1,0.1) L1 �0:039 00 1:852� 10�2 �1:952� 10�2 8:932� 10�2 �3:643� 10�2 2:777� 10�1 0.2490 0.3545

L2 0.1208 2:319� 10�2 �6:015� 10�2 1:832� 10�1 �1:122� 10�1 5:680� 10�1 0.3050 0.2597

L3 0.1884 2:763� 10�2 �1:038� 10�1 2:783� 10�1 �1:938� 10�1 1:343� 10�1 0.3620 0.1921

L4 0.3091 3:205� 10�2 �1:470� 10�1 3:719� 10�1 �2:745� 10�1 2:177� 10�1 0.4196 0.1451

L5 0.3861 3:655� 10�2 �1:892� 10�1 4:634� 10�1 �3:531� 10�1 9:192� 10�2 0.4786 0.1122

L6 0.4885 4:120� 10�2 �2:302� 10�1 5:531� 10�1 �4:298� 10�1 1:321� 10�1 0.5388 0.08865
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in the sense that they are not realized in nature. For the
present models, as observed in Sec. V, the gravitational
mass and the total electromagnetic energy increase with
the mode number i of the eigensolution, if we consider the
equilibrium sequences for a given baryon mass and a
magnetic helicity. This result is quite important and inter-
esting due to the following reason. If the total baryon mass
and magnetic helicity are conserved during the formation
process of neutron stars, as discussed before, it is likely that
the final state of the magnetic fields characterized by the
arbitrary functions of the flux function (46)–(48) and the
surface boundary condition (63) is the lowest-order eigen-
solution characterized by the smallest eigenvalue L ¼ L1

because it has the lowest gravitational mass and total
electromagnetic energy among the equilibrium solutions
characterized by the fixed baryon mass and magnetic he-
licity. We therefore conjecture that all the higher-order
solutions are unstable because there is an equilibrium state
with energy lower than theirs and that the solutions asso-
ciated with the lowest eigenvalue L ¼ L1 can be stable if
there is a stable solution among the present models.
Another important fact is that for the magnetic-field profile
characterized by L ¼ L1, their magnetic energy is most
equally divided into the poloidal and the toroidal magnetic
energies among the eigensolutions. This property is con-
sistent with the conjecture for stable magnetic configura-
tions given by the linear analyses; stable magnetized stars
contain both poloidal and toroidal components with com-
parable magnetic energies.

Most of the magnetized-star models constructed in the
framework of general relativity so far were nonstratified
and, therefore, marginally stable against convection.
Those nonstratified models are, in general, highly unstable
against the magnetic buoyancy in the vicinity of the stellar
surface, in the presence of magnetic fields. For strongly
magnetized stars like magnetars, as shown by Kiuchi et al.
[48], the magnetic buoyancy instability induces a convec-
tive motion near the surface of the star and fully destroys
initially coherent magnetic fields inside the star. To stabi-
lize this magnetic-buoyancy instability, the stratification
with the strength sufficient to overcome the magnetic buoy-
ancy are necessary as a stabilizing agent. This stabilization
effect prevails in nonrotating diffusionless stars with purely
toroidal magnetic fields as argued by Acheson [35]. When
N2 	 !2

A > 0, his dispersion relation (see Eq. (3.20) of

Ref. [35]) has four solutions, ! � 
k�Nðk2r þ k2�Þ�ð1=2Þ
and ! � 
m!A, where ! and !A mean the oscillation
and the Alfvén frequencies, respectively, and kr, k�, and m
denote the vertical, horizontal, and azimuthal wave num-
bers, respectively. These four solutions are composed of
propagating waves; the former is an internal gravity wave
and the latter an Alfvén wave. We, therefore, confirm that
there is no magnetic-buoyancy instability as long as N2 	
!2

A > 0. In Fig. 5, we plot squares of the Brunt-Väisälä

frequency N2 and the Alfvén frequency !2
A for a � ¼ 2:1

model characterized by M=R ¼ 0:2 and L ¼ L1 as func-
tions of the dimensionless radius r=R. Here, the Alfvén
frequency is evaluated on the equatorial plane and defined

by!A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�B�=ðð4��hþ B�B�Þr2Þ

q
, and the strength of

the magnetic fields is determined by the condition
EEM=jWj ¼ 2:5� 10�2, which corresponds to very strong
magnetic fields � 1016 G for a typical neutron star. This
figure shows that the Brunt-Väisälä frequency, N, is much
larger than the Alfvén frequency !A in the region of
r > 0:5R for the models with L ¼ L1. Thus, we can predict
that this model is stable against the magnetic buoyancy
vicinity of the stellar surface. It should be noted that the
physical origin of the antibuoyancy force in our models is
different from that in real neutron stars, as mentioned
before, because the former comes from the entropy gradient
and the later mainly from the composition gradient (see,
e.g., Ref. [51]). For magnetic fields, however, whether stars
are stably stratified or not is important regardless of the
origin of the antibuoyancy force.
As pointed out by Acheson [36], the magnetic hoop

stress caused by the strong toroidal magnetic fields governs
dynamics of the perturbation near the center of the star.
This fact may be confirmed from Fig. 5, which shows
N � !A near the center of the star. Thus, the stratification
is not helpful near the center of the star in the presence of
the magnetic instability. For the central part of the star, as
mentioned before, the presence of the poloidal magnetic
fields having comparable strength with the toroidal ones
will suppress the pinch-type instabilities. By solving linear
perturbation equations around magnetized star models in
the framework of Newtonian dynamics, Lander and Jones
showed that this suppression of the magnetic instability

FIG. 5. Squares of the Brunt-Väisälä frequency N2 and the
Alfvén frequency !2

A, given as functions of the dimensionless

radius r=R. Here, the Alfvén frequency is defined by !A �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�B�=ðð4��hþ B�B�Þr2Þ

q
and evaluated on the equatorial

plane (� ¼ �=2), and the strength of the magnetic fields are
determined by the condition EEM=jWj ¼ 2:5� 10�2.
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indeed occurs, although the presence of the poloidal mag-
netic fields leads to another instability associated with
themselves [46] (see also Refs. [38,39]). Thus, the results
of their numerical simulation lessen the possibility that the
pinch-type magnetic instabilities are completely removed
for the stars containing the mixed poloidal-toroidal mag-
netic fields with comparable strength. Although Lander
and Jones’s results obviously conflict with those by
Braithwaite and his collaborators [40–43], we have so far
had no definite conclusion to this controversy. One impor-
tant difference between their analyses is in the treatment of
the resistivity of the matter; Lander and Jones employed
the ideal magnetohydrodynamics approximation, whereas
Braithwaite and his collaborators took into account the
resistivity. This might be a key to the solution of this
problem. Toward a definite answer to this stability prob-
lem, we need further studies on the stability of the magne-
tized stars.

As such a study, we plan to perform a stability analysis
of the present magnetized star models by general relativ-
istic magnetohydrodynamics simulations like those done
by Kiuchi et al. [47,48]. The present stably stratified
models characterized by L ¼ L1 satisfy the following
conditions: They have both poloidal and toroidal magnetic
fields with comparable strength to suppress the hoop-stress
instability inside the star, and, in addition, the fluid con-
structing the magnetized star is stably stratified with
strength sufficient to overcome the magnetic buoyancy
near the stellar surface. Thus, it is obvious that some major
magnetic instabilities will be reduced in the present mag-
netized star models. This will make the stability problem
more tractable.

As discussed in Kiuchi et al. [22,47], it is reasonable to
expect that the toroidal component of the magnetic fields is
much larger than the poloidal component inside the neu-
tron star at least soon after its birth. The reason for this is
that the winding of poloidal magnetic fields caused by a
rapid and differential rotation during the core collapse
would create large toroidal fields. Most of general relativ-
istic magnetized star models obtained in numerical com-
putations so far can, however, have toroidal magnetic fields
much weaker than poloidal ones [24–26]. Their minimum
ratio of the poloidal magnetic field energy to the total
magnetic energy is � 0:92, which is much larger than

those of the present models. (For magnetized star models
in the framework of the Newtonian dynamics, see, e.g.,
Ref. [67].) Their magnetic fields are composed of the
mixed poloidal—toroidal twisted torus magnetic fields in-
side the star and nearly dipolar magnetic fields outside the
star. They may look quite plausible for the magnetosphere
of neutron stars. However, weak toroidal magnetic-field
strength seems to be unlikely for the strongly magnetized
neutron stars. Although the magnetic field vanishes outside
the star for the present models, which is quite unrealistic,
the present models would give a reasonable inside structure
of the strongly magnetized neutron stars because of their
large toroidal magnetic-field strength. For obtaining more
realistic models composed of a stably stratified fluid, basic
equations given in Eqs. (19)–(25) may be employed as far
as ideal magnetohydrodynamics and the barotropic equa-
tions of state are employed.

VII. SUMMARY

We constructed the magnetized stars composed of a
stratified fluid in the framework of general relativity. By
assuming ideal magnetohydrodynamics and employing a
barotropic equation of state, we first derive basic equations
for describing stably stratified stationary axisymmetric
stars containing both poloidal and toroidal magnetic fields.
As sample models, the magnetized star considered by Ioka
and Sasaki [23] are modified to the ones stably stratified.
The resulting models have both poloidal and toroidal mag-
netic fields with comparable strength. The magnetized
stars newly constructed in this study are believed to be
more stable than the existing relativistic models because
they have both poloidal and toroidal magnetic fields with
comparable strength, and the magnetic buoyancy instabil-
ity near the surface of the star, which can be stabilized by
the stratification, are suppressed.
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