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We construct a new three-dimensional general relativistic magnetohydrodynamics code, in which a

fixed mesh refinement technique is implemented. To ensure the divergence-free condition as well as the

magnetic flux conservation, we employ the method by Balsara [J. Comp. Physiol. 174, 614 (2001); J.

Comp. Phys. 228, 5040 (2009)]. Using this new code, we evolve differentially rotating magnetized

neutron stars, and find that a magnetically driven outflow is launched from the star exhibiting a kink

instability. The matter ejection rate and Poynting flux are still consistent with our previous finding [M.

Shibata, Y. Suwa, K. Kiuchi, and K. Ioka, Astrophys. J. 734, L36 (2011)] obtained in axisymmetric

simulations.
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I. INTRODUCTION

Ground-based gravitational-wave detectors, Advanced
LIGO, Advanced VIRGO, and KAGRA will be in opera-
tion in the next five years [1]. The first observation of
gravitational waves, thus, will be achieved in the near
future. Among their sources of gravitational waves, coales-
cence of binary neutron stars (BNS) is the most promising
one, and the detection of gravitational waves from them
will provide us unique information of strongly gravita-
tional fields and properties of dense nuclear matter. The
BNS merger is also the potential candidate for the progeni-
tor of short-hard gamma-ray bursts [2]. For the theoretical
studies of the BNS mergers, numerical relativity is the
unique and robust approach. A number of numerical simu-
lations have been performed [3–19] since the first success
in 2000 [20].

Magnetic fields could play an important role in BNS
mergers because the inferred value of the magnetic-field
strength via the observed spin period P and their time
derivative _P is high as 1011–1014 G for radio pulsars, of
which more than 1800 are known to date [21]. During the
merger process, several mechanisms such as compression,
magnetic winding, and magnetorotational instability
(MRI) [22] could amplify their magnetic-field strength.
This amplified magnetic field could have an impact on the
dynamics of the mergers because it contributes to the
angular momentum transport and the magnetic pressure
may modify the structure of the objects formed after the
merger. Motivated by this expectation, several groups
have implemented the magnetohydrodynamics (MHD)
code in the framework of numerical relativity [23–28].
These numerical codes developed have been applied to
collapse of magnetized hypermassive neutron stars
(HMNS) [29–31], magnetized neutron star-black hole
binary merger [32,33], evolution of magnetized neutron
stars [34–36], and magnetorotational collapse of massive
stellar cores [24,37].

In the context of BNS mergers, several groups have
assessed what the role of magnetic fields is during the
inspiral and merger [38–42]. Their findings are summa-
rized as follows: As long as the magnetic-field strength
before the merger is not unrealistically large, e.g.,
1016–1017 G, the magnetic field does not give a strong
impact on the inspiral dynamics. When the external layers
of the two neutron stars come into contact, the Kelvin-
Helmholtz instability develops and forms vortexes.
Poloidal magnetic-field lines are curled by them and gen-
erate a toroidal field in a short time scale. The saturation
point of the magnetic-field strength is still under debate
because the field strength found in Ref. [40] is not as high
as found in Ref. [43]. If the total mass of BNS is large
enough to collapse to a black hole surrounded by a torus,
the magnetic field in the torus may be subject to the MRI
[41]. On the other hand, if the total mass is not large
enough, a long-lived HMNS [44] is born and the
magnetic-field amplification would be realized inside the
HMNS. The later case has not been explored in detail,
because high computational costs for a longterm well-
resolved simulation prevent this study.
The recent measurement of mass for PSR J1614-2230

ðMJ1916-2230 ¼ 1:97� 0:04M�Þ [45] gave a strong con-
straint on nuclear equations of state (EOS). Together
with the fact that the canonical observed mass of neu-
tron stars is 1:3–1:4M�, it is natural to infer that a
long-lived HMNS will be born in the merger of BNS
composed of neutron stars with the canonical mass [9].
This implies that it is mandatory to perform a long-term
and high-resolution simulation of magnetized BNS
mergers.
In Ref. [35], we have developed a three-dimensional

general relativistic magnetohydrodynamics (GRMHD)
code, which has an uni-grid structure with fish-eye coor-
dinates. The dynamical range of the BNS system is quite
large spanning from the neutron-star size to the wave
length of gravitational waves. Thus, we should implement
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a mesh refinement technique to save computational costs.
In the framework of GRMHD, the implementation of
mesh refinement techniques has been done in three meth-
ods. For all the approaches, a special care for preserving
the divergence-free condition of magnetic fields is taken.
In the first approach, equations for vector potentials in-
stead of magnetic fields are solved. In this method, any
unconstrained interpolations in the refinement boundaries,
where the boundary condition for child domains are
determined using the data of their parent domains, may
be allowed for preserving the divergence-free condition of
magnetic fields [40,46,47]. In the second approach, the
hyperbolic divergence-cleaning prescription is employed
to ensure the divergence-free condition of magnetic
fields [26,42]. The third one [24] is based on the
Balsara’s constrained-transport scheme, in which a spe-
cial interpolation scheme in the refinement boundaries is
mandatory to preserve the divergence-free condition and
the magnetic-flux conservation [48,49]. We construct a
new GRMHD code employing the third approach (mod-
ifying the original scheme for the use in the vertex-
centered grid) to precisely guarantee the divergence-free
condition and the magnetic-flux conservation. It is worthy
to note that this method is likely to work well also in the
presence of a black hole.

As the first application of our new code, we extend our
previous work in Ref. [36], in which an axisymmetric
HMNS with magnetic fields was evolved. In that work,
we found that a mildly relativistic outflow is driven from
the HMNS accompanying a strong Poynting flux of mag-
nitude proportional to B2R3� (where B, R, and � denote
the typical magnitudes of the magnetic field, radius, and
angular velocity of the HMNS) emitted toward the direc-
tion of the rotational direction. However, it was not clear
that three-dimensional effects, in particular the effect of
nonaxisymmetric instabilities such as kink instability [50],
would not play a role in this phenomenon. For a more
physical study, we obviously had to perform a three-
dimensional simulation.

The paper is organized as follows: In Sec. II, the for-
mulation to solve Einstein’s equations as well as GRMHD
equations are briefly summarized. In addition, we briefly
describe a method to implement the fixed mesh refinement
(FMR) algorithm in particular for magnetic fields, and also
mention the initial condition and grid setup. In Sec. III, we
present numerical results for the evolution of a rapidly
rotating magnetized neutron star, focusing on the proper-
ties of the material and Poynting flux ejected from it.
Section IV is devoted to discussing the implication of our
numerical results and a summary of this paper. In the
Appendices, our method for implementing the FMR
scheme and results for the several standard test-bed simu-
lations are shown. Throughout this paper, Greek and Latin
indices denote the spacetime and spatial components,
respectively.

II. FORMULATION, METHOD AND MODEL

A. Formulation and numerical issue

We study the evolution of a rapidly rotating magnetized
neutron star by a three-dimensional GRMHD simulation in
the framework of ideal MHD. The formulation and nu-
merical scheme for solving Einstein’s equations are the
same as in Ref. [35], in which one of the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulations [51–54]
is employed, and a fourth-order finite-differencing scheme
in the spatial direction and a fourth-order Runge-Kutta
scheme in the time integration are implemented. The ad-
vection terms in Einstein’s evolution equations are
evaluated with a fourth-order lopsided finite-differencing
scheme, as, e.g., in Ref. [55]. A conservative shock-
capturing scheme is employed to integrate GRMHD equa-
tions. Specifically, we use a high resolution central scheme
[56] with the third-order piece-wise parabolic interpolation
and a steep min-mod limiter.
We implement a FMR algorithm to our original three-

dimensional GRMHD code [35] which has an uni-grid
structure with fish-eye coordinates [57]. Our FMR scheme
is essentially the same as an adaptive-mesh refinement
(AMR) scheme of SACRA [6], and enables us to assign
fine grids in the vicinities of neutron stars or black holes,
while enlarging the computational domain which covers a
local wave zone of gravitational waves with less computa-
tional cost. The schemes for solving Einstein’s equations
and hydrodynamics equations (the continuity, momentum,
and energy equations) are also the same as those of SACRA
code [6], in which geometric variables and fluid variables
(density, pressure, internal energy, specific momentum,
and specific energy) are placed at the vertex-centered grids
and the grid spacing of a ‘‘parent’’ domain is twice as large
as that of its ‘‘child’’ domain. Each domain is equally
composed of ð2N þ 1; 2N þ 1; 2N þ 1Þ Cartesian grid
zones for ðx; y; zÞ, each of which covers the interval
½�N�xl; N�xl� for the x-, y- and z-directions with �xl
being the grid spacing of the lth FMR level. The label l
varies from 1 (for the coarsest and largest domain) to lmax

(for the finest and smallest one). The prolongation, i.e.,
interpolation from a ‘‘parent’’ domain to a ‘‘child’’ domain,
of the geometric and fluid variables in the refinement
boundaries are done with a fifth-order Lagrange interpola-
tion. Because our grid is located at the vertex centers, the
restriction procedure, i.e., interpolation from a ‘‘child’’
domain to a ‘‘parent’’ domain, is straightforwardly done,
by simply copying the data from a child domain to its
parent domain.
On the other hand, for integrating the induction equa-

tion, we need a special care to preserve the divergence-free
condition of magnetic fields and to guarantee the magnetic-
flux conservation. For this purpose, several GRMHD codes
constructed so far [25,27,28,46] have implemented either
the constrained-transport (CT) [58] or flux-CT scheme
[59]. In the code of implementing FMR or AMR algorithm,
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we are required to take an additionally special care when
performing the prolongation and restriction procedures of
magnetic fields in the refinement boundaries, as described
in Refs. [46–49]. AMR-GRMHD codes of Refs. [40,46]
exploited a method of evolving the vector potential. This
method guarantees the preservation of the divergence-free
condition for magnetic fields avoiding complex interpola-
tion procedures in the refinement boundaries. However,
this method does not guarantee the magnetic-flux conser-
vation in the refinement boundaries, because the magnetic
fields are calculated by a finite differencing of the vector
potential and this procedure does not in general guarantee
the magnetic-flux conservation.

Alternatively, the AMR-GRMHD code of Ref. [26] em-
ploys a hyperbolic divergence-cleaning technique [60]. In
this scheme, a scalar field is introduced, which is coupled
to the system of the MHD and induction equations. No
special prescription is needed for the finite differencing
when solving GRMHD equations, and a nonzero diver-
gence of magnetic fields either propagates or damps away
when they are spuriously excited. However, as mentioned
in Ref. [46], this method is likely to be incompatible with
the moving puncture method [53,54], which is commonly
used to evolve black-hole spacetimes in the Baumgarte-
Shapiro-Shibata-Nakamura formulations.

The AMR-GRMHD code in Ref. [24] implements the
flux-CT scheme for magnetic fields. In this scheme, both
the preservation of the divergence-free condition and the
magnetic-flux conservation are guaranteed in the refine-
ment boundaries in the machine precision level. However,
the code of Ref. [24] is second-order accurate both in space
and in time. We have developed a new code, which is
based on the flux-CT scheme (i.e., which can ensure the
magnetic-flux conservation and the divergence-free condi-
tion in the refinement boundaries), and which is fourth-
order accurate in time. Following the method described in
Refs. [48,49], we employ a divergence-free-preserving
interpolation based on WENO5 [61]. In Appendix A, the
grid structure, the scheme for integrating the induction
equation, as well as the prolongation/restriction schemes
of magnetic fields are described in details. Results for
several test-bed simulations in Appendix B illustrate the
reliability of our new code.

B. Initial condition, density atmosphere and grid setup

Following Refs. [30,36], we adopt a rapidly and differ-
entially rotating neutron star in an axisymmetric equilib-
rium as the initial conditions. It is a model of the HMNS
formed after the merger of a BNS. To model the neutron
star, the following piecewise polytropic EOS composed of
two pieces is employed:

Pcold ¼
8<
:
K1�

�1 ð� � �nucÞ;
K2�

�2 ð� � �nucÞ:
(2.1)

Here, P and � are the pressure and rest-mass density,
respectively. The specific internal energy, ", is derived
assuming the first law of thermodynamics d" ¼
�Pdð1=�Þ, and this specific internal energy written as a
function of � is referred to as "cold (i.e., we initially set
" ¼ "coldð�Þ). Following Ref. [30], the parameters are
chosen to be �1 ¼ 1:3, �2 ¼ 2:75, K1 ¼ 5:16�
1014 cgs, K2 ¼ K1�

�1��2
nuc , and �nuc ¼ 1:8� 1014 g=cm3.

This EOS produces spherical neutron stars whose maxi-
mum gravitational mass Mmax (rest mass Mb;max) is

2:01M� ð2:32M�Þ and rigidly rotating neutron stars with
MmaxðMb;maxÞ ¼ 2:27M�ð2:60M�Þ. For the rotational law,

we assume the same profile as employed in Refs. [30,36].
Table I shows the parameters of the differentially rotating
neutron-star model which we adopt.
During the simulations, we use a hybrid EOS as P ¼

Pcold þ ð�th � 1Þ�ð"� "coldÞwith �th ¼ �1. Our choice of
�th may be rather small. We choose this small value to
focus on the mass ejection from the rotating neutron star
primarily by the magnetorotational effects suppressing
shock heating effects.
A dipole magnetic field is superimposed initially. We

assume that the axis of the dipole is aligned with the
rotation axis as in the previous paper [36], and write
the vector potential in the form

A’ ¼ A0$
2
0

ðR2 þ z2 þ$2
0Þ3=2

; (2.2)

where we used the cylindrical coordinate ðR; z; ’Þ. $0 is
set to be 10=3Re with Re being the equatorial stellar radius.
A0 determines the magnetic-field strength and we adjust
this parameter to achieve the maximum field strength B0 to
be 4:2� 1013 G and 1:7� 1014 G. According to the
magnetic-field strength, we refer to these models as B13

and B14, respectively. Here, B0 is defined by B � ffiffiffiffiffiffiffiffiffiffiffiffi
b�b�

p
where b� is the four-vector of the magnetic field in the
fluid rest frame.
We note that there is no reason to believe that the dipole

axis is aligned with the rotation axis for the HMNS formed
after a BNS merger. The reason for our choice of this
simple profile is that the purpose of this paper is to compare
the results in three-dimensional simulations with those in
the axisymmetric one performed in Ref. [36]. If the axes of
the dipole and rotation do not align with each other, the
mechanism for the amplification of the magnetic field and

TABLE I. Physical parameters of a differentially rotating neu-
tron star employed: Gravitational mass M, baryon rest mass Mb,
central density (maximum density) �max, angular momentum
cJ=GM2, central rotation period Pc, and coordinate radius on the
equator Re.

MðM�Þ MbðM�Þ �maxðg=cm3Þ cJ=GM2 Pc (ms) Re (km)

2.02 2.23 9:49� 1014 0.66 0.48 11.4
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subsequent dynamical process of the system could be
significantly modified. We will perform more systematic
studies varying the axis direction of the dipole in the
future work.

As discussed in Ref. [36], a tenuous density atmosphere
has to be put outside the neutron star for stably evolving
magnetically driven outflows. If the atmosphere is dense,
the outflow and magnetic-field profile are substantially
affected by the inertia of the atmosphere. Thus, we have
to set the density of the atmosphere to be as low as
possible. Specifically, we set it as

�at ¼
8<
:
fat�max ðr � 2ReÞ;
fat�maxðr=2ReÞ�n ðr � 2ReÞ;

(2.3)

where �max denotes the maximum rest-mass density of the
neutron star. We set fat ¼ 10�9 and n ¼ 2. As long as we
use these values, the magnetic field evolution depends only
weakly on the atmosphere [36].

Table II summarizes the dipole field strength and grid
setup. The stars are contained in the numerical domain
composed of the finest grid resolution. In the typical simu-
lations, Re is covered by 80 grid points in the finest domain.
The side length in one positive direction of the finest
domain is 1:2Re. We prepare 8 refinement domains and
in this case, the outer boundary is located at 	 150Re. For
models B13 and B14, the simulations were performed in
this grid setup. To confirm the convergence of numerical
results, we also performed a simulation for the low-
resolution model B13L, in which Re is covered by 60
grid points in the finest domain, while keeping the outer
boundary at the same position as the high resolution model.
In these three models, the equatorial plane symmetry is
imposed. We also performed a simulation for model B14F
for which no symmetry is assumed. This simulation is
devoted to exploring the dependence of the symmetry
effect on the evolution of the magnetized neutron stars.

III. NUMERICAL RESULTS

A. Prediction

First, we summarize the predicted numerical results
based on the findings of Ref. [36], and then, describe

three-dimensional effects that are not taken into account
in the previous work [36]. In the present setup, the mag-
netic winding due to the presence of differential rotation
and poloidal magnetic fields will take place and then, a
strong toroidal field will be generated [62]. The magnitude
of the toroidal magnetic field increases linearly with time
during the winding. In particular, a strong magnetic field is
generated near the rotation axis. After the substantial wind-
ing, the magnetic pressure associated with the strong to-
roidal field overcomes the gravitational binding energy in
the vicinity of the neutron-star polar surface. Then, a sub-
or mildly relativistic outflow will be launched primarily
toward the direction perpendicular to the equatorial plane.
In the outflow, both a matter outflow and a Poynting flux
are generated. The magnitudes of the luminosity for these
would be [36]

LM
1048
�

B0

1013 G

�
2
�

Re

106 cm

�
3
�

�

104 rad=s

�
ergs=s; (3.1)

LB
1047
�

B0

1013 G

�
2
�

Re

106 cm

�
3
�

�

104 rad=s

�
ergs=s; (3.2)

where � is the typical magnitude of the angular velocity.
Here, LM includes the contribution of the rest-mass energy
flow, and thus, the luminosity for the kinetic energy would
be by about two orders of magnitude smaller for the out-
flow velocity 
0:1–0:2 c.
The simulations of Ref. [36] were performed assuming

the axial symmetry. In the nonaxisymmetric case, we
should consider that the nonaxisymmetric kink instability
[50] could turn on because the outflow contains a strong
toroidal field generated by the winding as a dominant
magnetic-field component. Reference [63] indeed showed
that the kink instability turns on in a magnetically driven
jet from a black hole-torus system, if it has a strong toroidal
field. In the following, we will show a numerical result
which illustrates that the kink instability indeed turns on.
The question is how the effect of this instability modifies
the results of the axisymmetric simulations [36].

B. Properties of outflow

Figure 1 plots the evolution of the electromagnetic
energy as a function of time for all the models employed
in this paper. We define the electromagnetic energy by

EB ¼ 1

8�

Z
b2w

ffiffiffiffi
�

p
d3x; (3.3)

where � is the determinant of the spatial metric and w ¼
�n�u

� with n� being a timelike unit vector normal to the

spatial hypersurface and u� being a four velocity. EB is
decomposed into the poloidal component EP and toroidal
one ET as

EP ¼ 1

8�

Z
ðbRbR þ bzbzÞw ffiffiffiffi

�
p

d3x; (3.4)

TABLE II. Model parameters and grid setup: Maximum
strength for the initial dipole magnetic field B0, the finest grid
resolution �xlmax

, the grid point within one refinement domain N,

the total number of FMR domains lmax, the location of the outer
boundary L0 along each axis, and the assumption for the equa-
torial plane symmetry.

Model B0 [G] �xlmax
[km] N lmax L0 [km] eq-symmetry

B14 1:7� 1014 0.142 96 8 1740 yes

B13 4:2� 1013 0.142 96 8 1740 yes

B13L 4:2� 1013 0.190 72 8 1740 yes

B14F 1:7� 1014 0.142 96 8 1740 no

KENTA KIUCHI et al. PHYSICAL REVIEW D 86, 064008 (2012)

064008-4



ET ¼ 1

8�

Z
b’b’w

ffiffiffiffi
�

p
d3x: (3.5)

As expected, the toroidal-field energy for all the models
increases with time due to the magnetic winding. In a
relatively short time scale 
1 ms ð	 2PcÞ, the toroidal-
field energy catches up with the poloidal one, and then, it
becomes the dominant component. We find the growth rate
of the toroidal field is consistent with the winding mecha-
nism, in which the toroidal field BT should increase in
proportional to 
BP�t with BP being the poloidal mag-
netic field.

The toroidal-field energy for model B14F starts devi-
ating from that for model B14 at t
 3 ms and the
growth rate for model B14F is slightly smaller than
that for model B14. On the other hand, for t * 24 ms,
the toroidal-field energy for model B14F overcomes that
for model B14. These facts imply that an asymmetry
with respect to the equatorial plane comes into the play
in the amplification process of the magnetic field (see
also the left panel of Fig. 3), although this effect does

not change the amplification process qualitatively and
significantly.
For all the models, the poloidal-field energy also

changes with time, and is eventually larger than the initial
value by a factor of 
2–10. If the system is axisymmetric,
the poloidal-field energy changes only by the motion in the
meridional plane. Assuming the conservation of the mag-
netic flux and mass, the poloidal field increases in propor-

tional to �2=3, i.e., by compression (see e.g., Ref. [37]).
However, as displayed in the right-panel of Fig. 1, the
central density is approximately constant during the evo-
lution for all the models. This indicates that the increase of
the poloidal-field energy is not due to the compression, but
to a nonaxisymmetric effect. We will revisit this point
below. We note that the internal energy is also approxi-
mately constant during the simulations, which also implies
that the density distribution in the inner region of the
neutron star is approximately stationary. Therefore, the
magnetic field evolves passively with respect to the bulk
motion inside the neutron star. This is also recognized from
the left panel of Fig. 1, which shows that the profile of the

1046
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FIG. 1 (color online). (Left) Evolution of the poloidal-field energy EP and toroidal-field energy ET for three models B14, B13, and
B14F, labeled by ‘‘14’’, ‘‘13’’, and ‘‘14F’’, respectively. (Right) Evolution of the central rest-mass density.
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FIG. 2 (color online). Snapshots of the magnetic field strength on a meridional plane (x-z plane) at t ¼ 0 ms (left), t ¼ 15:0 ms
(center), and t ¼ 24:3 ms (right) for model B14.
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curves of EB for models B13 and B14 is quite similar
besides the factor determined by the ratio of the initial
magnetic-field strength. By contrast, the magnetic field
actively evolves outside the neutron star, as described
below. This active nonlinear evolution slightly modifies
the scaling relation of EB that might hold between the
models of different initial magnetic-field strengths.

Figures 2 and 3 plot the snapshots of the magnetic-field
strength on a meridional plane (x-z plane) at selected time
slices for models B14 and B14F, respectively. The initially
dipole field is distorted by the magnetic winding and con-
sequently the strong toroidal field is generated near the
rotation axis (see the central part in the middle panels of
Figs. 2 and 3). Then, an outflow is driven in particular
along the rotation axis (see the middle and right panels of
Figs. 2 and 3). The outflow keeps blowing for a time scale

much longer than the dynamical one 
��1=2
max and rotation

period Pc, because the strong toroidal field continues to be
generated by the differential rotation in the neutron star.
The asymmetry with respect to the equatorial plane devel-
ops for model B14F, which causes the less efficient wind-
ing as shown in Fig. 1. This may be also found by
comparing the magnetic-field strength in the equatorial
plane between two models; for model B14, the magnetic-
field strength there is weak because of the symmetry
imposed, whereas it is stronger for model B14F. Namely,
the winding occurs less coherently for model B14F. This
less coherence is likely to stem from the fact that the kink
instability turns on in a stronger way in the absence of the
equatorial plane symmetry (see Sec. III C). Because of this
less coherence, the toroidal field grows with a longer time
scale, and as a result, the head speed of the outflow for
model B14F is slightly slower than that for model B14
(compare the right panels of Figs. 2 and 3).

Figure 4 plots the profiles of the magnetic field, rest-
mass density, and z-component of the three velocity along
the z-axis at several selected time slices for model B14. In
the vicinity of the stellar polar surface, the strong magnetic
field is generated and its strength reaches up to 
1015 G.

This substantially winded magnetic field causes a mass
stripping if the magnetic pressure overcomes the gravita-
tional binding energy density. This is approximately
written by B2=8�> �GM=H where H is the vertical
coordinate radius of the neutron star [36]. This is approxi-
mately equivalent to

va > vesc; (3.6)

where va and vesc denote the Alfvén speed and the escape
velocity from the stellar surface. After the substantial
winding, this condition is satisfied for a low-density
surface region of the neutron star, and mass stripping
turns on. Figure 4 indeed shows that near the stellar sur-
face, z ¼ H 
 10 km, at t ¼ 6:01 ms, the Alfvén speed


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2=ð4��Þp

is of order the speed of light, c, and hence,
Eq. (3.6) is satisfied. After the mass stripping sets in, a blast

t = 3.11 ms
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FIG. 3 (color online). The same as Fig. 2, but at t ¼ 3:11 ms (left), t ¼ 15:0 ms (center), and t ¼ 27:2 ms (right) for model B14F.
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FIG. 4 (color online). Snapshots for the profiles of the mag-
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wave is generated, and the shock front propagates along the
z-direction with its sub-relativistic head speed
0:1–0:2 c.
We infer that differentially rotating magnetized neutron
stars will drive the outflow as far as it is alive.

C. Kink instability

A noteworthy new feature that was not able to be
found in Ref. [36] is that a nonaxisymmetric structure
of the magnetic-field profile with respect to the rotation
axis emerges in the outflow; see the middle and right
panels in Figs. 2 and 3. This implies that a nonaxisym-
metric instability sets in. This nonaxisymmetric profile is
found in particular in the vicinity of the rotation axis. As
already described, the strength of the toroidal field gen-
erated by the magnetic winding is as large as or larger
than the poloidal-field strength in the region near the
rotation axis. It is well known that a cylindrical plasma
column surrounded by toroidal magnetic fields causes the
kink instability [50]. The situation for the vicinity of the
rotation axis is quite similar to the cylindrical plasma
column. This instability is known to turn on if the
following Kruskal-Shafranov (KS) instability criterion is
satisfied [50]: ��������

BT

BP

��������>
2�a

R0

: (3.7)

Here, a and R0 are the radius and poloidal extent of a
cylindrical column, respectively. Because a would be
smaller than Re and R0 	 z, the condition (3.7) can be
easily satisfied once the toroidal-field strength is compa-
rable to the poloidal-field one. Hence, we infer that the
magnetic outflow driven from the neutron star is subject
to the kink instability.

To determine the dominant mode of the kink instability,
we perform a Fourier mode analysis for the toroidal field
by calculating

Cmðt; R; z0Þ �
Z

BTðt; R; ’; z0Þe�im’d’: (3.8)

Here, the spatial hypersurface is sliced for a sequence of
z ¼ z0ð¼ constÞ planes on each of which we consider rings
of radius R and perform the azimuthal integral (3.8) along
the rings. Varying the radius of the rings and selected time,
we plot Fig. 5 for z0 	 1:9Re. This figure shows thatm ¼ 1
mode turns on in particular in the vicinity of the rotation
axis R & 1 km. We find that the ratio jBTj=jBPj 	 1 at
R 	 1 km. The right-hand side of the KS condition (3.7) is
an order of 0.1 with a
 1 km and R0 
 20 km. Therefore,
the toroidal-field strength comparable to the poloidal-field
one is large enough to induce the kink instability. We find
that the modes other than the m ¼ 1 mode do not exhibit a
remarkable growth. This implies that the m ¼ 1 mode is
the dominant mode, and it does not cause a strong non-
linear mode coupling.
Figure 6 plots the Fourier components of the toroidal

field as functions of time, which are defined by a volume
integral as

Dm �
Z

BTe
�im’d3x: (3.9)

The left panel of Fig. 6 plots the evolution ofDm for model
B14. This shows that the m ¼ 1 mode is dominant among
the m ¼ 1–3 modes as expected from Fig. 5, and its
saturation amplitude is at most 	 2–3 percents of the
axisymmetric mode. This again clarifies that the nonline-
arity of the kink instability is not strong enough to modify
the outflow structure significantly. It should be pointed out
that this weak nonlinearity was also found for the magnetic
jet driven from the black hole-torus system in the simula-
tion of Ref. [63]. The features found for model B14 also
hold for other models: The right panel of Fig. 6 shows the
evolution of them ¼ 1mode for three models, showing the
weak growth of the m ¼ 1 mode.
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One point to be noted is that the saturation amplitude
for model B14F is slightly larger than that of other
models. The likely reason is that the absence of the
equatorial-plane symmetry would enhance the growth of
the kink instability (in other words, the presence of this
symmetry would suppress the growth for some channel of
the kink instability). The stronger excitation of the kink
instability for model B14F results in a stronger modifica-
tion of the axisymmetric outflow structure, which we
found in Fig. 3.

D. Luminosities

The magnetic outflow driven from the magnetized neu-
tron star is accompanied by a large amount of the ejected
material and electromagnetic waves. We here define the
luminosities for them by

LM ¼ �
I
r¼const

d�d’
ffiffiffiffiffiffiffi�g

p ðTðmatÞÞrt; (3.10)

LB ¼ �
I
r¼const

d�d’
ffiffiffiffiffiffiffi�g

p ðTðemÞÞrt; (3.11)

where TðmatÞ
�� and TðemÞ

�� are the stress energy tensor for the
matter and electromagnetic field, respectively. g is the
determinant of the spacetime metric. We note again that
LM includes the contribution of the rest-mass energy flow
and the contribution only from the kinetic energy is by
about two orders of magnitude smaller than LM for the
outflow velocity 
0:1–0:2 c.

Figure 7 displays the evolution of these luminosities,
which are calculated for the extraction radius of rex 	
420 km. We note that the extraction was performed for
several radii and we confirmed that their luminosities
depend only weakly on the extraction radii. Comparing
Figs. 4 and 7, we find that for model B14, the outflow front
reaches the extraction point at t 	 12 ms, which corre-
sponds to the moment of a quick rise of the luminosities.
Subsequently, the order of the magnitude of the luminos-

ities remains approximately unchanged. For other models,
the feature of the luminosity curves is essentially the same.
The matter energy flux for model B14 attains an order of
1051 erg=s. Figure 4 shows that the outflow density at the
extraction point for this model is approximately 105 g=cm3

and vz 	 0:1 c. These values are consistent with the matter
energy flux if we assume that the matter is ejected quasi-
spherically, i.e., LM 
 4�r2ex�c

2vz. For the electromag-
netic radiation, the luminosities for models B13 and B14
are consistent with the scaling relation (3.2), which implies
that the scenario described in Ref. [36] is still valid even in
the presence of the kink instability. On the other hand, the
electromagnetic luminosity for model B14F is about 10
times smaller than that for model B14 at the end of the
simulation. This is because the magnetic winding occurs
less coherently due to a stronger effect of the kink insta-
bility, as already discussed in Sec. III C. However, during
the long-term evolution, the toroidal-field energy for model
B14F surpasses that for model B14 (see Fig. 1) and in
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addition, Fig. 7 shows that the electromagnetic luminosity
for model B14F increases gradually with time. This sug-
gests that although the increase time scale of the toroidal-
field energy and the electromagnetic luminosity is rather
long, the luminosity for model B14F may be eventually as
large as that for model B14.

We find that the scaling relation for the matter flux (3.1)
also holds. We confirm that our result basically agrees with
that in Ref. [36]. This is because the saturation amplitude
of the kink instability is not large enough to disrupt the
coherent toroidal magnetic-field profile, as already
discussed.

E. Accuracy check

Finally, we comment on the reliability of the present
simulation results. The left panel of Fig. 8 plots the mag-
nitude of the violation for the divergence-free condition
and the convergence for the evolution of EB as functions of
time. We plot the L1 norm of r � B for models B14, B13,
and B14F. The divergence-free condition is well satisfied
throughout the simulations, which means that our FMR
implementation for the magnetic field works well.

The right panel of Fig. 8 plots the evolution of the
magnetic-field energy for model B13 with two grid reso-
lutions. The magnetic-field energy for both runs suffi-
ciently converge until t 	 10 ms and the poloidal-field
energy starts deviating after that, although the behavior
of the evolution is qualitatively the same. We attribute this
loss of the convergence to the long-term accumulation of
the numerical errors such as spurious magnetic reconnec-
tions due to the poor resolution. We confirmed that the
qualitative features of our finding, e.g., the emergence of
the kink instability and the generation of the outflow, are
not affected by the grid resolution. Therefore, we conclude
that the present grid setup is fine enough for obtaining
scientific results for the evolution of differentially rotating
magnetized neutron stars.

IV. DISCUSSION AND SUMMARY

A. Discussion

We here discuss possible electromagnetic signals emit-
ted by the ejecta from a HMNS formed after the merger of
BNS, referring to the numerical results in the present work.
As mentioned in Sec. I, the recent observational result of
PSR J1614-2230 suggests that the maximum mass of
spherical neutron stars should be larger than 1:97�
0:04M�. This indicates that the EOS of neutron stars is
stiff, and thus, a long-lived HMNS would be a canonical
outcome of the BNS merger, if the binaries are composed
of neutron stars of a canonical mass of 1:3–1:4M� with the
total mass 
2:7M� [9].
Electromagnetic signals should be emitted from the

ejected material of sub-relativistic motion or ejected elec-
tromagnetic waves. According to recent studies [64–66]
the ejected material will sweep up the interstellar matter
and form blast waves. During this process turning on
Ref. [64], the shocked material could generate magnetic
fields and accelerate particles that emit synchrotron radia-
tion, for a hypothetical amplification of the electromag-
netic field and a hypothetical electron injection. The
emission will peak when the total swept-up mass ap-
proaches the ejected mass, because the blast wave begins
to decelerate according to a Sedov-Taylor’s self-similar
solution. The predicted deceleration time depends on the
total energy E0 and speed of the ejected material �0 c as
well as the number density of the interstellar matter n0 for a
single velocity outflow as [64]


 2 yrs

�
E0

1049 erg

�
1=3

�
n0

1 cm�3

��1=3
�
�0

0:2

��5=3
: (4.1)

Here, the value of n0 will depend strongly on the site where
the merger of BNS happens. If the site is in a galactic disk,
n0 would be
1 cm�3, whereas if it is outside a galaxy, the
value is much smaller 
10�3 cm�3. By the synchrotron
radiation, a radio signal of
0:1 GHz, which is determined
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by the self-absorption, could be emitted as in the afterglow
of gamma-ray bursts [64] for n0 
 1 cm�3 and � ¼ 0:2.
Then, its luminosity and flux would depend on the total
kinetic energy. Figure 7 indicates that for the model with
the initial maximum field strength of 1014 G, the luminos-
ity of the total matter energy (including the rest mass,
internal, and kinetic energies) is 
1050–1051 erg=s.
Because the typical speed of the ejected material is sub-
relativistic with �0 
 0:1–0:2, the luminosity of the kinetic
energy would be 
1048–1049 erg=s. The latest numerical-
relativity simulations indicate that the lifetime of the long-
lived HMNS would be 0:1–1 s [9,11]. Thus, the predicted
total kinetic energy ejected will be at most 
1049 erg for
B0 ¼ 1014 G. If the magnetic-field strength is smaller than
1014 G, this value is smaller by a factor ðB0=10

14 GÞ2. The
unabsorbed flux at the typical synchrotron frequency is


2:5mJy

�
E0

1049 erg

��
n0

1 cm�3

�
1=2

�
�0

0:2

��1�
�

D

300Mpc

��2
;

(4.2)

and the peak flux at the self-absorption frequency is ap-
proximately two orders-of-magnitude smaller, i.e.,
Oð10Þ�Jy level. The studies of Ref. [64] (see Table I of
it) suggest that the total energy of 1049 erg for the sub-
relativistic outflow is not large enough to produce a radio
signal observable by current and planned radio telescopes
even for the optimistic value n0 ¼ 1 cm�3 (
 1050 erg is
suggested to be necessary), and our estimate agrees with
their results. Thus, this mass-ejection mechanism is un-
likely to supply a large amount of the mass which
generates a sufficiently strong radio signal, unless the
magnetic-field strength is extremely large, as large as
that of magnetars for which the field strength could be

1015 G.

Alternatively, the authors of Refs. [65–67] (see also
Ref. [68] for the original idea) discuss the signals by the
radioactive decay of r-process nuclei, which are produced
from the neutron-rich material in the outflow, and subse-
quently decay and emit a signal that may be observable by
current and planned optical telescopes such as LSST. In
this scenario, the typical duration of the peak luminosity is
of order a day or less as [68]

tpeak 	 0:1d

�
�0

0:2

��1=2
�

M�;esc
10�3M�

�
1=2

; (4.3)

and the associated peak luminosity is

Lpeak	7�1041 erg=s

�
f

3�10�6

�
�
�
�0

0:2

�
1=2

�
M�;esc

10�3M�

�
1=2

;

(4.4)

where M�;esc is the total amount of the rest mass ejected

and f denotes the conversion rate of the energy per rest-
mass energy in the ejected material through the radioactive
decay process, which is
3� 10�6 according to the results

of Ref. [65]. According to Refs. [65,66], if the total ejected
mass is * 10�3M�, the signal can be detected by large
optical surveys. Figure 7 indicates that the mass ejection
rate is 
10�4–10�3M�=s for the maximum field strength
of 1014 G. Thus, even if the lifetime of the HMNS is 1 s,
total amount of the rest mass ejected will be

10�4–10�3M� for this field strength. Again, unless the
magnetic-field strength of the HMNS is extremely large (as
large as that of magnetars), the HMNS will not eject the
material which subsequently can be detected by current
and planned optical telescopes.
It should be noted that our estimation is based on the

magnetically driven outflow. BNS will eject a large amount
of mass (10�3–10�2M�) with the velocity 0.2–0.3 c
through the dynamical torque that works during the merger
process [69]. Such a material will be also composed pri-
marily of neutrons and produce an amount of unstable
r-process nuclei, which subsequently decay and emit a
signal that may be observable by current and planned
optical telescopes [65]. The large amount of the ejected
materials may also contribute to generate radio signals
interacting with the interstellar matter, as argued in
Ref. [64].
Most important finding in the previous [36] and present

works is that electromagnetic waves are emitted from the
HMNS together with the mass ejection. This implies that
even in the absence of the generation of blast waves via the
interaction with the interstellar material, a strong magnetic
field is generated. We find that the electromagnetic lumi-
nosity is 1049–1050 erg=s for the model of the maximum
field strength of 1014 G. For the hypothetical lifetime of the
HMNS of 0.1–1 s, the total radiated energy by electromag-
netic waves is 
1049 erg, which is larger than the total
kinetic energy of the ejected material in our model. Such
huge magnetic energy, composed primarily of Alfvén
waves, may be reprocessed efficiently to an observable
signal as in the solar corona, although the mechanism is
not clear. To clarify this point, a first-principle simulation
taking into account detailed physical processes, as done,
e.g., in Ref. [70] for the solar corona problem, will be
necessary.
Finally, we should comment on the saturation of mag-

netic field strength. As shown in Fig. 1, the magnetic field
continues to grow at the end of the simulation for all the
models. The magnetic field strength would saturate if
the magnetic field energy is as large as the kinetic energy
or the thermal energy of the HMNS. We estimate the
kinetic energy as 
1053 erg and growth rate of the mag-
netic field energy in Fig. 1 as 
1049 erg=ms, where we
assume the toroidal magnetic field energy continues to
grow by the magnetic winding and use model B14F as a
representative model. Then, the magnetic field would
saturate at t
 100 ms, which is shorter than the lifetime
of the HMNS
 1 s. Therefore, our scaling relation (3.1)
and (3.2) would breakdown after the saturation and
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observational signature might be altered after that. On the
other hand, if the initial magnetic field of HMNS is not
strong, e.g., 1013 G, or the HMNS lifetime is O(0.1) s, the
magnetic field strength continues to increase and the
HMNS would collapse to a black hole before the magnetic
field saturate and Eqs. (3.1) and (3.2) would hold.

B. Summary

Using a new GRMHD code implementing the FMR
algorithm based on the divergence-free interpolation
scheme of Balsara [48], we performed numerical simula-
tions for the evolution of a differentially rotating magne-
tized neutron star, as an extension of our previous
axisymmetric work [36]. The magnetic winding mecha-
nism generates the strong toroidal field in particular in the
vicinity of the rotation axis, as in the axisymmetric case.
Subsequently, Alfvén waves propagate primarily toward
the z-direction along the rotation axis and transport the
electromagnetic energy. After substantial winding, the
magnetic pressure overcomes the gravitational binding
energy density and drives a sub-relativistic outflow. We
found that in this tower-type outflow, the kink instability
develops due to the presence of a strong toroidal magnetic
field, and modifies the structure of the outflow that would
have an axisymmetric structure in the absence of this
instability. However, this instability saturates in a relatively
small amplitude level, and thus, does not significantly
modify the profile of the outflow. We also confirmed that
the scaling relations for the matter and Poynting luminos-
ities (3.1) and (3.2), originally found in Ref. [36], hold in
the nonaxisymmetric situation as well.

As mentioned for several times in this paper, the recent
observation of PSR J1614-2230 suggests that the maxi-
mum mass of spherical neutron star has to be larger than
1:97� 0:04M�, and implies that a long-lived HMNS is
likely to be a canonical product of the BNS merger if the
binaries are composed of neutron stars with a canonical
mass of 1:3–1:4M� [9]. In the formed HMNS, a magnetic
field will be amplified not only by the magnetic winding
but also by the MRI. The MRI could cause an efficient
angular momentum transport. If the strong self-gravity of a
HMNS is supported primarily by its rapid rotation, the
angular momentum transport could induce the collapse of
the HMNS to a black hole surrounded by an accretion
torus. (This is not the case if a HMNS is supported mainly
by a thermal pressure [11]). The black hole-torus system
formed in this scenario is a promising candidate of a
central engine of short gamma-ray bursts [29,30,41,71].
We also plan to explore this scenario in the future. The
most self-consistent approach for the study of these sce-
narios is to simulate the merger of magnetized BNS taking
into account a plausible EOS for a long time from the late
inspiral to the long-term evolution of the formed HMNS.
We also plan to perform this type of the simulations in the
future.
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APPENDIX A: CODE DESCRIPTION

In this appendix, we describe our integration scheme for
the induction equation and our implementation of the FMR
algorithm in details. Following Ref. [28], we choose the
three magnetic fieldB� � ffiffiffiffi

�
p

n�F
��� as the basic variable

whereF��� is the dual of the Faraday tensor. This magnetic
field is purely spatial in the sense that n�B

� ¼ 0.

Assuming that the ideal MHD condition holds,
Maxwell’s equation is recasted into the divergence-free
condition and induction equation:

@aB
a ¼ 0 (A1)

@tB
a ¼ @b½ðBbva � BavbÞ�; (A2)

where va ¼ ua=u0. We define the corresponding electric
field by

Ex ¼ �vyBz þ vzBy

Ey ¼ �vzBx þ vxBz

Ez ¼ �vxBy þ vyBx:

(A3)

Here, the electric field is related to the flux of the induction
equation by�Bbva þBavb ¼ eabcEc with e

abc being the
completely antisymmetric symbol in the flat space satisfy-
ing exyz ¼ 1. In the following, we do not distinguish Ea

and Ea.

1. Staggered cell

The most popular and robust finite volume method to
integrate ideal MHD equations is the constrained-transport
scheme [58]. In this scheme, a cell for the numerical
computation is defined so that fluid variables are placed
in the cell center. Then, the (surface averaged) magnetic
field and electric field, which is calculated from the mag-
netic field and velocity field, are placed on the cell surfaces
and cell edges, respectively, to preserve the divergence-
free condition during the evolution of the magnetic field.
This prescription is compatible with an AMR or FMR
implementation of Balsara [48], if the cell-centered grid
is employed. For this case, the cell surface of a parent
domain always agrees with the cell surfaces of its child
domains, and it becomes straightforward to guarantee that
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the magnetic flux penetrating a surface in a parent-
domain’s cell agrees with the sum of the magnetic fluxes
penetrating the corresponding surfaces in children-
domain’s cells.

However, as mentioned in Sec. II A, our code is designed
for the vertex-centered grid, because it is suited for inte-
grating Einstein’s equations. This implies that the magnetic
field should be placed at each cell in a different way so that
surfaces of defining the magnetic field in a parent domain
agree with surfaces of its child domains. Specifically, we
define cells and place the magnetic field, as Fig. 9 shows.
Because the vertex-centered grid is employed, the geomet-
ric and fluid variables are placed at the cell corner (i.e., at
the grid). We label each grid by ði; j; kÞ for the child domain
and by ðI; J; KÞ for the parent domain. Then, the magnetic
field is placed on the cell surface, labeled by ði� 1=2; j�

1=2; kÞ, ði; j� 1=2; k� 1=2Þ, and ði� 1=2; j; k� 1=2Þ for
the child cell. The magnetic field is defined in the range of
½�ðN þ 1=2Þ�xl; ðN þ 1=2Þ�xl�. The CT scheme requires
the flux (electric field) to be placed at the cell edge, labeled
by ði� 1=2; j; kÞ, ði; j� 1=2; kÞ, and ði; j; k� 1=2Þ for the
child cell. In the following, big letters such as Bx and Ex

denote the components of Ba andEa in the parent domain,
and small letters such as bx and ex do those in the child
domain.
The parent cell contains the eight child cells and the

surfaces of the parent cells always overlap with some
cell surfaces of the child domain. This grid structure is
essential for guaranteeing the divergence-free condition
and the magnetic-flux conservation. Table III summarizes
the locations where the magnetic and electric fields are
defined. Then, Eq. (A2) is discretized straightforwardly as

@tðBxÞI;Jþ1
2;Kþ1

2
¼ �ðEzÞI;Jþ1;Kþ1

2
� ðEzÞI;J;Kþ1

2

�yl
þ ðEyÞI;Jþ1

2;Kþ1 � ðEyÞI;Jþ1
2;K

�zl
;

@tðByÞIþ1
2;J;Kþ1

2
¼ �ðExÞIþ1

2;J;Kþ1 � ðExÞIþ1
2;J;K

�zl
þ ðEzÞIþ1;J;Kþ1

2
� ðEzÞI;J;Kþ1

2

�xl
;

@tðBzÞIþ1
2;Jþ1

2;K
¼ �ðEyÞIþ1;Jþ1

2;K
� ðEyÞI;Jþ1

2;K

�xl
þ ðExÞIþ1

2;Jþ1;K � ðExÞIþ1
2;J;K

�yl
;

(A4)

where ð�xl;�yl;�zlÞ denote the grid spacing for ðx; y; zÞ in
the parent level labeled by l.

According to Refs. [28,72], the electric field is computed
at the cell edge by the Lax-Friedrichs formula, given by

Ex ¼ ðExÞLL þ ðExÞLR þ ðExÞRL þ ðExÞRR
4

þ cy
2
ðBz

R � Bz
LÞ �

cz
2
ðBy

R � By
LÞ; (A5)

at ðI þ 1=2; J; KÞ. To evaluate the flux, the magnetic field
defined on the cell surface should be interpolated to the cell
edge where the electric field is defined (see Fig. 9). This

FIG. 9. Schematic picture for the structure of the cells in our FMR algorithm together with the assigned locations for the magnetic
field in a child domain (left) and in a parent domain (right). Geometrical and fluid variables are defined at the cell corner, magnetic
field on the cell surface, and flux at the cell edge, respectively.

TABLE III. Grid points where the geometrical and fluid vari-
ables, the magnetic field, and the electric field are defined,
respectively.

Metric and fluid variables ðI; J; KÞ
Bx ðI; J þ 1

2 ; K þ 1
2Þ

By ðIþ 1
2 ; J; K þ 1

2Þ
Bz ðIþ 1

2 ; J þ 1
2 ; KÞ

Ex ðIþ 1
2 ; J; KÞ

Ey ðI; Jþ 1
2 ; KÞ

Ez ðI; J; K þ 1
2Þ
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means that the magnetic field has the reconstructed right
and left state. According to the prescription of the central
scheme [56], we need an offset based on the characteristic
speed in the flux. In the above equation, ðExÞRL represents
the reconstructed right state in the y-direction and left state
in the z-direction. The other symbols ðExÞLL, ðExÞLR, and
ðExÞRR are interpreted in the similar way. ðBy

R; B
y
LÞ and

ðBz
R; B

z
LÞ also denote the right and left state of By and Bz

reconstructed. cy and cz are the characteristic speeds in the

prescription of the upwind flux construction and calculated
at cell edges with the interpolated variables. We simply
calculate these quantities by averaging:

ðcyÞIþ1
2;J;K

¼ ðvyÞI;J;K þ ðvyÞIþ1;J;K

2

ðczÞIþ1
2;J;K

¼ ðvzÞI;J;K þ ðvzÞIþ1;J;K

2
:

(A6)

The formula for Ey (Ez) is obtained from Eq. (A5) by
the permutation of the indices x ! y, y ! z, and z ! x
(x ! z, y ! x, and z ! y).
For solving GRMHD equations and Einstein’s equa-

tions, one needs the magnetic field defined at ðI; J; KÞ.
This is done by a simple averaging as

ðBxÞI;J;K ¼ 1

4
½ðBxÞI;Jþ1

2;Kþ1
2
þ ðBxÞI;J�1

2;Kþ1
2
þ ðBxÞI;Jþ1

2;K�1
2
þ ðBxÞI;J�1

2;K�1
2
�

ðByÞI;J;K ¼ 1

4
½ðByÞIþ1

2;J;Kþ1
2
þ ðByÞIþ1

2;J;K�1
2
þ ðByÞI�1

2;J;Kþ1
2
þ ðByÞI�1

2;J;K�1
2
�

ðBzÞI;J;K ¼ 1

4
½ðBzÞIþ1

2;Jþ1
2;I
þ ðBzÞI�1

2;Jþ1
2;K

þ ðBzÞIþ1
2;J�1

2;K
þ ðBzÞI�1

2;J�1
2;K
�:

(A7)

2. FMR implementation

For the assignment method of the variables in the inte-
rior of a cell described in Sec. A 1, we exploit the
divergence-free reconstruction scheme in the refinement
boundaries of the FMR algorithm, following Refs. [48,49].
First, we review how to reconstruct the magnetic field in
the whole region of a cell in this scheme.

Consider a cell defined for a domain composed of x 2
½xI; xIþ1�, y 2 ½yJ; yJþ1�, and z 2 ½zK; zKþ1� at a FMR
level l. In the first step, the magnetic-field profile on the
cell surfaces are reconstructed. When we design a third-
order accurate code for the spatial direction, the profile of
the magnetic field, say ~Bx, on the surface at x ¼ xI; y 2
½yJ; yJþ1�, z 2 ½zK; zKþ1� should be written as

~B xðx ¼ xI; y; zÞ
¼ Bx

0 þ Bx
yP1ðyÞ þ Bx

zP1ðzÞ þ Bx
yyP2ðyÞ

þ Bx
yzP1ðyÞP1ðzÞ þ Bx

zzP2ðzÞ; (A8)

where P1ðyÞ ¼ y� yJþ1=2 and P2ðyÞ ¼ ðy� yJþ1=2Þ2 �
�y2l =12. We employ the WENO5 scheme to obtain the

coefficients Bx
0, B

x
y, B

x
z , B

x
yy, B

x
yz, and Bx

zz [49]. In this

scheme, we first consider the one-dimensional reconstruc-
tion problem in a zone centered at y ¼ yJþ1=2, taking into

account five neighboring variables fðBxÞJ�3=2; ðBxÞJ�1=2;
ðBxÞJþ1=2; ðBxÞJþ3=2; ðBxÞJþ5=2g, where we omit the index

I and K. Then, a third-order reconstruction over the zone
centered at yJþ1=2 can be carried out by using three stencils

S1, S2 and S3 that rely on the variables fðBxÞJ�3=2;
ðBxÞJ�1=2;ðBxÞJþ1=2g, fðBxÞJ�1=2;ðBxÞJþ1=2;ðBxÞJþ3=2g, and
fðBxÞJþ1=2; ðBxÞJþ3=2; ðBxÞJþ5=2g, respectively. Because the
reconstructed polynomial in the y-direction has the form

BxðyÞ ¼ Bx
0 þ Bx

yP1ðyÞ þ Bx
yyP2ðyÞ;

we should calculate Bx
y and Bx

yy for the each stencil in the

following manner;

ðBx
yÞð1Þ ¼

3ðBxÞJþ1=2�4ðBxÞJ�1=2þðBxÞJ�3=2

2�yl

ðBx
yyÞð1Þ ¼

ðBxÞJþ1=2�2ðBxÞJ�1=2þðBxÞJ�3=2

2�y2l
;

(A9)

for the stencil S1,

ðBx
yÞð2Þ ¼

ðBxÞJþ3=2�ðBxÞJ�1=2

2�yl

ðBx
yyÞð2Þ ¼

ðBxÞJþ3=2�2ðBxÞJþ1=2þðBxÞJ�1=2

2�y2l
;

(A10)

for the stencil S2, and

ðBx
yÞð3Þ ¼

�ðBxÞJþ5=2þ4ðBxÞJþ3=2�3ðBxÞJþ1=2

2�yl

ðBx
yyÞð3Þ ¼

ðBxÞJþ5=2�2ðBxÞJþ3=2þðBxÞJþ1=2

2�y2l
;

(A11)

for the stencil S3, respectively. According to the prescrip-

tion in Ref. [61], we calculate the weight !ðkÞ for each
stencil with k ¼ 1, 2, and 3. Then, we evaluate the coef-
ficients as

Bx
y¼!ð1ÞðBx

yÞð1Þ þ!ð2ÞðBx
yÞð2Þ þ!ð3ÞðBx

yÞð3Þ
Bx
yy¼!ð1ÞðBx

yyÞð1Þ þ!ð2ÞðBx
yyÞð2Þþ!ð3ÞðBx

yyÞð3Þ:
(A12)

The weight !ðkÞ is reduced to be nearly zero if the stencil
k contains a discontinuity, while, for the smooth profile,
it is reduced to be the optimal weight, with which the
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right-hand side of Eq. (A12) can be a fifth-order accurate
expression of the derivative. The coefficients Bx

z and B
x
zz as

well as the cross term Bx
yz are obtained in the similar way.

Essentially the same procedure is applied to the surface
at x ¼ xIþ1. To reconstruct ~B

y ( ~Bz), the permutation rule of

x ! y, y ! z, and z ! x (x ! z, y ! x, and z ! y)
should be simply applied to.
Second, we reconstruct the magnetic field in the

interior of the cell, for which the third-order accurate
form is

B̂ xðx; y; zÞ ¼ ax0 þ axxP1ðxÞ þ axyP1ðyÞ þ axzP1ðzÞ þ axxxP2ðxÞ þ axxyP1ðxÞP1ðyÞ þ axxzP1ðxÞP1ðzÞ þ axyyP2ðyÞ
þ axyzP1ðyÞP1ðzÞ þ axzzP2ðzÞ þ axxxxP3ðxÞ þ axxxyP2ðxÞP1ðyÞ þ axxxzP2ðxÞP1ðzÞ þ axxyyP1ðxÞP2ðyÞ
þ axxzzP1ðxÞP2ðzÞ þ axxyzP1ðxÞP1ðyÞP1ðzÞ; (A13)

where P3ðxÞ ¼ ðx� xIþ1=2Þ3 � 3ðx� xIþ1=2Þ�x2l =20. The
expression for B̂yðx; y; zÞ (B̂zðx; y; zÞ) is also obtained from
the permutation of x ! y, y ! z, and z ! x (x ! z, y !
x, and z ! y). Hence, we have to determine in total 48
unknown coefficients. Imposing that @aB

a ¼ 0 holds
everywhere inside the cell, we obtain 10 algebraic equa-
tions. Furthermore, we require that the profile for the
interior of the cell matches that on the cell surfaces.
Then, 36 algebraic equations are obtained. These 46 alge-
braic equations are not independent, i.e., one of them can
be derived from the others. This implies that there are three
degrees of freedom. We fix these degrees of freedom in the
following manner: Consider one of the algebraic equations

axxxy þ ayxyy ¼ �azxyz
2

; (A14)

where ayxyyðazxyzÞ is a coefficient in B̂yðx; y; zÞðB̂zðx; y; zÞÞ in
the analogy with Eq. (A13). azxyz can be determined by the
matching at the cell surface and in the interior, and there is
no equation to determine axxxy and ayxyy other than
Eq. (A14). We follow Ref. [48] to determine these coef-
ficients. By minimizing the magnetic energy involved in
the cell with respect to axxxy and ayxyy, we obtain

axxxy ¼ ayxyy ¼ � azxyz
4

;

(see Ref. [48] in details). The same procedure is applied to
the coefficients with the permutation of x ! y, y ! z, and
z ! x, and x ! z, y ! x, and z ! y. As a result, three
degrees of freedom are fixed.

Finally, using the algebraic equation (A13) that holds in
the whole interior of the parent cell, the magnetic fields in
the eight cells of the child domain lþ 1, contained within
the parent cell l, are reconstructed. Because the algebraic
form of the magnetic field satisfies the divergence-free
condition, the magnetic field in the child cells thus deter-
mined satisfies this condition automatically.

The restriction of the magnetic field from the child cells
to their parent cell is done at specific time step levels: We
choose the time-step levels in the FMR algorithm follow-
ing Refs. [6,73]. Specifically, the time step intervals for
each FMR level is chosen by

�tl ¼
8<
:
cCFL�xlc for 1 � l � lc;

cCFL�xl for lc < l � lmax;
(A15)

where cCFL is the Courant number 	 0:4–0:5. Namely, for
the coarser levels with l � lc, the time step intervals are
chosen to be identical while it is chosen to be proportional
to the grid spacing for l > lc (see Fig. 10). In this setup, the
restriction is done when the time slice of the child domain
agrees with that of the corresponding parent domain (see
the time step level nþ 1 in Fig. 10). The simplest form for
the restriction would be (cf., Fig. 9)

ðBxÞI;Jþ1
2;Kþ1

2
¼ 1

4
ðbx

i;jþ1
2;kþ1

2

þ bx
i;jþ3

2;kþ1
2

þ bx
i;jþ1

2;kþ3
2

þ bx
i;jþ3

2;kþ3
2

Þ: (A16)

However, this cannot be employed, because the
divergence-free condition is not satisfied in the parent
level: Note that the divergence-free condition for Ba is
preserved if the flux calculated from the electric field Ea

is used to integrate the induction equation. However, in the
restriction (A16), ey and ez, instead of Ey and Ez, are used
to update Bx (cf., Fig. 9). For such cases, simple restriction
schemes in general do not work well.
Thus, following Ref. [48], we add a correction in

addition to the ‘‘zeroth-order’’ restriction (A16), to pre-
serve the divergence-free condition of the magnetic field.
Reference [48] proposed to use the following restriction:
For l > lc

FIG. 10. Schematic picture of the time integration scheme for
a child domain of label lþ 1 (left) and parent domain of label l
from n to nþ 1 time slice for the domain l > lc. Attached small
arrows with numbers denote the sub-step for the fourth-order
Runge-Kutta integration.
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ðByÞIþ1
2;J;Kþ1

2
! ðByÞIþ1

2;J;Kþ1
2
þ X4

m¼1

�tðmÞ
l

ðEzÞðmÞ
I;J;Kþ1

2

�xl
� 1

4

X8
m¼1

�tðmÞ
lþ1

ðezÞðmÞ
i;j;kþ1

2

þ ðezÞðmÞ
i;j;kþ3

2

�xlþ1

;

ðByÞIþ1
2;Jþ1;Kþ1

2
! ðByÞIþ1

2;Jþ1;Kþ1
2
þ X4

m¼1

�tðmÞ
l

ðEzÞðmÞ
I;Jþ1;Kþ1

2

�xl
� 1

4

X8
m¼1

�tðmÞ
lþ1

ðezÞðmÞ
i;jþ2;kþ1

2

þ ðezÞðmÞ
i;jþ2;kþ3

2

�xlþ1

;

ðBzÞIþ1
2;Jþ1

2;K
! ðBzÞIþ1

2;Jþ1
2;K

� X4
m¼1

�tðmÞ
l

ðEyÞðmÞ
I;Jþ1

2;K

�xl
þ 1

4

X8
m¼1

�tðmÞ
lþ1

ðeyÞðmÞ
i;jþ1

2;k
þ ðeyÞðmÞ

i;jþ3
2;k

�xlþ1

;

ðBzÞIþ1
2;Jþ1

2;Kþ1 ! ðBzÞIþ1
2;Jþ1

2;Kþ1 �
X4
m¼1

�tðmÞ
l

ðEyÞðmÞ
I;Jþ1

2;K

�xl
þ 1

4

X8
m¼1

�tðmÞ
lþ1

ðeyÞðmÞ
i;jþ1

2;kþ2
þ ðeyÞðmÞ

i;jþ3
2;kþ2

�xlþ1

;

(A17)

where the time step intervals of the Runge-Kutta integra-
tion are defined as follows: �tð1Þ

l0 ¼ �tð4Þ
l0 ¼ �tl0=6,

�tð2Þl0 ¼ �tð3Þl0 ¼ �tl0=3 with l0 ¼ l; lþ 1, �tð5Þlþ1 ¼
�tð8Þlþ1 ¼ �tlþ1=6, and �tð6Þlþ1 ¼ �tð7Þlþ1 ¼ �tlþ1=3. ðEyÞðmÞ,
ðEzÞðmÞ, ðeyÞðmÞ, and ðezÞðmÞ denote the electric-field com-
ponents at sub-step levels, m, of the Runge-Kutta integra-
tion (see Fig. 10). For l � lc for which the time step
intervals are identical, the third term of the right-hand sides
of (A17) should be replaced from

P
8
m¼1 to

P
4
m¼1 . The

similar procedure is applied for By and Bz by the permu-
tation of the indices. These prescriptions guarantee both
the magnetic-flux conservation and the preservation of the
divergence-free condition.

APPENDIX B: CODE TESTS

1. One-dimensional tests

We here report the results for one-dimensional MHD
tests in the Minkowski spacetime, proposed in Ref. [74].
The initial data of the tests are summarized in Table IV. For
all the initial data, a discontinuity is present at x ¼ 0, and
the left (x < 0) and right (x > 0) states are composed of
uniform profiles. For all the cases, the �-law EOS with
� ¼ 4=3 is adopted. We performed these tests in a three-
dimensional code assuming that all the quantities are
uniformly distributed in the y-and z-directions. The
divergence-free condition of the magnetic field implies

TABLE IV. Initial data and grid setup for 1D MHD tests. Initial states are separated in the left (x < 0) and right (x > 0) state with a
discontinuity at x ¼ 0. 2N þ 1 and lmax denote the number of the grid point covering the interval ½�N�xl; N�xl� in a FMR domain
and the number of FMR domains, respectively.

Test Left state (x < 0) Right state (x > 0) tfin �xlmax
N lmax

Fast Shock ua ¼ ð25:0; 0:0; 0:0Þ ua ¼ ð1:091; 0:3923; 0:00Þ 4.9 0.005 204 2

Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð20:0; 25:02; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð20:0; 49:0; 0:0Þ
P ¼ 1:0, � ¼ 1:0 P ¼ 367:5, � ¼ 25:48

Slow Shock ua ¼ ð1:53; 0:0; 0:0Þ ua ¼ ð0:9571;�0:6822; 0:00Þ 2.0 0.005 204 2

Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð10:0; 18:28; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð10:0; 14:49; 0:0Þ
P ¼ 10:0, � ¼ 1:0 P ¼ 55:36, � ¼ 3:323

Switch-off ua ¼ ð�2:0; 0:0; 0:0Þ ua ¼ ð�0:212;�0:590; 0:0Þ 1.8 0.005 204 2

Fast Rarefaction Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð2:0; 0:0; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð2:0; 4:71; 0:0Þ
P ¼ 1:0, � ¼ 0:1 P ¼ 10:0, � ¼ 0:562

Switch-on ua ¼ ð�0:765;�1:386; 0:0Þ ua ¼ ð0:0; 0:0; 0:0Þ 2.2 0.005 204 2

Fast Rarefaction Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð1:0; 1:022; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð1:0; 0:0; 0:0Þ
P ¼ 0:1, � ¼ 1:78� 10�3 P ¼ 1:0, � ¼ 0:01

Shock Tube 1 ua ¼ ð0:0; 0:0; 0:0Þ ua ¼ ð0:0; 0:0; 0:0Þ 2.2 0.005 204 2

Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð1:0; 0:0; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð1:0; 0:0; 0:0Þ
P ¼ 1000:0, � ¼ 1:0 P ¼ 1:0, � ¼ 0:1

Shock Tube 2 ua ¼ ð0:0; 0:0; 0:0Þ ua ¼ ð0:0; 0:0; 0:0Þ 2.3 0.005 204 2

Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð0:0; 0:20; 0:0Þ Ba=
ffiffiffiffiffiffiffi
4�

p ¼ ð0:0; 0:0; 0:0Þ
P ¼ 30:0, � ¼ 1:0 P ¼ 1:0, � ¼ 0:1
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that Bx is a constant along the x direction. Because Bx does
not evolve in this test, the divergence-free condition is
automatically satisfied.

The purpose of this section is to demonstrate that our
FMR code works well even in the presence of discontinu-
ities and shock waves across the refinement boundaries. To
do this, we prepare a computational region composed of
two FMR domains, for which the grid point and resolution

are summarized in Table IV. The simulations were
terminated at tfin when a discontinuity or waves go
through the refinement boundary. Figures 11–13 plot the
snapshots of � and By at t ¼ tfin. Numerical solutions in
the FMR domains 1 and 2 are plotted together with the red-
plus and green-circle symbols. The solutions in both do-
mains agree approximately with the analytic solutions,
except for a spurious small modulation for � in the region
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FIG. 11 (color online). Snapshots of rest-mass density and y-component of the magnetic field in 1D fast shock (left) and slow shock
(right) problems. Numerical solutions are plotted both for the FMR domain 1 (cross symbol) and domain 2 (circle symbol).
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FIG. 12 (color online). The same as Fig. 11 but for the 1D switch-off and switch-on test problems.

0.0

0.5

1.0

ρ shock tube 1

Lv=1
Lv=2

 0

1000

2000

3000

4000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ux

x

Lv=1
Lv=2

0.0

0.5

1.0

ρ shock tube 2

Lv=1
Lv=2

 0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

B
y

x

Lv=1
Lv=2

FIG. 13 (color online). The same as Fig. 11 but for the shock tube 2 tests. For the 1D shock tube 1, we plot the four velocity weighted
by the enthalpy instead of the magnetic field because By ¼ 0 in this simulation.
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1:0 & x & 1:7 in the slow shock test and a small bump
around x ¼ �1 in the switch-off test. As reported in
Ref. [28], these errors are generated by the initially dis-
continuous data at x ¼ 0 irrespective of grid resolutions
and presence of the FMR refinement boundary. The am-
plitudes of those errors are known to gradually decrease
with improving the grid resolution. The point to be stressed
is that the discontinuities and waves pass thorough from
the domain 2 to domain 1 without any problems. These

results validate the implementation of staggered magnetic
fields, prolongation, and restriction described in the pre-
vious section.

2. Two-dimensional tests

We also performed a two-dimensional cylindrically ro-
tating disk test proposed in Ref. [72]. All the variables are
assumed to be functions only of x and y in this test,
although the simulation was performed by a three-
dimensional code. The employed initial condition was

ð�; P; Bx=
ffiffiffiffiffiffiffi
4�

p
; By=

ffiffiffiffiffiffiffi
4�

p
; vx; vyÞ

¼
8<
:
ð10; 1; 1; 0;�!y;!xÞ for ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � 0:1Þ

ð1; 1; 1; 0; 0; 0Þ for ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p � 0:1Þ
(B1)

with ! ¼ 9:95. In this test, we adopted the � ¼ 5=3 EOS
and prepared three FMR domains which are composed of
squares with the regions x; y 2 ½�0:512; 0:512� for do-
main 1, x, y 2 ½�0:256; 0:256� for domain 2, and x, y 2
½�0:128; 0:128� for domain 3. The finest grid spacing and
grid points were chosen to be 0.001 and 128, respectively,
which is equivalent to the middle resolution in Ref. [46].
Comparing the result in Ref. [46], we found that all the
quantities were well reproduced. The divergence-free con-
dition was also satisfied with a high precision (see the
bottom-right panel of Fig. 14). Therefore, we confirm
that our FMR implementation works well.
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