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Virial relations are satisfied for equilibria and quasiequilibria of self-gravitating systems in general

relativity and Newtonian gravity. First-law relations are also satisfied along sequences of equilibria and

quasiequilibria of self-gravitating systems. These relations are useful for analyzing numerical solutions of

equilibria and quasiequilibria. We derive these relations in scalar-tensor theories of gravity in an explicit

form. The implication of these relations to compact binary evolution is also discussed.
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I. INTRODUCTION

In general relativity, virial relations are satisfied for
equilibria (stationary spacetime) and quasiequilibria (e.g.,
quasistationary spacetime of binary neutron stars and
binary black holes in quasicircular orbits) of self-
gravitating systems [1–5]. Also, first-law relations are
satisfied for sequences of equilibria and quasiequilibria
of self-gravitating systems (e.g., Refs. [4–11]). These are
valuable relations for characterizing the properties of equi-
libria and quasiequilibria, and of their sequences as well. In
numerical computation, these relations are also important
because they are not trivially satisfied in general for the
numerical results, and hence they can be used for checking
how accurate the numerical solution is.

The virial relations in general relativity have been de-
rived by several authors in different contexts [1–5]. These
relations are useful for confirming the accuracy of the
numerical solutions of rotating stars in equilibrium (e.g.,
Ref. [12]) and of binary neutron stars in quasiequilibrium
with circular orbits (e.g., Refs. [13,14]). The virial relation
in general relativity for both cases can be written as

MK ¼ MADM; (1)

where MK and MADM are the Komar mass [15] and
Arnowitt-Deser-Misner (ADM) mass [16], respectively.

In this paper, we derive the virial relation in a class of
scalar-tensor theories of gravity. Although the derived
relation in this theory is similar to that in general relativity,
the modification is in general necessary for nonvacuum
spacetimes in which nontrivial profiles of scalar fields are
present and a scalar charge,MS, is excited. Here, the scalar
charge is derived from the coefficient of the monopole part
of the scalar field in the asymptotic region [see, e.g.,
Refs. [17,18] and Eq. (38)]. In the presence of the scalar
charge, the virial relation is written as (see Sec. IV)

MK ¼ MADM þ 2MS�
�1
0 ; (2)

where�0 is the value of the scalar field� at spatial infinity.
We will derive this relation for a stationary spacetime, and
for binaries in quasiequilibrium with circular orbits in the
framework of the so-called conformal flatness formulation

for three-geometry [or the Isenberg-Wilson-Mathews
(IWM) formulation] [19].
The first law is the relation among the variations of the

mass, angular momentum, area, and surface gravity of a
black hole, and the angular velocity, which is satisfied
along a sequence of black holes, rotating objects, and
binary systems. This law was first derived by Bardeen,
Carter, and Hawking [6] for stationary axisymmetric black
hole spacetimes in general relativity (see also Refs. [7,8]).
It was also explored for a variety of theories of gravity [9],
for a nonstationary black hole spacetime [10], and for
quasiequilibrium binary systems, such as binary black
holes and binary neutron stars [4,5,11]. For the binary
systems in quasiequilibrium, this law in general relativity
is written as [4,11]

�MADM ¼ ��J þ 1

8�

X
i

�i�AH i; (3)

with the assumption that the baryon rest mass, entropy, and
vorticity of the fluid are conserved along the sequence.
Here, � and J are the orbital angular velocity and angular
momentum, and �i and AH i are the surface gravity and
area of ith black hole horizon, respectively. This relation is
useful for clarifying the properties of binary sequences. It
has also been a helpful relation for checking the accuracy
of numerical results for the sequences of binary systems in
quasiequilibrium with circular orbits. In this paper, we will
derive the first-law relation for a class of scalar-tensor
theories and show that the relation is modified in the
presence of nontrivial scalar fields; e.g., for nonvacuum
binary systems (i.e., binary neutron stars and black hole-
neutron star binaries) in the Jordan-Brans-Dicke frame
[20], the first law is written as

�MT ¼ ��J þ 1

8��0

��ð�HAH Þ; (4)

with the assumption that the baryon rest mass, entropy, and
vorticity of the fluid are conserved. Here, �H is the value
of � on the horizon, which is in general different from �0

(cf. the last paragraph of Sec. III A). MT is the so-called
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tensor mass defined by MT :¼ MADM þMS�
�1
0 [17,18]

(see also Sec. V).
This paper is organized as follows. In Sec. II, we review

a class of scalar-tensor theories of gravity, and derive basic
equations in the 3þ 1 formulation. We also derive the
basic equations in the IWM formalism. After we review
the formulas for the Komar mass and ADM mass in
Sec. III, the virial relations satisfied for stationary space-
times and for quasiequilibria in the IWM formalism are
derived in Sec. IV. In Sec. V, the first law is also derived for
stationary and quasiequilibrium spacetimes, extending pre-
vious results in general relativity [4,6]. Sections VI and VII
are devoted to discussions and a summary. Throughout this
paper, we employ the geometrical units c ¼ 1 ¼ G, where
c and G are the speed of light and bare gravitational
constant, respectively. Subscripts a; b; c; . . . denote the
spacetime components, while i, j, k, and l denote the
spatial components, respectively.

II. 3þ 1 FORMULATION FOR
SCALAR-TENSOR THEORIES

A. Basic equations in the scalar-tensor theory

We briefly summarize the basic equations of a class of
scalar-tensor theories of gravity with a special attention to
3þ 1 formulation. Scalar-tensor theories of the simplest
form are composed of the spacetime metric gab and a
scalar field � that determines the strength of the coupling
between the matter and gravitational fields. The action for
this theory is written as (see, e.g., Ref. [18] for a review)

I ¼ 1

16�

Z �
�R�!ð�Þ

�
ðra�Þra�

� ffiffiffiffiffiffiffi�g
p

d4xþ Imatter;

(5)

where R and ra denote the Ricci scalar and covariant
derivative associated with gab, respectively, and !ð�Þ
determines the strength of the coupling between the gravi-
tational and scalar fields:! is constant for the Brans-Dicke
theory [22] and !þ 3=2 ¼ ðCDEF ln�Þ�1 for one particu-
larly interesting case of the theory in Refs. [23,24] with
CDEF being a constant. Imatter denotes the action associated
with the matter term and is independent of �. For the case
of the perfect fluid, it may be written as (e.g., Ref. [4])

Imatter ¼ �
Z

�ð1þ "Þ ffiffiffiffiffiffiffi�g
p

d4x; (6)

where � and " denote the rest-mass density and specific
internal energy. Assuming that the matter is composed of a
perfect fluid, we define the Lagrangian density by

L :¼
�

1

16�

�
�R�!ð�Þ

�
ðra�Þra�

�
� �ð1þ "Þ

� ffiffiffiffiffiffiffi�g
p

:

(7)

The basic equation is derived by taking the variation of
the action. Employing the so-called Jordan-Brans-Dicke
frame, the basic equations are written as (e.g., Ref. [18])

Gab ¼ 8���1Tab þ!ð�Þ��2

�
ðra�Þrb�

� 1

2
gabðrc�Þrc�

�
þ��1ðrarb�� gabh�Þ;

(8)

h� ¼ 1

2!ð�Þ þ 3

�
8�T � d!

d�
ðrc�Þrc�

�
; (9)

raT
a
b ¼ 0; (10)

where h :¼ rara and Tab is the stress-energy tensor of
the matter field, which for the perfect fluid is written as

Tab ¼ �huaub þ Pgab; (11)

with T ¼ Ta
a. Here, h is the specific enthalpy defined by

1þ "þ P=�, with P being the pressure, and ua is the four-
velocity. We note that the matter is coupled only to the
gravitational field in the Jordan-Brans-Dicke frame as
Eq. (10) shows, and hence the equations for the matter
field are the same as those in general relativity in this
frame. For this reason, we perform all the calculations in
the Jordan-Brans-Dicke frame, because the matter field
equations—including the equations for the variation devel-
oped in general relativity—can be used without any
modification.
In the following, we write Eqs. (8) and (9) in a 3þ 1

formulation. The left-hand side of Eq. (9) is written as

h� ¼ 1

�
ffiffiffiffi
�

p @a½� ffiffiffiffi
�

p ð�ab � nanbÞ@b��

¼ DkD
k�þ ðDk ln�ÞDk�þ ðran

aÞ�þ na@a�;

(12)

where Dk is the covariant derivative with respect to the
spatial metric �ab :¼ gab þ nanb, with na being the unit
timelike normal to the spatial hypersurface. � and �k are
the lapse function and shift vector, respectively. � is
defined by � :¼ �nara�. Thus, Eq. (9) is written as
the set of equations

ð@t � �k@kÞ� ¼ ���; (13)

ð@t � �k@kÞ� ¼ ��DiD
i�� ðDi�ÞDi�þ �K�

þ �

2!þ 3

�
8�T � d!

d�
ðrc�Þrc�

�
;

(14)

where K is the trace part of the extrinsic curvature, Kab.
The basic equations in the 3þ 1 formulation for the

gravitational field equation is simply derived by operating
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nanb, na�b
i, and �a

i�
b
j to Eq. (8). The left-hand side and

the first term on the right-hand side are the same as those in
general relativity, and hence we focus only on the terms
associated with the scalar field on the right-hand side.
Here, only the nontrivial part is rarb�. For this, we have

nanbrarb� ¼ 1

�
½�@t�þ �i@i�� ðDi�ÞDi��

¼ DiD
i�� K�

� 1

2!þ 3

�
8�T � d!

d�
ðrc�Þrc�

�
; (15)

where we have used Eq. (14) and

na�b
jrarb� ¼ �Dj�þ Ki

jDi�; (16)

�a
i�

b
jrarb� ¼ DiDj�� Kij�: (17)

Equations (14) and (15) yield

nanbrarb�þh� ¼ DiD
i�� K�: (18)

Thus, the Hamiltonian constraint is written as

ð3ÞRþ K2 � KijK
ij

¼ 16���1�h þ!��2½�2 þ ðDi�ÞDi��
þ 2��1ð�K�þDiD

i�Þ; (19)

where ð3ÞR is the Ricci scalar on the spatial hypersurface
and we have used

ðra�Þra� ¼ ðDi�ÞDi���2 (20)

and �h :¼ Tabn
anb.

The momentum constraint is written as

DiK
i
j �DjK ¼ 8���1Jj þ!��2�Dj�

þ��1ðDj�� Ki
jDi�Þ; (21)

and the evolution equation of Kij is

@tKij ¼ �ð3ÞRij � 8����1

�
Sij � 1

2
�ijðS� �hÞ

�

þ �ð�2KikKj
k þ KKijÞ �DiDj�þ �kDkKij

þ KikDj�
k þ KkjDi�

k � �!��2ðDi�ÞDj�

� ���1

�
DiDj�� Kij�þ �ij

2ð2!þ 3Þ
�
8�T

þ d!

d�
ð�2 � ðDk�ÞDk�Þ

��
; (22)

where Ji ¼ �Tabn
a�b

i, Sij ¼ Tab�
a
i�

b
j, S ¼ Sij�

ij, and
ð3ÞRij is the Ricci tensor with respect to �ij. Equation (22)

together with the Hamiltonian constraint yields the follow-
ing evolution equation for K:

ð@t � �k@kÞK
¼ 4����1ðSþ �hÞ þ �KijK

ij �DiD
i�

þ �!��2�2 þ ���1

�
DiD

i�� K�

� 3

2ð2!þ 3Þ
�
8�T þ d!

d�
ð�2 � ðDk�ÞDk�Þ

��
:

(23)

B. Conformal flatness approximation

In Sec. IVB, we will derive a virial relation for a sta-
tionary and quasiequilibrium spacetime in the conformal
flatness (IWM) formulation [19], in which we impose the
condition

�ij ¼ c 4fij; (24)

where fij is the flat spatial metric. This formulation has

often been employed for obtaining binary systems in qua-
siequilibrium with circular orbits. In this subsection, we
summarize the basic equations in the IWM formalism of
scalar-tensor theories.
In this formulation, the basic equations for the tensor

field are obtained from the Hamiltonian and momentum
constraints, and Eq. (23) with the slicing condition K ¼ 0.
Except for the modification resulting from the terms asso-
ciated with the scalar field �, the equations are essentially
the same as those in general relativity: the Hamiltonian and
momentum constraints are, respectively, written as

�
ð0Þ
c ¼ �2���1�hc

5 � 1

8
~Aij

~Aijc 5

� c 5

8
½!��2f�2 þ ðDi�ÞDi�g þ 2��1DiD

i��
(25)

and

D
ð0Þ

iðc 6 ~Ai
jÞ ¼ c 6

�
8���1Jj þ!��2�D

ð0Þ
j�

þ��1ðDð0Þj�� ~Ai
jD
ð0Þ

i�Þ
�
; (26)

where �
ð0Þ

and D
ð0Þ

i are the Laplacian and covariant derivative

with respect to fij. ~Aij is the trace-free conformal extrinsic

curvature satisfying Ki
j ¼ ~Ai

j for K ¼ 0 and its equation
is derived from the evolution equation for �ij with

Eq. (24) as

~Aij ¼ 1

2�

�
fikD

ð0Þ
j�

k þ fjkD
ð0Þ

i�
k � 2

3
fijD

ð0Þ
kð0ÞDk�

k

�
; (27)

where the indices of ~Aij, ~A
ij, and D

ð0Þ
i are raised and lowered

by fij and fij. [The reason that we define ~Aij (not c
6 ~Aij) is

that it is often employed in numerical relativity.]
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The condition K ¼ 0 yields

�
ð0Þ
	 ¼ 	c 4

�
2���1ð2Sþ �hÞ þ 7

8
~Aij

~Aij

þ 1

8
!��2f7�2 � ðDi�ÞDi�g þ 3

4�

�
DiD

i�

� 2

ð2!þ 3Þ
�
8�T þ d!

d�
ð�2 � ðDk�ÞDk�Þ

���
;

(28)

where 	 :¼ �c . Note that the Laplacian term of DiD
i�

will be replaced using the equation for � (see below).
In addition to these equations, we have to solve the

equation for �. For this, we have to impose a condition
for� and �. For stationary spacetimes, we simply impose
the conditions

@t� ¼ 0 ¼ @t�: (29)

For this case, Eq. (14) is written to an elliptic equation
for �.

For binaries in quasicircular orbits, a helically symmet-
ric condition is often imposed (e.g., Ref. [4]). This sym-
metry requires that in the frame corotating with the orbital
angular velocity �, the binary is assumed to be in a sta-
tionary state. The helically symmetric condition for � is
written as

ð@t þ�@’Þ� ¼ 0: (30)

By this, Eq. (13) results in

� ¼ ���1ð�@’ þ �i@iÞ�: (31)

For this case, the equation for � is not elliptic but of the
Helmholtz type, and hence Di� and � of Eq. (14) behave
as / r�1 in the far zone because standing waves for � are
present. Then, the spacetime cannot be asymptotically flat
because in the Hamiltonian constraint there exist terms on
the right-hand side that are proportional to �2 and
ðDi�ÞDi�. This implies that � and Di� have to be of
order r�2 in the far zone for the spacetime to be asymptoti-
cally flat. To guarantee this condition, the simplest
choice is Eq. (29) or � ¼ 0. Then, Eq. (14) becomes an
elliptic-type equation and Di� ¼ Oðr�2Þ in the far zone is
guaranteed [� ¼ Oðr�3Þ for �i ¼ Oðr�1Þ]. The boundary
condition to be imposed for � is � ! �0 þOðr�1Þ for
r ! 1, where �0 is a constant with 0 � �0 � 1 � 1 and
� ¼ �H ¼ const on the horizon in the presence of black
holes (see also subsequent sections). We note that the
resulting elliptic equation for � may be substituted into
the right-hand sides of Eqs. (25) and (28).

For the fluid part, the hydrostatic equations are the same
as those in general relativity in the Jordan-Brans-Dicke
frame. Thus, the first integrals of the hydrodynamics equa-
tions is also the same as those in general relativity (see,
e.g., Refs. [5,13,14]).

III. ADM MASS AND KOMAR MASS

A. Stationary spacetime

Here, we remind the readers of the definition of the
ADM mass and Komar mass, because they are used in
the following sections.
The ADM mass is defined by [16]

MADM :¼ 1

16�

I
1
fjkfilð@k�ij � @i�jkÞdS

ð0Þ
l; (32)

where dS
ð0Þ

l is the surface integral operator in the flat space
and

H
1 denotes

H
r!1 . In the conformally flat spatial

hypersurface, it may be defined by

MADM ¼ � 1

2�

I
1
Qfjk@kc dS

ð0Þ
j; (33)

where Q is a function that is unity at r ! 1.
The ADM mass cannot be defined in a covariant way

and can be calculated only in a special class of gauge
conditions in which the following asymptotic conditions
at spatial infinity in the Cartesian coordinates have to be
satisfied (e.g., Ref. [25]):

gab � 
ab ¼ Oðr�1Þ; (34)

@k�ij ¼ Oðr�2Þ; (35)

Kij ¼ Oðr�2Þ; (36)

@kKij ¼ Oðr�3Þ; (37)

where 
ab is the flat spacetime metric. In the following, we
implicitly choose a gauge condition in which the condi-
tions (34)–(37) are satisfied. We also assume the following
asymptotic behavior of � at r ! 1:

� ¼ �0 þ 2MS

r
þOðr�2Þ; (38)

where �0 is a constant close to unity. In addition, we
impose the condition that � is constant on the black hole
horizon and denote it as �H , based on the result of
Refs. [21,26].
In the presence of a timelike Killing vector, �a, the

Komar mass is defined [15]. In general relativity, it is
defined in the covariant way as

MK :¼ 1

4�

I
S
dSanbra�b; (39)

where the closed surface S is usually taken in an asymp-
totically flat region of a spatial hypersurface �t and dSa
denotes the surface integral operator in the general
curved space. In the 3þ 1 formulation, the Komar mass
is written as
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MK ¼ 1

4�

I
S
dSkðDk�� �lKl

kÞ; (40)

where have we used na�
a ¼ ��. For gauge conditions in

which Eqs. (34)–(37) are satisfied, we have

MK ¼ 1

4�

I
1
dSiD

i�: (41)

In the scalar-tensor theory considered in the present
paper, it is more convenient for the following calculation
to write the Komar mass by

MK :¼ � 1

4��0

I
1
dSanb�ra�b: (42)

Performing the integral by parts yields

�0MK ¼� 1

4�

�I
H

dSanb�ra�b

þ
Z
�0

t

dVnbf��Rb
a�

a þðra�Þra�bg
�

¼� 1

4�

I
H

dSanb�ra�b þ 2
Z
�0

t

dVnbT
b
a�

a

� 1

8�

Z
�0

t

dV�ð�R�!��1ðrc�Þrc�� 2h�Þ;

(43)

whereH and �0
t denote black hole horizons and the entire

spatial hypersurface except for the inside of the horizons,
and dV ¼ ffiffiffiffi

�
p

d3x. We used the fact that �ara� ¼ 0 be-

cause �a is a timelike Killing vector. Note that the last term
of Eq. (43) is written by the action of this theory, and hence
the variation of it is calculated in a straightforward manner.
This is the reason why the Komar mass is defined in the
form of Eq. (42).

In the rest of this subsection, we only consider axisym-
metric spacetimes in which the circularity condition is
satisfied [7]. In the condition that the value of the scalar
field is constant, � ¼ �H , on the horizon surface [21,26],
the first (surface-integral) term of Eq. (43) is written—
following the manipulation of Refs. [6–8]—as

2�H

�
1

8�
�AH þ�H JH

�
; (44)

where �, AH , �H , and JH are the surface gravity, area,
angular velocity, and spin angular momentum of a black
hole, respectively (here we restrict our attention to the
case where only one black hole is present). Here JH is
defined by

JH :¼ 1

8�

I
H

dSanbra’b; (45)

where ’a ¼ ð@=@’Þa is the spacelike Killing vector. � is
defined by � :¼ �‘a	brb	a, where 	a :¼ �a þ�H’

a

and ‘a is a null vector orthogonal to the horizon surface

satisfying 	a‘
a ¼ �1 on the horizon [6]. Note that 	a is a

null vector tangent to the horizon on the horizon surface.
h� is written, in the presence of a timelike Killing

vector, as

�h� ¼ Dað�ra�Þ: (46)

This leads to (see, e.g., Ref. [27] for the surface integral on
the horizon in terms of the null vectors)

1

4�

Z
�0

t

dV�h� ¼ 1

4�

Z
dV�0

t
Dkð�rk�Þ

¼ 1

4�

I
1
dS
ð0Þ

k

ffiffiffiffi
�

p
�Dk�

� 1

4�

I
H

dA	ara�

¼ �2MS: (47)

Here dA is the area element. Since 	a is a Killing vector,
	ara� ¼ 0 [21]. We note that in the spacetime we con-
sider here, �na agrees with 	a on the horizon.
The resulting form of Eq. (43) can be written in several

ways. Using the relation [4]

Tabn
a�b ¼ ��ð1þ "Þ � �hðuanaÞujvj; (48)

where vj ¼ uj=ut, we have

�0MK ¼ 2�H

�
1

8�
�AH þ�H JH

�
� 2MS

� 2
Z

dV

�
�ffiffiffiffiffiffiffi�g

p Lþ �hðuanaÞujvj

�
: (49)

This will be used when the first law is derived. Using the
relation

Tabn
a�b ¼ ��h � �kJk; (50)

and

�R ¼ �8�T þ!

�
ðrc�Þrc�þ 3h�; (51)

we may also have

�0MK ¼ 2�H

�
1

8�
�AH þ�H JH

�
þMS

þ
Z

dVð��h � 2�kJk þ �SÞ: (52)

It is worthy to note that in the presence of scalar fields,
the scalar charge, MS, and the scalar fields on the horizon
and at spatial infinity, �H and �0, which are not always
unity, modify the expression of MK. Such nontrivial scalar
fields are induced unless T ¼ 0, and hence in the presence
of matter fields this modification in general occurs. We
note, on the other hand, that in the absence of the matter
field (or for T ¼ 0) the scalar field should be uniform [21];
MS ¼ 0 and �H ¼ �0. For this case, the result in general
relativity is recovered (after the rescaling of G by G=�0).
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B. Helically symmetric spacetime

In the helically symmetric spacetime, the presence of the
following Killing vector field is often assumed [4]:

ka ¼ ta þ�’a ¼
�
@

@t

�
a þ�

�
@

@’

�
a
; (53)

where� is an angular velocity which is equal to the orbital
one for binary systems in quasicircular orbits. ta and’a are
not Killing vectors in the present subsection, although ta is
assumed to be asymptotically a timelike Killing vector at
r ! 1. ka is assumed to be a null vector on the black hole
horizon, kaka ¼ 0.

In the scalar-tensor theory considered in the present
paper, we will consider the following relation (a general-
ized Smarr formula [28]) in the subsequent sections:

MK � 2�J ¼ � 1

4��0

I
1
dSanb�rakb; (54)

where J is the angular momentum defined—assuming the
asymptotic behavior of Eqs. (34)–(37)—by (e.g., Ref. [25])

J :¼ 1

8�

I
1
dSanbra’b ¼ 1

8�

I
1
dSaK

a
b’

b: (55)

We note that MK is not always ‘‘the mass’’ in this case.
However, it is a useful quantity for the manipulation used
when the first law is derived.

Using the same manipulation as that used in Sec. III A,
we have [compare with Eq. (49)]

�0ðMK � 2�JÞ ¼ 1

4�
�H�AH � 2MS

� 2
Z

dV

�
�ffiffiffiffiffiffiffi�g

p Lþ �hðuanaÞujvj

�
:

(56)

Here, ua is decomposed as ua ¼ utðka þ vaÞ [4] and � :¼
�‘akbrbka, with ‘a being a null vector orthogonal to the
horizon surface satisfying ka‘

a ¼ �1 on the horizon.

IV. VIRIAL RELATIONS

A. Virial relation for general stationary spacetimes

As mentioned in Sec. I, the Komar mass and ADMmass
agree with each other for stationary spacetimes in general
relativity: the relation MADM ¼ MK is a necessary condi-
tion for a stationary spacetime. In this section, we derive
the relation (2) that is satisfied in the scalar-tensor theory
described in Sec. II, following the prescription developed
by Beig [1], who derived a necessary condition for the
stationarity using the evolution equation for the extrinsic
curvature.
From the evolution equation of Kij, Eq. (22), the follow-

ing equation is derived:

@tKij � 1

2
�ij@tK ¼ �ð3ÞGij �

�
DiDj�� 1

2
�ijDkD

k�

�
þ �

�
KKij � 2KikK

k
j �

1

2
�ijK

2

�
þ �kDk

�
Kij � 1

2
�ijK

�

þ KikDj�
k þ KjkDi�

k � 8����1

�
Sij � 1

4
�ijðSþ �hÞ

�
� �!��2

�
Di�Dj�� 1

2
�ijðDk�ÞDk�

�

� ���1

�
DiDj�� 1

2
�ijDkD

k���

�
Kij � 1

2
�ijK

�
� 1

4
�ijh�

�
; (57)

where ð3ÞGij denotes the Einstein tensor on the spatial
hypersurface. Using the prescription of Landau and
Lifshitz [29], ð3ÞGij is written as

2ð3ÞGij ¼ �16�ð3ÞtijLL þ ��1@k@l
ð3ÞHikjl; (58)

where ð3ÞHikjl is a superpotential on the spatial hypersur-
face defined by

ð3ÞHikjl :¼ �ð�ij�kl � �il�jkÞ; (59)

and ð3ÞtijLL is the three-dimensional Landau-Lifshitz pseu-
dotensor. We then define hikj ¼ @l

ð3ÞHikjl for the subse-
quent calculations, where hikj ¼ �hkij.

In the following, we assume that the following asymp-
totic conditions are satisfied so that the ADM mass can be
defined [cf. Eqs. (34)–(37)]:

� ¼ 1�MK

r
þOðr�2Þ; (60)

�i ¼ Oðr�1Þ; (61)

�ij ¼ fij þOðr�1Þ; (62)

@k�ij ¼ Oðr�2Þ; (63)

Kij ¼ Oðr�2Þ; (64)

@kKij ¼ Oðr�3Þ: (65)

Note that the leading part ofKij is assumed to be composed

only of the ADM linear momentum. We also assume the
asymptotic condition of Eq. (38) for �. These assumptions
yield the following results: (i) the evolution equation
for Kij implies @tKij ¼ Oðr�3Þ; (ii) Eq. (60) implies

DkD
k� ¼ Oðr�4Þ; (iii) ð3ÞtijLL ¼ Oðr�4Þ; (iv) Eq. (38) im-

plies DkD
k� ¼ Oðr�4Þ and h� ¼ Oðr�4Þ.
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Following Ref. [1], we then evaluate the surface integral
at spatial infinity as

I1 ¼ 1

8�

I
1
fjkx

kð3ÞGijdS
ð0Þ

i

¼ 1

16�

I
1
fjlx

l@kh
ikjdS

ð0Þ
i

¼ 1

16�

I
H

fjlx
l@kh

ikjdS
ð0Þ

i þ 1

16�

Z
�0

t

@iðfjlxl@khikjÞd3x;

(66)

where dS
ð0Þ

l ¼ dSl for r ! 1. From the identity
@i@kh

ikj ¼ 0, which holds because of the antisymmetry
of hikj ¼ �hkij, we have

@iðfjlxl@khikjÞ ¼ fij@kh
ikj: (67)

Then,

I1 ¼ 1

16�

�I
H

fjlx
l@kh

ikjdS
ð0Þ

i þ
Z
�0

t

fjl@ih
jild3x

�

¼ 1

16�

�I
H

fjlðxl@khikj � hjilÞdS
ð0Þ

i þ
I
1
fjlh

jildS
ð0Þ

i

�

¼ 1

16�

�I
H

fjl@kðxlhikjÞdS
ð0Þ

i þ
I
1
fjlh

jildS
ð0Þ

i

�

¼ 1

16�

I
1
filfjkð@i�jk � @k�ijÞdS

ð0Þ
l ¼: �MADM;

(68)

where in the last line we have used the definition of the
ADMmass. We also used the relation for an antisymmetric

tensor Tij
ant in flat spaces,

I
@iT

ij
antdS

ð0Þ
j ¼ 0; (69)

and the asymptotic behavior of fjkh
jik,

fjkh
jik ! filfjkð@l�jk � @k�jlÞ: (70)

Note that due to the presence of Eq. (69), the horizon-
surface integral term does not appear in Eq. (68).

Using Eq. (57) together with the conditions (60) and (38),
I1 is written as

I1 ¼ 1

8�

I
1
fikx

k

�
@tK

ij � 1

2
�ij@tK

�
dS
ð0Þ

j

þ 1

8�

I
1
xiðDiD

j�þ ���1DiD
j�ÞdS

ð0Þ
j; (71)

wherewe have discarded the terms that are vanishing. Then,
the second term of Eq. (71) is calculated to yield

I
1
fjkxið@i@j�þ��1@i@j�ÞdS

ð0Þ
k

¼ 8�ð�MK þ 2��1
0 MSÞ: (72)

Finally, we obtain

1

8�

I
1
fikx

k

�
@tK

ij � 1

2
�ij@tK

�
dS
ð0Þ

j

¼ MK �MADM � 2��1
0 MS: (73)

Therefore, for stationary spacetimes forwhich@tK
ij ¼ 0 ¼

@tK, the virial relation (2) is a necessary condition [30].
The scalar charge is in general induced in the presence

of matter unless T ¼ 0, and hence the virial relation is in
general different than it is in general relativity for a non-
vacuum spacetime. We note that a similar relation is well
known for asymptotically flat systems (e.g., Ref. [17]).
However, to our knowledge, the virial relation has not yet
been explicitly written in the form of Eq. (2).

B. Virial relation for quasiequilibrium
in the IWM formalism

Following Appendix A of Ref. [4] in a straightforward
manner, we can derive a virial relation for equilibrium
and quasiequilibrium states in the IWM formalism.
Throughout this section, we will use Cartesian coordinates
ðt; xiÞ for which fij has components fij ¼ �ij. In the IWM

formalism, instead of solving the full Einstein’s equations,
one solves only the Hamiltonian constraint, the momentum
constraint, and the equation for the maximal slicing con-
dition. As written in Sec. II B, the extrinsic curvature in this

set of equations is replaced by its trace-free part, ~Aij, which
is written by the shift vector; see Eq. (27).
In the following, we restrict our attention to the case

where black holes are absent. Thus, hereafter
H
without a

specification of a surface denotes a surface integral at
spatial infinity,

H ¼ H
1 . In the presence of black holes,

we have to take care with the boundary condition on the
horizons, for which we have to impose physical conditions
for 	, c , and �i (e.g., Ref. [31]).
In the IWM formalism, the evolution equation for Kij,

Eq. (22), is not satisfied in general. This implies that we
cannot use the same method as that in Sec. IVA for deriv-
ing the virial relation. Thus, we will attempt to directly
perform an integral of the equation of motion for the
matter-field equation to derive the virial relation, as is often
done in Newtonian gravity.
We here employ the equation of motion in the form

ra�
a
b ¼ 0; (74)

where �ab is composed of the perfect fluid and scalar field

as [see Eq. (9)]
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�ab :¼ ��1Tab þ 1

8�

�
!ð�Þ��2

�
ðra�Þrb�

� 1

2
gabðrc�Þrc�

�
þ��1ðrarb�� gabh�Þ

�
:

(75)

We note that in the IWM formalism of the scalar-tensor
theory that we consider, Eq. (74) is solved and satisfied.
Then, defining

�̂h :¼ �abn
anb; Ĵi :¼ ��abn

a�b
i;

Ŝij :¼ �ab�
a
i�

b
j; Ŝ :¼ �ab�

ab;

we obtain the equation of motion (�a
irb�

b
a ¼ 0) in the

form

@tðĴic 6Þ þ @j½c 6ð�Ŝji � Ĵi�
jÞ� þ �̂hc

5@i	

� ð�̂h þ 2ŜÞ	c 4@ic � c 6Ĵk@i�
k ¼ 0: (76)

As in the Newtonian case, we then evaluate

Z
d3xxi@tðĴic 6Þ

¼ �
Z

d3xxi
�
@j½c 6ð�Ŝji � Ĵi�

jÞ� þ �̂hc
5@i	

� ð�̂h þ 2ŜÞ	c 4@ic � c 6Ĵk@i�
k

�
; (77)

and consider the condition to be satisfied for the vanishing
right-hand side because—for the stationary spacetime—
the left-hand side should be vanishing. Here, we note that
by using the momentum constraint the left-hand side is
rewritten as

Z
d3xxi@tðĴic 6Þ ¼ d

dt

Z
d3xxi@jðc 6 ~Aj

iÞ

¼ d

dt

I
dS
ð0Þ

jx
ic 6 ~Aj

i; (78)

where we have used ~Ai
i ¼ 0. Thus, we are going to essen-

tially integrate the evolution equation for Kij as in

Sec. IVA.
Before proceeding, we rewrite the basic equations for

the gravitational field as [see Eqs. (25), (26), and (28)]

�
ð0Þ
c ¼ �2�c 5�̂h � c 5

8
~Aij

~Aij ¼: �Sc ; (79)

@jðc 6 ~Ai
jÞ ¼ 8�Ĵic

6; (80)

�
ð0Þ
	 ¼ 2�	c 4ð�̂h þ 2ŜÞ þ 7

8
	c 4 ~Aij

~Aij ¼: S	: (81)

As before, the asymptotic behavior of the geometric and
scalar variables is assumed to be

c ¼ 1þMADM

2r
þOðr�2Þ; (82)

	 ¼ 1�M	

2r
þOðr�2Þ; (83)

�i ¼ Oðr�2Þ; (84)

~A i
j ¼ Oðr�3Þ; (85)

� ¼ �0 þ 2MS

r
þOðr�2Þ; (86)

� ¼ Oðr�3Þ: (87)

For this case, we assume for simplicity that the total ADM
three-momentum vanishes,

Pi :¼ 1

8�

I
1
~Ai

jdS
ð0Þ

j ¼ 0: (88)

From the momentum constraint (80), we also have

0 ¼
Z

Ĵic
6d3x: (89)

M	 and MADM can be defined by the surface integrals

M	 ¼ 1

2�

I
1
�ijc @i	dS

ð0Þ
j;

MADM ¼ � 1

2�

I
1
�ij	@ic dS

ð0Þ
j:

(90)

Using Gauss’s law, M	 and MADM can be rewritten as

M	 ¼ 1

2�

Z
ðc S	 þ �ij@i	@jc Þd3x; (91)

MADM ¼ 1

2�

Z
ð	Sc � �ij@ic @j	Þd3x: (92)

We now derive the virial relation for equilibria and
quasiequilibria. As a first step, we derive a relation that
will be used several times in the calculations that follow.

From 	c 5 ~Ai
j ~Aj

i ¼ c 6 ~Ai
j@j�

i, we have

Z
	c 5 ~Ai

j ~Aj
id3x¼

Z
c 6 ~Ai

j@j�
id3x

¼�
Z
@jðc 6 ~Ai

jÞ�id3xþ
I

c 6 ~Ai
j�idS

ð0Þ
j

¼�8�
Z

c 6Ĵi�
id3x; (93)

where we have used the asymptotic behaviors at r ! 1
and Eq. (80) to obtain the last line.
Using Eqs. (91)–(93), the difference betweenMADM and

M	 is written as
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M	�MADM¼ 1

�

Z �
2�	c 5Ŝþ3

8
	c 5 ~Ai

j ~Aj
i

þ�ij@ic @j	

�
d3x

¼2
Z �

	c 5Ŝ�3

2
c 6Ĵj�

j

þ 1

2�
�ij@ic @j	

�
d3x: (94)

This will be used later.
In the following, we evaluate the terms on the right-hand

side of Eq. (77) separately.
(i) First term: An integration by parts immediately

yields

�
Z

xk@jð�c 6ŜjkÞd3x

¼ �
I

xk�c 6ŜjkdS
ð0Þ

j þ
Z

�c 6Ŝd3x

¼ �2��1
0 MS þ

Z
�c 6Ŝd3x: (95)

The contribution to the surface-integral term comes
from the term ��1DjDk� and is equal to
�2��1

0 MS.

(ii) Second term: An integration by parts immediately
yields

Z
xk@jð�jĴkÞd3x ¼ �

Z
�jĴjd

3x: (96)

In this case, the contribution of the surface integral
at spatial infinity is vanishing.

(iii) Third and fourth terms: Using Eqs. (79) and (81),
we can rewrite these terms as

� �̂hc
5@k	þ ð�̂h þ 2ŜÞ	c 4@kc

¼ 1

2�

�
�
ð0Þ
c @k	þ �

ð0Þ
	@kc

�

þ c 12 ~Ai
j ~Aj

i

16�
@k

�
�

c 6

�
: (97)

Taking into account the identity

Z �
ðxk@kc Þ�

ð0Þ
	þ ðxk@k	Þ�

ð0Þ
c

�
d3x

¼
Z

�ij@i	@jc d3x; (98)

we find

�
Z
xk½�̂hc

5@k	�ð�̂hþ2ŜÞ	c 4@kc �d3x

¼
Z �

1

2�
�ij@i	@jc þc 12 ~Ai

j ~Aj
i

16�
xk@k

�
�

c 6

��
d3x:

(99)

(iv) Fifth term: Using the same calculation of Eq. (A28)
of Ref. [4] (see this reference for details),

Z
c 6Ĵix

k@k�
id3x

¼ 1

8�

Z
@jðc 6 ~Ai

jÞxk@k�id3x

¼� 1

16�

Z �
8�c 6Ĵk�

kþc 12 ~Ai
j ~Aj

ixk@k

�
�

c 6

��
d3x:

(100)

Because of the asymptotic behavior assumed, the
surface terms at r ! 1 that appear for this term
[see Eq. (A28) of Ref. [4]] vanish.

Finally, gathering the results of (i) – (iv), the right-hand
side of Eq. (77) is written as

�2��1
0 MSþ

Z �
�c 6Ŝ�3

2
Ĵk�

kc 6þ 1

2�
�ij@i	@jc

�
d3x:

(101)

Using Eq. (94), Eq. (101) is rewritten as

�2��1
0 MS þ

M	 �MADM

2
¼ �2��1

0 MS þMK �MADM;

(102)

implying that Eq. (2) is the necessary condition for the
stationarity.
Because the integrand is the scalar, the left-hand side of

Eq. (77) is written as

d

dt

Z
d3xxiĴic

6 ¼
Z

d3x@tðxiĴic 6Þ

¼
Z

d3xð@t þ�@’ÞxiĴic 6: (103)

This implies that for helically symmetric spacetimes, the
virial relation should have the same form as Eq. (2).

V. FIRST LAW

To derive the first law for stationary and axisymmetric
spacetimes that satisfy the circularity condition, we simply
follow the calculation of Ref. [6] (although the method of
Ref. [9] could be more elegant): we simply perform the
variation of the Komar mass in the straightforward manner.
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First, we take the variation of Eq. (49) as

�0�MK ¼ 2�

�
�H

�
1

8�
�AH þ�H JH

��
� 2�MS

� 2�
Z

dV

�
�

16�
f�R���1!ðrc�Þrc�g

� ��ð1þ "Þ þ �hðuanaÞujvj

�
; (104)

where we have assumed that �0 is fixed to be a constant.
Following Ref. [6], we take the variation in the gauge
��a ¼ 0 ¼ �’a for the entire spacetime and �	a / 	a

on the horizon.
The variation for the last line of Eq. (104) is only one

nontrivial part. However, it can be taken without difficulty
following the manipulations in the previous works (see,
e.g., Refs. [4,6]) due to the choice of the Jordan-Brans-
Dicke frame, and hence we here describe the final results.

(i) Fluid part (see, e.g., Refs. [4,32,33]):

�
Z
½ ffiffiffiffiffiffiffi�g
p

�ð1þ "Þ � �hðuanaÞuivi ffiffiffiffi
�

p �d3x

¼
Z �

� �T

ut
ð�sÞuad�a þ

�
h

ut
þ huiv

i

�
�ð�uad�aÞ

þ vi�ðhuiÞ�uad�a þ
�
� 1

2

ffiffiffiffiffiffiffi�g
p

Tab�gab

þ ffiffiffiffiffiffiffi�g
p

arbT
ab � ffiffiffiffi

�
p

Dað��hqabbÞ
��

d3x;

(105)

where �T is temperature, s is the specific entropy, d�a

is the volume element on the spatial hypersurface,
a is the Lagrangian displacement, and qab ¼ gab þ
uaub. � denotes the Lagrangian perturbation. When
rewritten to a surface integral, the last term—assum-
ing that a ¼ 0 at spatial infinity and on the hori-
zon—is vanishing.

(ii) Geometric part:

�
Z

�R
ffiffiffiffiffiffiffi�g

p
d3x

¼
Z

�ð�R
ffiffiffiffiffiffiffi�g

p Þd3x

¼
Z
½ðGab��rarb�þ gabh�Þ

� ffiffiffiffiffiffiffi�g
p

�gab þ R
ffiffiffiffiffiffiffi�g

p
��

þ @af ffiffiffiffiffiffiffi�g
p

�gadgbcðrc�gbd �rd�gbcÞg�d3x:
(106)

Here the surface terms associated with the deriva-
tive of the scalar field are vanishing because of the
asymptotic condition for r ! 1 and because
�nara� ¼ 	ara� ¼ 0 on the horizon. Assuming
the presence of a timelike Killing vector, the last

term is written as the surface integral, which is
known to subsequently yield [6]

8��0ð2�MADM � �MKÞ (107)

for the surface integral at spatial infinity and

�H ð�2��AH � 16���H JH Þ (108)

for the surface integral on the horizon. Here, we
again assumed that � is constant on the horizon.

(iii) Scalar part: It is straightforward to obtain

�
Z !

�
ðrc�Þrc�

ffiffiffiffiffiffiffi�g
p

d3x

¼
Z �

��

��
!

�2
� 1

�

d!

d�

�
ðrc�Þrc�

� 2!

�
h�

�
þ!

�
�gab

�
ra�rb�

� 1

2
gabðrc�Þrc�

�� ffiffiffiffiffiffiffi�g
p

d3x: (109)

Here, the surface-integral term at spatial infinity
is vanishing because ra� ¼ Oðr�2Þ and �� ¼
Oðr�1Þ for r ! 1. The surface-integral term on
the horizon is also vanishing because of the condi-
tion 	ara� ¼ 0.

Gathering all the terms and using the conditions that
Einstein’s equation Gab ¼ 8��ab is satisfied, the scalar
field equation is satisfied, the stress-energy conservation
law is satisfied raT

ab ¼ 0, the entropy is conserved
�s ¼ 0, the baryon rest mass is conserved �ð�uad�aÞ ¼
0, and the specific angular momentum or vorticity is con-
served �ðhuaÞ ¼ 0 (see, e.g., Ref. [4] for the conservation
laws), we finally obtain

�0�MADM ¼ 1

8�
��ð�HAH Þ

þ�H�ð�H JH Þ � �MS; (110)

or—by using the so-called tensor mass [17,18,21],
MT :¼ MADM þMS�

�1
0 —we may write it as

�0�MT ¼ 1

8�
��ð�HAH Þ þ�H�ð�H JH Þ: (111)

In the absence of the scalar field (MS ¼ 0 and �H ¼ �0),
which is the case in vacuum, the relation is the same as that
in general relativity [6]. However, in the presence of the
matter together with a black hole the relation is modified
because a nontrivial profile of the scalar field may be
induced (unless T ¼ 0). In particular, it is worthy to note
that even in the case that the scalar charge is conserved,
�MS ¼ 0, the relation is modified if the value of � on the
horizon varies along the sequence.
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For binaries in quasicircular orbits, we only need to
repeat the calculation performed in Ref. [4] starting from
Eq. (56) and using the same gauge. The final result is

�0�MADM ¼ 1

8�
��ð�HAH Þ þ�0��J � �MS; (112)

or

�0ð�MT ���JÞ ¼ 1

8�
��ð�HAH Þ: (113)

Again, in the presence of the matter together with a black
hole, the relation is different from that in general relativity.

For both Eqs. (111) and (113), we may say that for the
quantities defined in the Einstein frame in which the metric
is�gab, the relation is the same as that in general relativity,
e.g., the area of the black hole horizon in the Einstein frame
should be �HAH , and hence �H is absorbed in the
expression.

We note that the first-law relations derived here are
satisfied irrespective of the virial relation, and thus in the
final results the variation of MK is absent. The relation for
�MK is obtained if we use the virial relations.

VI. DISCUSSION

Nowwe show that Eq. (113) is a reasonable result for the
evolution of binary compact objects in quasicircular orbits.
In the following, we denote the angular velocity of the
circular orbit by �.

To consider the evolution due to the radiation reaction
by the emission of gravitational waves and scalar waves, it
is quite useful to rewrite Einstein’s equation (using the
method of Ref. [29]) as

2Gab ¼ 16��ab ¼ �16�tabLL þ ð�gÞ�1@c@dH
acbd;

(114)

where Habcd is a spacetime superpotential defined by

Habcd :¼ ð�gÞðgacgbd � gadgbcÞ; (115)

and tabLL is the pseudotensor of Landau and Lifshitz. Then,
the it and i’ components of Eq. (114) yield the conserva-
tion law of MT and J, as shown by Lee [17]. The rates of
decrease of MT and J due to the emission of gravitational
waves and scalar waves are then written as

_M T ¼ �ð _EGW þ _ESÞ; (116)

_J ¼ �ð _JGW þ _JSÞ; (117)

where _EGW and _ES are the energy emission rates of gravi-
tational waves and scalar waves, respectively, and _JGW and
_JS are the corresponding dissipation rates of the angular
momentum. For the circular orbits, _EGW ¼ � _JGW and
_ES ¼ � _JS. Therefore, Eq. (113) implies that �HAH has
to be constant along the sequence of quasicircular states in

the Jordan-Brans-Dicke frame. Thus, AH is not conserved
in general. In particular, if �H increases along the se-
quence, AH decreases. This may occur because the null
energy condition may not be satisfied in the Jordan-Brans-
Dicke frame [21].
�HAH ¼ const yields the relation

d lnAH

d ln�H
¼ �1: (118)

For AH / M2
H
, where MH is the mass of the black hole,

we have the well-known relation of the sensitivity of black
holes [18,21],

d lnMH

d ln�H
¼ � 1

2
: (119)

Next we consider the implication of the virial relation,
MK ¼ MT þ��1

0 MS. Here, MK is the gravitational mass

[18] that primarily determines the strength of the gravita-
tional force / M2

K. As mentioned above,MT is a conserved
mass in the absence of radiation, whereasMS does not have
to be. This implies thatMK may vary ifMS does even in the
absence of the radiation reaction. (In addition to this effect,
the curve ofMT as a function of� should also be modified
in the presence of a large value ofMS). For example, in the
scalar-tensor theory of Ref. [23] with the maximum al-
lowed value CDEF � 9–10 [34], the value ofMS for neutron
stars in binary neutron stars with close orbits can steeply
grow depending on the background value of � in the
vicinity of the neutron stars [35]. In the inspiral orbits of
binary neutron stars, the background value of � of each
neutron star increases with a decrease of the orbital sepa-
ration due to the effect of the companion neutron star, and
henceMS monotonically increases with the time evolution
[36]. For such a case, the magnitude of the attractive force
increases monotonically with a decrease of the orbital
separation: in other words, the chirp mass increases with
an increase of � [37]. In addition, the luminosity of
gravitational waves will be enhanced because the orbital
velocity is increased, as indicated from the post-Newtonian
results (e.g., Ref. [38]). Thus, the rate of increase of the

orbital frequency _f is increased. This effect depends on the
structure of the neutron stars and hence on the equation of
state [36]. If this effect is large enough to change the orbital
phase by more than one cycle, it will be found in the data
analysis of gravitational waves from inspiraling binary
neutron stars.

VII. SUMMARY

We have derived virial relations and the first law for
stationary spacetimes and for quasiequilibrium spacetimes
in a class of scalar-tensor theories of gravity in the Jordan-
Brans-Dicke frame. In the presence of nontrivial scalar
fields—that is, in the general case for nonvacuum
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spacetimes—these relations are different from those in
general relativity. These relations will be useful for check-
ing the accuracy of numerical solutions for equilibrium and
quasiequilibrium states. We also found that (i) the first-law
relation implies that we have to construct a sequence of
black hole-neutron star binaries in quasicircular orbits
fixing �HAH for the black hole in the Jordan-Brans-
Dicke frame, and (ii) in the scalar-tensor theory of
Ref. [23], the attractive force between two neutron stars

in binary neutron stars could be enhanced in the late
inspiral phase.
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