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Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger

of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and

gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star

mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass

of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total

binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive

neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the

frequency varies with time. We also show that the frequency and time-variation feature of gravitational

waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic

gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.
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I. INTRODUCTION

Coalescence of binary neutron stars is one of the most
promising sources for next-generation, kilometer-size
gravitational-wave detectors such as advanced LIGO,
advanced VIRGO, and KAGRA [Large-scale Cryogenic
Gravitational Wave Telescope (LCGT)] [1]. The first
detection of gravitational waves will be achieved in the
next �5 years by observing a chirp signal of gravitational
waves emitted in the so-called inspiral stage in which
binary neutron stars are in quasicircular orbits with orbital
radius 30–700 km (the gravitational-wave frequency in the
range�10–103 Hz). Statistical studies have predicted that
the detection rate of gravitational waves for this signal will
be�1–100 per year (e.g., [2,3]). After the first detection of
gravitational waves from coalescence of a binary neutron
star, it will be a great challenge to extract the information
of matter effects from a gravitational-wave signal. For
instance, a tidal deformability parameter will be measur-
able with the gravitational-wave signal during the inspiral
stage [4].

After the merger of a binary neutron star sets in, there
are two possible fates: If the total mass is large enough, a
black hole is promptly formed, while if not, a massive
neutron star (MNS) is formed. (Here, a massive neutron
star means hypermassive or supramassive neutron star. See
[5–7] for their definitions, respectively; see also Sec. II C.)
Numerical-relativity simulations have shown that the
threshold mass depends strongly on the equation of state
(EOS) of the neutron star matter [8–12], which is sill
poorly known to date [13]. However, the latest discoveries

of high-mass neutron stars with mass 1:97� 0:04M� [14]
and 2:01� 0:04M� [15] constrain that the maximum mass
of (cold) spherical neutron stars for a given hypothetical
EOS has to be larger than �2M�. This suggests that the
EOS of neutron stars has to be stiff; the pressure above
the nuclear-matter density �2:8� 1014 g=cm3 has to be
sufficiently high. Motivated by this fact, we performed
numerical-relativity simulations for a variety of stiff
EOSs in previous papers [9,12], and found that a MNS is
the universal outcome for the binary of a total mass smaller
than the typical mass �2:6–2:8M�. The purpose of this
paper is to summarize our latest more systematic studies
for the evolution process of the MNSs and quasiperiodic
gravitational waves emitted by the MNSs formed after the
merger of binary neutron stars.
In the past decade, the numerical simulation for the

merger of binary neutron stars in full general relativity,
which is the unique approach of the rigorous theoretical
study for this subject, has been extensively performed since
the first success in 2000 [16] (see, e.g., [17,18] for a review
of this field). However, most of the simulations have been
performed with simple polytropic EOSs (but see, e.g.,
[19–21] for the latest progress). For the detailed and physi-
cal study of the merger remnants and gravitational waves
emitted by remnant MNSs, we have to employ physical
EOSs. In the past two years, we have performed a number
of simulations using piecewise polytropic EOSs [9,12] and
tabulated finite-temperature EOSs taking into account a
neutrino cooling process [10,11,22] for a variety of masses
of binary systems (see also [23]). We now have a number of
numerical results, a variety of the sample for remnant
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MNSs, and possible gravitational waves emitted by them.
By analyzing these samples, we can now summarize pos-
sible evolution processes of the remnant MNSs and the
resulting gravitational waveforms. Furthermore, a variety
of numerical gravitational waveforms enable us to con-
struct an analytic model for such gravitational waveforms.
In this paper, we report the results of our exploration for
these issues.

The paper is organized as follows: In Sec. II, we sum-
marize the EOSs employed in our latest numerical-
relativity simulations, and models of binary neutron stars
for which MNSs are formed. In Sec. III, we describe the
properties and possible evolution processes of the MNSs.
Section IV summarizes the properties of gravitational
waves emitted by MNSs. Section V is devoted to deriving
analytic formulas for modeling gravitational waves emit-
ted by the MNSs. Section VI is devoted to a summary and
discussion. Throughout this paper, we employ the geomet-
rical units c ¼ 1 ¼ G where c and G are the speed of
light and gravitational constant, respectively, although we
recover c when we need to clarify the units [24].

II. EQUATIONS OF STATE AND CHOSENMODELS

A. Equations of state

In this section, we summarize the EOSs employed in our
latest studies [10–12,22] and in the present work.

The exact EOS for the high-density nuclear matter is still
unknown [13], and hence, a numerical simulation employ-
ing a single particular EOS, which might not be correct,
would not yield a scientific result in this field. Simulations
systematically employing a wide variety of possible hypo-
thetical EOSs are required for exploring the merger of
binary neutron stars. Nevertheless, the latest discoveries
of a high-mass neutron star PSR J1614-2230 with mass
1:97� 0:04M� [14] and PSR J0348þ 0432 with 2:01�
0:04M� [15] significantly constrain the hypothetical EOSs
to be chosen, because these suggest that the maximum
allowed mass of (cold) spherical neutron stars for a given
EOS (hereafter denoted by Mmax ) has to be larger than

�2M�. This indicates that the EOS should be rather stiff,
although there are still many candidate EOSs [13].
To this time, we have employed two types of EOSs. One

is a piecewise polytropic EOS proposed by Read and her
collaborators [25] (described below) and the other is a
tabulated EOS in which finite-temperature effects together
with the effects associated with the electron fraction per
baryon is taken into account. In this study, we analyze
numerical results [10] which were derived from a relativ-
istic mean-field theory [26] assuming that neutron stars are
composed of normal nuclear matter such as protons and
neutrons. This EOS is stiff and yields Mmax ¼ 2:2M� (see
Table I). We also employed the hyperonic version of Shen
EOS [27] in [11]. However, this EOS is rather soft with
Mmax ¼ 1:75M�, and hence, we do not adopt the numeri-
cal results for this EOS in this paper.
The piecewise polytropic EOS is described assuming

that neutron stars are cold (in a zero-temperature state); the

rest-mass density � determines all other thermodynamical

quantities. In the prescription of [25], there are the follow-

ing four parameters: P2: the pressure at � :¼ �2 ¼
1014:7 g=cm3 and ð�1;�2;�3Þ, the adiabatic indices that

characterize the EOS for the nuclear matter (see, e.g.,

[12] for details). Table I lists parameters of the five piece-

wise polytropic EOSs which we employed and which are

representative EOSs derived in nuclear theories. The val-

ues of (P2, �1, �2, �3) are taken from [25]. The properties

of these EOSs are described in [12] (see [28–32] for APR4,

SLy, ALF2, H4, and MS1, respectively.)
Figure 1 plots the pressure as a function of the rest-mass

density for five piecewise polytropic EOSs as well as for
Shen EOS. APR4 and SLy have relatively small pressure
for � & �3 :¼ 1015 g=cm3, while they have high
pressure for � * �3. By contrast, H4, MS1, and Shen
have pressure higher than APR4 and SLy for � & �3, while
they become softer for a high-density region � * �3. MS1
has the highest pressure for � & �3 (i.e., the highest value
of P2) among many other EOSs, and thus, it is the stiffest
EOS as far as the canonical neutron stars are concerned.

TABLE I. Parameters and key quantities for five piecewise polytropic EOSs and finite-temperature (Shen) EOSs employed so far. P2

is shown in units of dyn=cm2. Mmax is the maximum mass along the sequences of cold spherical neutron stars. (R1:35; �1:35),
(R1:5; �1:5), (R1:6; �1:6), and (R1:8; �1:8) are the circumferential radii in units of km and the central density in units of g=cm3 for 1:35M�,
1:5M�, 1:6M�, and 1:8M� neutron stars, respectively. We note that the values of the mass, radius, and density listed for the piecewise
polytropic EOSs are slightly different from those obtained in the original tabulated EOSs (see the text for the reason). MS1 is referred
to as this name in [25], but in other references (e.g., [13]), it is referred to as MS0. We follow [25] in this paper. The fitted parameters
ðlog ðP2Þ;�1;�2;�3Þ are taken from [25].

EOS ðlog ðP2Þ;�1;�2;�3Þ Mmax ðM�Þ R1:35 �1:35 R1:5 �1:5 R1:6 �1:6 R1:8 �1:8

APR4 (34.269, 2.830, 3.445, 3.348) 2.20 11.1 8:9� 1014 11.1 9:6� 1014 11.1 10:1� 1014 11.0 11:4� 1014

SLy (34.384, 3.005, 2.988, 2.851) 2.06 11.5 8:6� 1014 11.4 9:5� 1014 11.4 10:2� 1014 11.2 12:0� 1014

ALF2 (34.616, 4.070, 2.411, 1.890) 1.99 12.4 6:4� 1014 12.4 7:2� 1014 12.4 7:8� 1014 12.2 9:5� 1014

H4 (34.669, 2.909, 2.246, 2.144) 2.03 13.6 5:5� 1014 13.5 6:3� 1014 13.5 6:9� 1014 13.1 8:7� 1014

MS1 (34.858, 3.224, 3.033, 1.325) 2.77 14.4 4:2� 1014 14.5 4:5� 1014 14.6 4:7� 1014 14.6 5:1� 1014

Shen (34.717, —, —, —) 2.20 14.5 4:4� 1014 14.4 4:9� 1014 14.4 5:8� 1014 14.2 6:7� 1014
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ALF2 has small pressure for � � �2 as in the case of
APR4, but for �2 & � � �3 the pressure is higher than
that for APR4. For � � �2 the pressure of ALF2 is as high
as that for H4. The profile of Shen is similar to H4 although
Shen has slightly higher pressure than H4 for a given value
of the density. Also, APR4 and SLy are similar EOSs, but
the slight difference between two EOSs results in a signifi-
cant difference in the merger remnants for canonical-mass
binary neutron stars (see Sec. III).

All the properties mentioned above are reflected in the
radius R1:35 and central density �1:35 of (cold) spherical
neutron stars with the canonical mass M ¼ 1:35M� [33]
where M is the gravitational [Arnowitt-Deser-Misner
(ADM)] mass of the cold spherical neutron stars in iso-
lation; see Table I. The pressure at � ¼ �2 (i.e., P2) is
correlated well with this radius and central density [34]
(see also below).

In the numerical simulation, we used a modified version
of the piecewise polytropic EOS to approximately take into
account thermal effects. In this EOS, the pressure and
specific internal energy are decomposed into cold and
thermal parts as

P ¼ Pcold þ Pth; " ¼ "cold þ "th: (1)

The cold parts of both variables are calculated using the
original piecewise polytropic EOS from the primitive vari-
able �, and then the thermal part of the specific internal
energy is defined from " as "th ¼ "� "coldð�Þ. Because "th
vanishes in the absence of shock heating, it is regarded as
the finite-temperature part determined by the shock heating
in the present context. For the thermal part of the pressure
and specific internal energy, a �-law ideal-gas EOS was
adopted as

Pth ¼ ð�th � 1Þ�"th: (2)

Following the conclusion of a detailed study in [35], �th is
chosen in the range 1.6–2.0 with the canonical value 1.8.
For several models, simulations were performed varying
the value of �th (see Table II).

B. Models

Numerical simulations were performed for a variety
of EOSs and for many sets of masses of binary neutron
stars. Because the mass of each neutron star in the
observed binary systems is in a narrow range between
�1:23–1:45M� [33], we basically choose the neutron
star masses 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1:5M�
with the canonical mass 1:35M� (the canonical total mass
m ¼ m1 þm2 ¼ 2:7M�). Also, the mass ratio of the
observed system q :¼ m1=m2ð� 1Þ where m1 and m2

denote the mass of lighter and heavier neutron stars, re-
spectively, is in a narrow range�0:85–1. Thus, we choose
q as 0:8 � q � 1. The models employed in the present
analysis are listed in Table II. In the following, we specify
the model by the names listed in this table. We note that for
APR4 and SLy, a black hole is formed promptly after the
onset of the merger for m � 2:9M� and m � 2:8M�,
respectively. (Although they are not listed in Table II, we
performed a simulation for m1 ¼ m2 ¼ 1:4M� with SLy
and three simulations for m ¼ 2:9M� with APR4.)
We found that for models withm � 2:7M�, MNSs were

always formed irrespective of the EOSs employed. Even
for m ¼ 2:8M�, MNSs were formed for all the EOSs
except for SLy. For stiffer EOSs, MNSs can be formed
even for m ¼ 3M� (e.g., for Shen and MS1 EOSs). Thus,
for H4, MS1, and Shen, we performed simulations for
higher-mass models with m2 ¼ 1:6M�. The models in
which MNSs are formed are summarized in Table II. In
Secs. III and IV, we will analyze the evolution process of
the MNSs and the waveform of emitted gravitational
waves, derived for these models.
Numerical simulations with the piecewise polytropic

EOSs were performed using an adaptive-mesh refinement
code SACRA [36]. For these simulations, the semimajor
diameter of neutron stars is initially covered by �100
grid points (we refer to this grid resolution as high resolu-
tion). We also performed lower-resolution simulations cov-
ering the the semimajor axis by�65 and 80 grid points (we
refer to these grid resolutions as low and middle resolu-
tions). The accuracy and convergence of the numerical
results for the high grid resolution is found in [12] and in
the Appendix; e.g., the averaged frequency of gravitational
waves emitted from MNSs is determined within�0:1 kHz
error. Numerical simulations with Shen EOS were per-
formed using a code developed in [10,11]. For these simu-
lations, the semimajor diameter of neutron stars is initially
covered by �80 grid points. The accuracy and conver-
gence of the numerical results for the high grid resolution
would be slightly poorer than those in the piecewise poly-
tropic EOS case. For comparison, we performed simula-
tions using these two codes with the same total mass and
EOS, H4-135135. Then, we found that the averaged fre-
quency of gravitational waves emitted by hypermassive
neutron stars (HMNS) agrees with each other within 1%
accuracy. For all these simulations, the initial data were
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FIG. 1 (color online). Pressure as a function of the rest-mass
density for the seven EOSs listed in Table I.
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TABLE II. List of the simulation models in which a MNS is formed. The model is referred to as the name ‘‘EOS’’-‘‘m1,’’ ‘‘m2;’’ e.g.,
the model employing APR4, m1 ¼ 1:3M�, and m2 ¼ 1:4M� is referred to as model APR4-130140. The second–fourth columns show
the adiabatic index for the thermal pressure for the piecewise polytropic EOS and masses of two components. The last three columns
show the numerical results, approximate lifetime of the MNS that was found in our simulation time, the rest mass of disks surrounding
the remnant black hole, and final gravitational mass of the system. The — denotes that the lifetime of the MNS is much longer than
30 ms and we did not find a black-hole formation in our simulation time. The disk mass is measured at 10 ms after the formation of the
black hole. We note that a black hole is formed soon after the onset of the merger with m � 2:9M� for APR4 and with m � 2:8M� for
SLy. For ALF2 with m ¼ 2:9M�, a MNS is formed after the merger but its lifetime is quite short, <5 ms.

m1 m2 Lifetime Disk mass Final mass

Model �th ðM�Þ ðM�Þ (ms) ðM�Þ ðM�Þ
APR4-130150 1.8 1.30 1.50 30 0.12 2.69

APR4-140140 1.8 1.30 1.50 35 0.12 2.69

APR4-120150 1.6, 1.8, 2.0 1.20 1.50 — — 2.60, 2.59, 2.59

APR4-125145 1.8 1.25 1.45 — — 2.60

APR4-130140 1.8 1.30 1.40 — — 2.60

APR4-135135 1.6, 1.8, 2.0 1.35 1.35 — — 2.59, 2.61, 2.60

APR4-120140 1.8 1.20 1.40 — — 2.52

APR4-125135 1.8 1.25 1.35 — — 2.53

APR4-130130 1.8 1.30 1.30 — — 2.53

SLy-120150 1.8 1.20 1.50 10 0.12 2.60

SLy-125145 1.8 1.25 1.45 15 0.14 2.60

SLy-130140 1.8 1.30 1.40 15 0.11 2.60

SLy-135135 1.8 1.35 1.35 10 0.08 2.58

SLy-130130 1.8 1.30 1.30 — — 2.51

ALF2-145145 1.8 1.45 1.45 2 0.04 2.84

ALF2-140140 1.8 1.40 1.40 5 0.07 2.72

ALF2-120150 1.8 1.20 1.50 45 0.31 2.63

ALF2-125145 1.8 1.25 1.25 40 0.23 2.63

ALF2-130140 1.8 1.30 1.40 10 0.12 2.63

ALF2-135135 1.8 1.35 1.35 15 0.17 2.62

ALF2-130130 1.8 1.30 1.30 — — 2.54

H4-130160 1.8 1.30 1.60 5 0.12 2.83

H4-145145 1.8 1.45 1.45 5 0.03 2.81

H4-130150 1.8 1.30 1.50 20 0.25 2.72

H4-140140 1.8 1.40 1.40 10 0.03 2.72

H4-120150 1.6, 1.8, 2.0 1.20 1.50 — — 2.65, 2.64, 2.64

H4-125145 1.8 1.25 1.25 — — 2.63

H4-130140 1.8 1.30 1.40 — — 2.62

H4-135135 1.6, 1.8, 2.0 1.35 1.35 15, 25, 35 0.08, 0.08, 0.08 2.62, 2.62, 2.62

H4-120140 1.8 1.30 1.30 — — 2.54

H4-125135 1.8 1.30 1.30 — — 2.55

H4-130130 1.8 1.30 1.30 — — 2.53

MS1-130160 1.8 1.30 1.60 — — 2.85

MS1-145145 1.8 1.45 1.45 — — 2.85

MS1-140140 1.8 1.40 1.40 — — 2.75

MS1-120150 1.8 1.20 1.50 — — 2.65

MS1-125145 1.8 1.25 1.25 — — 2.66

MS1-130140 1.8 1.30 1.40 — — 2.66

MS1-135135 1.8 1.35 1.35 — — 2.65

MS1-130130 1.8 1.30 1.30 — — 2.56

Shen-120150 — 1.20 1.50 — — 2.64

Shen-125145 — 1.25 1.45 — — 2.61

Shen-130140 — 1.30 1.40 — — 2.63

Shen-135135 — 1.35 1.35 — — 2.62

Shen-140140 — 1.40 1.40 — — 2.74

Shen-150150 — 1.50 1.50 — — 2.95

Shen-160160 — 1.60 1.60 10 0.10 3.12
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prepared by a code described in [37], which was developed
from the LORENE library [38].

C. Hypermassive and supramassive neutron stars

Before going ahead, we remind the readers the defini-
tions of the hypermassive [5] and supramassive neutron
stars [6,7]. We note that in the definitions, we suppose that
neutron stars are cold (i.e., finite-temperature effects are
negligible).

A sequence of spherical neutron stars always has the
maximum mass state. Rotation can increase the maximum
mass of neutron stars. The maximum mass of a uniformly
rotating neutron star (hereafter denoted by Mmax ;s) is deter-

mined by the spin rate at which the mass element at the
equator rotates with the (general relativistic) Kepler velocity
and further speedup would lead to mass shedding. This
maximum mass for cold neutron stars was determined nu-
merically for a variety of nuclear-theory-based EOSs in [7],
which shows thatMmax ;s is by 15%–20% larger thanMmax .

For stiff EOSs in which Mmax > 2M�, it is empirically
known that this increase factor is �20%. Rotating neutron
stars with their rest mass exceeding the maximum rest mass
of nonspinning neutron stars for a given EOS are referred to
as supramassive neutron stars (SMNSs) [6]. A uniformly
rotating (cold) neutron star with mass exceeding �Mmax ;s

will collapse to a black hole. However, a uniformly rotating
(cold) neutron star with mass between Mmax and Mmax ;s

may be alive, and it will collapse to a black hole only for the
case that a process for the dissipation of its angular momen-
tum is present. The typical dissipation process is an electro-
magnetic emission such as magnetic dipole radiation, for
which the dissipation time scale is much longer than 1 s for
the typical magnetic-field strength�1012 G and the allowed
spin period (*1 ms) of the neutron stars.

The merger of binary neutron stars does not result, in
general, in a uniformly rotating remnant, but in a differ-
entially rotating one. The inner region of the remnant
MNSs often rotates faster than the envelope: The angular
velocity in the inner region can be larger than the Kepler
one of the equator as first found in [16]. This implies that
the centrifugal force, which can have the significant con-
tribution to supporting the strong self-gravity of the merger
remnant, is enhanced, and thus, the maximum allowed
mass of the remnant MNS can exceed the maximum al-
lowed mass of SMNSs for a given EOS, Mmax ;s. Such

differentially rotating neutron stars with their mass exceed-
ing Mmax ;s are referred to as HMNSs. Therefore, a differ-

entially rotating (cold) neutron star with mass exceeding
�Mmax ;s does not always have to collapse to a black hole.

The left side of Fig. 2 schematically shows the definition
of the HMNS and SMNS. The neutron stars with the mass
smaller thanMmax are referred to as normal neutron stars in
this figure.

If the degrees of the differential rotation is signifi-
cantly reduced by some angular-momentum transport or

dissipation processes, HMNSs will be unstable against
gravitational collapse. There are several possible processes
for transporting angular momentum (e.g., [39–41]). One is
the purely hydrodynamics effect. This becomes an efficient
process for HMNSs formed soon after the merger of binary
neutron stars, because such HMNSs usually have a non-
axisymmetric structure and exert the torque to the matter in
the envelope. Then, the angular momentum in the inner part
of the HMNSs is transported outward, and as the decrease of
the angular momentum in the inner part, the degrees of the
differential rotation is reduced. In the present simulations as
well as our simulations of [10–12], only this process is taken
into account, but this is really an efficient process in par-
ticular for the early evolution stage of the HMNSs in which
the degrees of nonaxisymmetry is quite high.
There are two other possible effects for the angular-

momentum transport, both of which are activated in the
presence of magnetic fields. One is the magnetic winding
effect (e.g., [5]) for which the order of the angular-
momentum transport time scale is

�wind � R

vA

� 102�1=2
15 B�1

15 R6 ms; (3)

where R is the typical radius of the HMNS with R6 ¼
R=ð106 cmÞ, and vA is the Alfvén velocity

vA � Bffiffiffiffiffiffiffiffiffiffi
4��

p : (4)

Here, B is the typical magnitude of the radial component
of magnetic fields with B15 ¼ B=ð1015 GÞ, and � is the
typical density with �15 ¼ �=ð1015 g=cm3Þ. Thus, for the
sufficiently high magnetic-field strength which could be
yielded by the winding itself and compression, the angular-
momentum transport is significantly enhanced.
The other mechanism is the magnetorotational instabil-

ity (MRI) [42,43] by which an effective viscosity is likely
to be generated with the effective viscous parameter

�vis � �vis

c2s
�

; (5)

where �vis is the so-called � parameter which will be
0.01–0.1 [43], cs is the typical sound velocity of
order �0:1c, and � is the typical angular velocity
�104 rad=s with �4 ¼ �=ð104 rad=sÞ. Thus, the viscous

FIG. 2. A schematic diagram for explaining HMNS and
SMNS. Mmax has to be larger than �2M� and for such stiff
EOSs, we empirically know that Mmax ;s � 1:2Mmax [7]. T de-

notes the typical temperature of MNS. See the text for details.
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angular-momentum transport time scale in the presence of
magnetic fields would be

�mri � R2

�vis

� 102R2
6�4

�
�vis

10�2

��1
�
cs
0:1c

��2
ms; (6)

and hence, the time scale is as short as �wind for the
hypothetical radial field strength B15 * 1. Both effects
work as long as differential rotation is present even in the
absence of nonaxisymmetry. Therefore, unless any process
stabilizes them, HMNSs with sufficiently high mass would
collapse to a black hole in the time scale, �wind or �mri,
which is �102 ms.

In the definitions of HMNS and SMNS described
above, we have not considered finite-temperature (thermal)
effects. This effect could be important for the remnant
MNS of binary neutron stars [44]. The reason for this is
that during the merger process, strong shocks are often
formed and the maximum temperature of MNSs is
increased up to 30–50 MeV [10,11]. The thermal pressure
associated with this high temperature is several 10% of the
cold-part pressure caused by the repulsive nuclear force,
and hence, it is never negligible. Although it is not easy to
strictly determine their values, it is reasonable to consider
that the finite-temperature effect could increase the values
of Mmax and Mmax ;s by �0:1M�. The right-hand side of

Fig. 2 schematically shows the possible increase of these
values. Hereafter we refer to these values as Mmax ðT > 0Þ
and Mmax ;sðT > 0Þ, supposing that these are larger than

Mmax and Mmax ;s by �0:1M�.
The finite-temperature neutron stars will eventually dis-

sipate the thermal energy in a short time scale �1–10 s
because of the neutrino cooling [43]. References [10,11]
indeed show that the time scale of the neutrino emission is
of order seconds. Here, when we consider the possible
evolution processes of HMNS and SMNS, we have to
keep in mind that in this time scale, the values of
Mmax ðT > 0Þ and Mmax ;sðT > 0Þ could be by �0:1M�
larger than Mmax and Mmax ;s. For example, consider a

differentially rotating and hot remnant MNS for which
the mass is larger thanMmax ;s and smaller thanMmax ;sðT >
0Þ. If a process of angular-momentum transport works and
the degrees of differential rotation is significantly reduced,
such a remnant will be unstable against gravitational col-
lapse for the case that the thermal effect is negligible.
However, if the thermal effect is important even after the
angular-momentum transport process works, it will be
stable in the cooling time scale. It will eventually collapse
to a black hole after the neutrino cooling. However, its
lifetime *1 s could be much longer than the angular-
momentum transport time scale &100 ms.

III. PROPERTIES AND EVOLUTION
PROCESS OF MNS

Previous studies (e.g., [9,10,12]) clarified that soon after
the onset of the merger, either a long-livedMNS (HMNS or

SMNS or normal neutron star) or a black hole is formed.
For most of the simulations in this paper performed with
stiff EOSs and with the canonical total mass 2:6–2:8M�,
we found that a long-lived MNS is formed with its lifetime
much longer than its dynamical time scale �0:1 ms and
its rotation period �1 ms (cf. Figs. 3–5). The unique
properties to be particularly noticed are that the MNSs
are rapidly and differentially rotating, and nonaxisymmet-
ric (cf. Figs. 4 and 5): Thus, they could be temporarily
stable even if they are very massive, and in addition, they
could be strong sources of gravitational waves. The pur-
pose of this section is to explore the properties and evolu-
tion processes of such MNSs. In the subsequent sections,
we will clarify the properties of gravitational waves.

A. Dependence on EOS

Figure 3 plots the evolution of the maximum density for
five piecewise polytropic EOSs and the Shen EOS with
several binary masses in the rangem ¼ 2:6M�–2:8M�. For
Shen and MS1 EOSs, the results with more massive cases
are also plotted. This figure shows that the evolution pro-
cess of MNSs depends strongly on the EOSs and total mass
as described in the following.
APR4: For this EOS, the pressure at � ¼ �2 (i.e., the

value of P2) is lowest among all the EOSs employed.
However, the pressure for � � �3 is rather high because
the adiabatic index for this density range (i.e., �3) is high-
est. Reflecting the small pressure for � < �3, the maximum
density increases steeply during the early stage of the
merger due to the sudden increasing strength of the self-
gravity. However, also, reflecting the high pressure for
� > �3 due to the high value of �3, the steep increase of
the density is hung up and subsequently the maximum
density oscillates with high amplitude for several oscilla-
tion periods (for�5 ms). This is the unique feature for this
type of EOS (i.e., APR4 and SLy). After a subsequent
relaxation process through the interaction with the enve-
lope surrounding the central core, the maximum density
eventually relaxes approximately to a constant.
In this relaxation process, the angular momentum is

transported substantially from the inner region to the outer
region via the hydrodynamical angular-momentum trans-
port process, because the MNS has a highly nonaxisym-
metric structure and can exert the torque to the surrounding
matter in its early evolution stage. It is worthy to note that
the high-amplitude oscillation also plays an important role
for enhancing the angular-momentum transport because
the MNS interacts directly with the envelope during this
oscillation.
The resulting MNSs formed after the relaxation evolve

in a quasistationary manner. For a relatively small total
mass with m & 2:7M�, the maximum density in the quasi-
stationary stage remains approximately constant for a suf-
ficiently long time	10 ms. This is due to the fact that the
gravitational-wave emission does not yield significant
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dissipation, i.e., the system relaxes to a quasistationary
state for this stage, and that the final mass of the MNS is
likely to be smaller thanMmax ;s orMmax ;sðT > 0Þ. The first
fact can be found by estimating the dissipation time scale
by the gravitational-wave emission which is much longer
than the dynamical time scale (see also Figs. 7–9 from
which we find that gravitational-wave amplitude for the
t� tmerge > 10 ms is much smaller than that for t�
tmerge & 5 ms). To confirm the second fact, we calculated

the final gravitational mass of the system applying the
formula of the ADM mass for a finite sphere of radius
�300 km (see Table II) which is approximately equal to
the initial ADM mass minus the energy carried out by

gravitational waves, and found that for m ¼ 2:6M� and
2:7M�, the final mass is � 2:53M� and 2:60M�, respec-
tively. The value of Mmax for this EOS is � 2:20M�, and
thus, that of Mmax ;s should be �2:6M� according to the

numerical results of [7]. Then, it is reasonable to consider
that the value of Mmax ;sðT > 0Þ is larger than 2:6M�.
Therefore, for m ¼ 2:6M�, the remnant is a SMNS, and
hence, it will be alive for a long time 	 1 s, even in the
presence of a realistic process of the angular-momentum
transport and dissipation (see Sec. II C), and for m ¼
2:7M�, the remnants may be HMNSs. However, the mass
would be smaller than Mmax ;sðT > 0Þ. For this system, the

angular-momentum transport alone may not trigger the
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FIG. 3 (color online). Maximum density as a function of time for APR4 (top left), SLy (top right), ALF2 (middle left), H4 (middle
right), MS1 (bottom left), and Shen (bottom right) EOSs with several values of binary mass. Note that � for the panel of APR4 and
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gravitational collapse, and the lifetime of the HMNSwould
be determined by the neutrino cooling in reality.

For m * 2:8M�, on the other hand, the remnants are
HMNSs which evolve due to the gravitational-wave emis-
sion and hydrodynamical angular-momentum transport,
resulting in the slow but monotonic increase of the maxi-
mum density with time for the quasistationary stage. For
example, for APR4-130150 and APR4-140140, a black
hole is formed at �30 and 35 ms after the onset of the
merger in our simulations. The resulting object is a black
hole surrounded by a massive disk (or torus) of mass
�0:1M�. Here, the high mass of the disk is a result of
the long-term angular-momentum transport process in the
HMNS stage.

SLy: For this EOS, the evolution process agrees qualita-
tively with that for APR4. However, the value of Mmax for
this EOS is slightly (by 0:14M�) smaller than that for APR4.
Thus, the values ofMmax ;s andMmax ;sðT > 0Þ would be also
smaller by �0:15M�; the plausible value of Mmax ;s would

be�2:45M�. Reflecting this fact, the threshold mass for the
prompt formation of the black hole becomes m � 2:8M�
for this EOS. For m ¼ 2:7M� with which the mass of the
remnant MNS is �2:6M� >Mmax ;s and thus the MNS is

hypermassive, a black hole is formed in �10–15 ms after
the onset of the merger irrespective of the mass ratio; the
lifetime of the HMNS is not very long. Form ¼ 2:6M�, the
mass of the remnantMNS is* 2:5M�, and thus, theMNS is

hypermassive as well. However, for this mass, the lifetime is
	10 ms; the gravitational-wave emission and hydrody-
namical angular-momentum transport process also are not
sufficient for inducing the collapse. Subsequent evolution of
such a HMNS will be determined by angular-momentum
transport processes or cooling in reality. If the thermal
pressure plays a sufficiently important role, the HMNS
collapses to a black hole after the neutrino cooling with
the time scale of seconds, and if it does not, the collapse to a
black hole occurs in some angular-momentum transport
time scale �100 ms.
As argued in the following, binary neutron stars with

m ¼ 2:8M� do not result in a black-hole formation
promptly after the onset of the merger for ALF2 and H4
EOSs for which the value of Mmax � 2M�, by contrast to
the case of SLy. This suggests that for a given value of
Mmax , the black-hole formation is more subject to EOSs
with smaller values of P2, or in other words, with smaller
radii of canonical-mass neutron stars. As shown in Sec. IV,
a characteristic peak in the Fourier spectrum of gravita-
tional waves for a high-frequency band �2–4 kHz is
present for the case that a MNS is formed after the merger.
This implies that if high-frequency gravitational waves
from the merger of binary neutron stars with particular
total mass, say 2:8M�, are observed, we will be able to
constrain the EOS of neutron stars only by determining
whether the peak is present or not [45].

FIG. 4 (color online). Snapshots of the density profile in the equatorial plane at selected time slices for equal-mass models
APR4-135135 (upper panels) and H4-135135 (lower panels) with �th ¼ 1:8.
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ALF2: For this EOS, not only neutron stars of mass
1:2–1:5M� but alsoMNSs just after the formation withm ¼
2:6–2:8M� have the maximum density between �2 and �3.
Thus, although the oscillation of the maximum density is
observed, its amplitude is not as high as that for APR4 and
SLy, and hence, the angular-momentum transport process
does not seem to be as efficient as for APR4 and SLy as well.
For ALF2, however, the adiabatic index for this density
range is small (�2 � 2:4), although the pressure for �2 �
� � �3 is relatively high. Because of this property, the
maximum density of the MNSs increases as a result of
the gravitational radiation reaction and hydrodynamical
angular-momentum transport with a relatively short time
scale. For the models with m * 2:7M�, the maximum

density becomes eventually larger than �3. For � > �3,
the adiabatic index is quite small ð�3 � 1:9), and hence,
the increase of the maximum density is enhanced, leading to
the eventual gravitational collapse to a black hole. For this
evolution process, the formation time scale of the black hole
is determined by the time scale of gravitational-wave emis-
sion or hydrodynamical angular-momentum transport.
For m ¼ 2:7M� and 2:8M�, the remnant mass is

�2:63M� and 2:72M�, and thus, the remnants are very
hypermassive, because for this EOS, Mmax � 2:0M� and
Mmax ;s would be & 2:4M�. Since the black hole is formed

for m � 2:7M�, the thermal pressure is not sufficient for
sustaining the additional self-gravity of the HMNSs;
Mmax ;sðT > 0Þ �Mmax ;s would be smaller than �0:2M�.

FIG. 5 (color online). The same as Fig. 4 but for unequal-mass models APR4-120150 (upper and middle panels) and H4-120150
(bottom panels).
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For relatively small mass m ¼ 2:6M�, on the other
hand, the emission of gravitational waves and hydro-
dynamical angular-momentum transport become inactive
before the maximum density significantly exceeds �3. In
this case, the increase of the maximum density is stopped
and the HMNS relaxes to a quasistationary state. The
resulting remnant mass is � 2:54M� which is likely to
be larger than Mmax ;s. Thus, the remnant is likely to be a

HMNS. Subsequent evolution of such HMNS will be
determined by angular-momentum transport processes or
cooling in reality, as in the case of model SLy-130130.

One point worthy to be noted is that the evolution
process for m ¼ 2:7M� depends on the mass ratio
(compare the plots for ALF2-135135 and ALF2-120150).
For the sufficiently large asymmetry (i.e., q ¼ 0:8), the
lifetime of the HMNS becomes much longer than that of
the equal-mass model for this EOS. The reason is that for
the asymmetric case, the merger occurs at a larger orbital
separation than for the equal-mass case; i.e., before a
sufficient amount of angular momentum is dissipated by
the gravitational-wave emission, the merger sets in. In
addition, a large fraction of the materials (in particular
the materials of the less-massive neutron star) obtain a
sufficient angular momentum during the merger process
resulting in a disk or a material ejected from the system
[12]. This reduces the mass of the HMNS and the collapse
to a black hole is delayed [46].

H4: The evolution process of MNSs in this EOS is
similar to that in ALF2. As the value of Mmax is approxi-

mately equal to that in ALF2, the criterion for the MNS
formation is also very similar. For this EOS, however, the
adiabatic index does not decrease with the increase of the
density as drastically as for ALF2. Thus, the increase rate
of the maximum density with time is relatively slow, and
reflecting this fact, the configuration of the MNS relaxes to
a quasistationary one in a short time scale after its forma-
tion. The resulting quasistationary MNS evolves through
the hydrodynamical angular-momentum transport process
and gravitational-wave emission subsequently. However
the evolution time scale is much longer than 10 ms.
A point clearly seen for the density-evolution plot of this

EOS is that the difference in the shock-heating efficiency
(i.e., the value of �th) is reflected in the change of the
lifetime of the HMNSs: By the increasing efficiency of the
shock heating (for the larger values of �th), the lifetime of
the HMNSs becomes longer (this effect should be univer-
sally found irrespective of the EOSs). It is also found that
the presence of the mass asymmetry increases the lifetime
of the HMNS because a large fraction of the materials
escapes from the HMNS during the early stage of the
merger for this EOS.
MS1: For this EOS, the maximum mass of spherical

neutron stars is too high (Mmax � 2:77M�) to form
SMNSs or HMNSs for m � 2:8M� because the remnant
mass for such initial mass range is smaller than 2:75M�
(see Table II). For this case, the merger remnant relaxes to a
quasistationary MNS in a time scale �10–15 ms. In a real
MNS, a dissipation or a transport process of the angular
momentum plays a role for the subsequent evolution for it.
However, a black hole will not be formed for m � 2:8M�
for which the remnant mass is smaller than Mmax �
2:77M�. For m ¼ 2:9M�, a quasistationary MNS is also
formed. For this case, the MNS is likely to be supramas-
sive, but not hypermassive. Thus, this MNS will be also
alive for a long time scale 	 1 s.
Shen: The evolution process of MNSs in this EOS is

similar to that in H4, although the threshold mass for the
eventual formation of a black hole is much higher than that
for H4 (m> 3:0M� while m * 2:7M� for H4). For this
EOS, a long-lived HMNS is formed even for m ¼ 3:0M�
which is by 36% larger than thevalue ofMmax � 2:2M�. By
contrast, for H4, a black hole is eventually formed if m *
2:7M� � 1:33Mmax . This suggests that in the tabulated
EOS in which the heating effects are taken into account in
a more strict way, the shock heating may play a more
important role for sustaining the self-gravity of the HMNS.
Before closing this section, it is worthy to summarize the

dependence of the evolution process for MNSs of canoni-
cal mass m � 2:7M� on EOSs as follows:
(i) For the EOSs such as APR4 and SLy for which P2

has a relatively small value, the evolution process of
the MNSs depends primarily on the adiabatic index
for � > 1015 g=cm3 (i.e., �3).

(ii) For the EOSs such as ALF2 and H4 for
which P2 has a fairly large value, the evolution

FIG. 6 (color online). The evolution time scale of the system in
the plane composed of EOSs and total mass. �dyn: A black hole is

formed in the dynamical time scale after the onset of the merger.
�hyd: A HMNS is formed and its lifetime is determined by the

hydrodynamical angular-momentum transport time scale. �hyd;s:

The same as for �hyd but the lifetime is shorter than �10 ms.

�mag=�cool: A HMNS is formed and its lifetime would be deter-

mined by the time scale of angular-momentum transport by some
magnetohydrodynamics effects or by the neutrino cooling time
scale. The evolution time scale for a given total mass depends
weakly on the mass ratio. For MS1, only the MNS or SMNS is
formed form � 2:9M�. For APR4 and Shen, the remnant for the
m & 2:6M� case is likely to be a SMNS (not HMNS).
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process of the MNSs depends on the adiabatic

index for � * 5� 1014 g=cm3 (i.e., both on �2

and �3).
(iii) For the stiff EOSs such as MS1 and Shen for which

P2 has a large value, the evolution process of the

MNSs depends only on the adiabatic index for

� & 1015 g=cm3 (i.e., �2).

Therefore, future gravitational-wave observation for MNSs

will be used for exploring the properties of the EOS in a

specific density range.

B. Characteristic time scales

As their lifetime is tabulated in one of the columns of
Table II, HMNSs collapse to a black hole for several
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FIG. 7 (color online). Gravitational waves (hþD=m) and the frequency of gravitational waves f (kHz) as functions of retarded time
for models m1 ¼ m2 ¼ 1:35M� and ðm1; m2Þ ¼ ð1:30M�; 1:40M�Þ with APR4 (top row), SLy (second row), ALF2 (third row), H4
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�th ¼ 1:8. The vertical axis of the gravitational waveforms shows the nondimensional amplitude hþD=m, with D being the distance to
the source. Spikes in the curves of fðtÞ (for the plot of APR4-135135 and MS1-135135) are not physical; these are generated when the
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relatively massive models. This collapse is triggered by the
angular-momentum loss by the gravitational-wave emis-
sion and by the angular-momentum transport process from
the inner region of the HMNS to its outer envelope. The
transport process can work because the HMNS formed has
a nonaxisymmetric structure and exerts the torque to the
envelope surrounding it, as already mentioned in Sec. II C.
We note that the mass of the disk surrounding the remnant
black hole formed after the collapse of the HMNS is in
general larger for the longer lifetime of the HMNS for a
given EOS (see Table II). In addition, the emissivity of
gravitational waves is quite low for not-young HMNS as

shown in Sec. IV: This is because the degree of the non-
axisymmetry for the HMNS decreases with time. These
facts obviously show that the hydrodynamical angular-
momentum transport process plays an essential role for
the black-hole formation. Therefore, for the HMNS of
lifetime �10–50 ms, we conclude that the black-hole for-
mation is determined primarily by the hydrodynamical
angular-momentum transport process, and write the time
scale as �hyd.

On the other hand, for less-massive HMNSs and
SMNSs, neither the emission of gravitational waves nor
the hydrodynamical effect are likely to determine their
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FIG. 8 (color online). The same as Fig. 7 but for ðm1; m2Þ ¼ ð1:25M�; 1:45M�Þ (left) and ð1:20M�; 1:50M�Þ (right).
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lifetime. For such systems, other dissipation processes
(which are not taken into account in our numerical simu-
lations) will play an important role, and the evolution
proceeds with the dissipation time scale. If the system is
hypermassive and its degree of differential rotation is
sufficiently high, the angular-momentum transport process
via magnetohydrodynamics effects could trigger the even-
tual collapse of the HMNS to a black hole (e.g., [40]) with
a relatively short time scale �wind or �mri � 100 ms or less,
which is comparable to �hyd. If the degree of differential

rotation is not high and the thermal effect plays an

important role for sustaining the self-gravity of the
HMNS, neutrino cooling will play a dominant role for
determining the process toward the black-hole formation.
According to [10,11], the cooling time scale via the neu-
trino emission is of order of seconds (hereafter denoted by
�cool), and hence, it is much longer than �hyd. However, if

the degree of differential rotation is not high, �cool could be
shorter than �wind and �mri. Furthermore, if the remnant
mass is smaller than Mmax ;sðT > 0Þ, the magnetic winding

and MRI would not trigger the collapse to a black hole. For
such a system, the neutrino cooling will trigger the collapse
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FIG. 9 (color online). The same as Fig. 7 but for m1 ¼ m2 ¼ 1:3M� (left) and m1 ¼ m2 ¼ 1:4M� (right).
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eventually. Our previous work [10] suggests that this is
likely to be the case.

For a smaller-mass system with Mmax & m & Mmax ;s,

the remnant neutron star is not hypermassive, and it
evolves simply to a cold SMNS in �cool. The cold SMNS
will collapse eventually to a black hole after its angular
momentum is dissipated by some process such as magnetic
dipole radiation. For an even smaller-mass system with
m & Mmax , the remnant neutron star is not supramassive,
and it evolves simply to a cold neutron star in �cool. This is
the case for MS1 with m & 2:8M�.

We may classify the remnant MNSs by its evolution time
scale. Figure 6 shows such a classification. In this figure,
�dyn shows that a black hole is formed in the dynamical

time scale after the onset of the merger; �hyd shows that a

HMNS is formed and its lifetime is determined by the time
scale of the hydrodynamical angular-momentum transport
(and partly gravitational-wave emission). �hyd;s implies

that the evolution process is the same as for �hyd but the

lifetime is shorter than �10 ms (for this case, the
gravitational-wave emission could play an important role
for inducing gravitational collapse to a black hole);
�mag=�cool shows that a HMNS is formed and its lifetime,

which is longer than �hyd, would be determined by the time

scale of angular-momentum transport by some magneto-
hydrodynamics effects or of the neutrino cooling;
‘‘SMNS’’ shows that a SMNS is formed and its lifetime
would be much longer than �mag and �cool.

Figure 6 clearly shows that the evolution process and its
lifetime of a HMNS depend strongly on its EOS and binary
initial massm. Furthermore, the dependence of the lifetime
of a HMNS on the initial mass depends strongly on the
EOS. This property is well reflected in the gravitational
waveforms, as shown in Sec. IV.

We note that for a given EOS, a disk surrounding a black
hole which is formed after the evolution of a HMNS is
larger for the smaller total mass because of the longer
lifetime and the longer angular-momentum transport pro-
cess. The most popular scenario for the generation of short-
hard gamma-ray bursts is that the merger of binary neutron
stars produces a system composed of a black hole and a
massive disk surrounding it, and the massive disk of high
temperature or high magnetic fields subsequently becomes
the engine of a gamma-ray burst jet [47]. For more massive
disks, the total generated energy of the gamma-ray bursts
would be higher. Thus, the total mass of the binary system
may be well reflected in the total power of the short-hard
gamma-ray bursts. The gravitational-wave observation to-
gether with the observation of short gamma-ray bursts
could test this hypothesis [48].

Before closing this section, we give a comment on the
convergence. In general, for lower grid resolutions, the
lifetime of the HMNSs is shorter. The reason inferred is
that the lower resolution results in higher numerical dis-
sipation. Hence, the lifetime of the HMNSs found in the

numerical result should be considered as the lower limit.
For the case that a black hole is formed in a fewms after the
onset of the merger, by contrast, the dependence of the
lifetime on the grid resolution is quite weak (less than
dynamical time scale, <1 ms).

C. Dependence of the MNS evolution on
binary mass ratio

A MNS formed after the merger is rapidly rotating and
nonaxisymmetric (cf. Figs. 4 and 5). Because of this fact, it
becomes a strong emitter of gravitational waves. Here, the
detailed property of the gravitational waveform depends on
the density and velocity profiles of the MNS. The EOS
determines the characteristic radius of the MNS, and
hence, the frequency of gravitational waves depends
strongly on the EOS (see Sec. IV). The merger process
depends not only on the EOS but also on the mass ratio and
total mass. The mass ratio, in particular, becomes a key
ingredient for determining the evolution process of the
density profile and the configuration of a MNS in a quasi-
stationary state. Through this fact, the mass ratio gives an
impact on the gravitational waveforms. In this section, we
pay special attention to the dependence for the evolution of
the MNS configuration on the binary mass ratio.
First, we summarize the evolution process of MNSs for

the equal-mass case (see Fig. 4). For this case, a dumbbell-
shaped MNS composed of two cores is formed soon
after the onset of the merger irrespective of the EOSs
employed. Then, due to the loss of their angular momen-
tum by the hydrodynamical angular-momentum transport
and gravitational-wave emission, the shape changes gradu-
ally to an ellipsoidal one, and the ellipticity decreases with
time. Here, the time scale of the angular-momentum loss
depends on the EOS. For APR4 and SLy for which a
quasiradial oscillation violently occurs in the early evolu-
tion stage of the MNS (see Fig. 3), the time scale of the
angular-momentum loss is short (� 10 ms), while for H4,
MS1, and Shen, the time scale is rather long. For these
EOSs, the evolution time scale of MNSs from the
dumbbell-like to the spheroidal shape is relatively long,
>10 ms. These facts can be found from Fig. 4, and also
Fig. 4 of [10].
For the unequal-mass case, the evolution process of the

MNS configuration is different from that for the equal-
mass case. To make the difference clear, we focus here on
the case ofm1 ¼ 1:2M� and m2 ¼ 1:5M� (see Fig. 5). For
this case, the configuration of the MNS changes with the
dynamical time scale in the early evolution stage. The
reason is as follows: In the merger stage, the less-massive
neutron star is tidally deformed and its outer part is
stripped during the merger. Then, the stripped material
forms an envelope of the remnant MNS while the core of
the less-massive neutron star interacts with the core of the
massive companion, and the MNS is composed of two
asymmetric cores (see the first two panels of the top row
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of Fig. 5). Because the gravity of the less-massive core is
much weaker than that of the massive one, it behaves as a
satellite that is significantly and dynamically deformed by
the main core, varying its configuration with time like an
amoeba. During its evolution, the satellite is significantly
elongated, encompassing the main core. For such a case,
the shape of the MNS (composed of the main core and
elongated satellite) becomes approximately spheroidal at a
moment (see the third panel of the top row of Fig. 5). For
such a moment, the emission of gravitational waves is
suppressed transiently (see Sec. IV).

However, after a substantial hydrodynamical angular-
momentum transport process which occurs via the
interaction with the envelope, the MNS relaxes to a quasi-
stationary state irrespective of the EOSs employed. The
quasistationary MNS appears to be composed of major and
minor cores which are rotating in a quasistationary manner

(see the late-time snapshots of Fig. 5). This system looks
like a hammer thrower rotating with a hammer (here the
thrower is the major core and the hammer is the minor
core). This system subsequently loses the angular momen-
tum primarily through the hydrodynamical angular-
momentum transport process, and thus, the degrees of
asymmetry decrease gradually, although the time scale of

this change is much longer than the dynamical time scale.

All these evolution processes of the MNSs are well
reflected in their gravitational waveforms. In the next
section, we will summarize the properties of the gravita-
tional waveforms.

IV. GRAVITATIONALWAVES FROM MNS

Gravitational waves are extracted by calculating the
outgoing part of the complex Weyl scalar �4 at finite
coordinate radii r ¼ 200–400M� and by integrating �4

twice in time (see, e.g., [49] for our method). In this
work, we focus only on ðl; mÞ ¼ ð2; 2Þmodes, which domi-
nate over the gravitational-wave amplitude during the
MNS phase.
Figures 7–11 display the plus mode of gravitational

waves hþ and the corresponding frequencies of gravita-
tional waves emitted by MNSs for a variety of EOSs and
binary masses. Here, gravitational waves shown are those
observed along the rotational axis which is perpendicular
to the binary orbital plane, and defined by hþD=mwhereD
is the distance from the source. The frequency is deter-
mined by the change rate of the phase of h :¼ hþ � ih�,
with h� being the cross mode of gravitational waves. In
this work, we evaluate the frequency by calculating
�4=

R
�4dt as employed in Ref. [36]. Figures 7 and 8

display gravitational waves form ¼ 2:7M� with four mass
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FIG. 11 (color online). The same as Fig. 7 but for Shen EOSs with ðm1; m2Þ ¼ ð1:3M�; 1:4M�Þ and ð1:2M�; 1:5M�Þ.
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ratios and five piecewise polytropic EOSs (APR, SLy,
ALF2, H4, and MS1). Figure 9 displays gravitational
waves for the equal-mass models with m ¼ 2:6M� and
2:8M� with five piecewise polytropic EOSs. Figure 10
displays gravitational waves for m1 ¼ m2 ¼ 1:35M�
with APR4 and H4 EOSs and with �th ¼ 1:6 and 2.0.
Figure 11 displays gravitational waves for Shen EOSs
with ðm1; m2Þ ¼ ð1:3M�; 1:4M�Þ and ð1:2M�; 1:5M�Þ.
Gravitational waves for Shen EOS are also shown in
Fig. 4 of [10] for the equal-mass models, to which
the reader may refer: For this EOS, the gravitational
waveforms are qualitatively similar to those for H4.

Gravitational waves emitted by MNSs are characterized
by their quasiperiodic nature. Namely, the frequency of
gravitational waves remains approximately constant for
more than 10 wave cycles. Nevertheless, the frequency of
gravitational waves is not totally constant and changes with
time. Furthermore, the characteristic frequency and the
time-variation feature of the frequency and amplitude de-
pend strongly on the EOS, total mass, and mass ratio of the
binary system. In the following, we summarize the features
of gravitational waves emitted by MNSs in more detail.

A. Amplitude

Broadly speaking, the amplitude of quasiperiodic gravi-
tational waves emitted by MNSs decreases with time
because the angular momentum of the MNSs is lost by
the hydrodynamical angular-momentum transport process
and gravitational-wave emission. However, the feature in
the time variation depends on the EOS and mass ratio of the
binary.

There are two patterns for the damping process of the
gravitational-wave amplitude. One is that the amplitude
decreases approximately monotonically with time (besides
small modulation), and the damping time scale increases
with time. This is the case for the equal-mass model for all
the piecewise polytropic EOSs, APR4, SLy, ALF2, H4, and
MS1, irrespective of the value of �th and total mass, as well
as for Shen (see Figs. 7, 9, and 10 as well as Fig. 4 of [10]).
For APR4 and SLy, an oscillating MNS of nonaxisymmet-
ric shape (dumbbell-like or ellipsoidal) is formed and
quickly loses its angular momentum by the hydrodynam-
ical angular-momentum transport and gravitational-wave
emission. The damping time scale of the nonaxisymmetric
degree (and hence the gravitational-wave amplitude) is
short, �10 ms, during the stage that the quasiradial oscil-
lation amplitude of the MNS is high. Subsequently, the
MNS settles to a weakly deformed quasistationary ellipsoid,
and then the gravitational-wave amplitude relaxes approxi-
mately to a small constant. For H4, MS1, and Shen, by
contrast, the damping time scale of the gravitational-wave
amplitude is relatively long for the entire evolution stage of
the MNSs. This seems to be due to the fact that the angular-
momentum transport process from theMNS to the surround-
ing envelope is not as efficient as in the APR4 and SLy

cases. The probable reason for this is that the radial oscil-
lation amplitude of the MNSs is low for these stiff EOSs,
and thus, a quasistationary nonaxisymmetricMNS is formed
in a short time scale (a few ms) after the onset of the merger.
Namely, the merger proceeds relatively in a mild way,
resulting in a long-term angular-momentum transport pro-
cess. Figures 9 and 10 show that this fact holds irrespective
of the total mass and the value of �th. For ALF2, the
efficiency of the angular-momentum transport is lower
than for APR4 and SLy but higher than for H4, MS1, and
Shen. Thus, the damping time scale of gravitational-wave
amplitude is between two cases.
One point to be noted is that the gravitational-wave

amplitude for the late stage (for t� tmerge * 10 ms where

tmerge denotes the time for the onset of the merger) remains

high for H4 and Shen. This seems to reflect the difference
in the adiabatic index of the high-density range; for these
EOSs, the central region of the MNS has low values of �2

and �3 (see also Fig. 1). With such relatively small values,
we found that a dumbbell-like structure rather than the
ellipsoidal structure is preserved for the MNS, and hence,
the gravitational-wave amplitude is enhanced.
The second pattern is that the gravitational-wave ampli-

tude damps with a characteristic modulation. This pattern
is often found for unequal-mass models, in particular for
q ¼ 0:8 (see Fig. 8). The origin of this modulation is
explained as follows: During the early stage of the MNS
evolution, its central region appears to be composed of a
massive core and a deformed satellite for which the shape
varies in the early stage of the evolution (cf. Sec. III C).
Here, the massive core and satellite come from the massive
and less-massive neutron stars of the binary, respectively.
In the early stage of the MNSs, two asymmetric cores
rotate around each other, and high-amplitude quasiperiodic
gravitational waves are emitted for �3–5 ms. Then, the
amplitude once damps to be very small at a moment and
subsequently, long-term quasiperiodic gravitational waves
are again emitted. This feature is clearly seen for APR4-
120150, APR4-125145, ALF2-120150, and H4-120150.
The mechanism for producing this pattern is closely related
to the evolution process of the MNSs (see Sec. III C). For
these asymmetric merger cases, asymmetric double cores
are formed as already mentioned. However, the less-
massive core dynamically changes its shape (like amoeba),
and at the moment that the gravitational-wave amplitude is
small, the less-massive core has a highly deformed shape
surrounding the massive core. Namely, at this moment, not
double cores but a single nearly spheroidal core is formed
(see the third panel of Fig. 5). However, after this moment,
an asymmetric double-core structure is formed again (like
a hammer-thrower shape). Because the resulting double-
core structure is highly nonaxisymmetric, quasiperiodic
gravitational waves with high amplitude are emitted.
For MS1-120150 and Shen-120150, the MNS also has

an asymmetric double-core structure which is alive for a
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long time scale 	10 ms. In this case, the MNS never has
the moment at which a spheroidal shape is realized, and
hence, the gravitational-wave amplitude is stably high,
although a modulation in the amplitude is still observed.

B. Frequency

As already mentioned, the frequency of gravitational
waves emitted by MNSs is approximately constant (see
Figs. 7–11). The exception to this occurs for some models
in the very early stage just after the formation of some of
the MNSs in which the frequency oscillates with a dynami-
cal time scale (this can be observed for all the models to a

greater or lesser degree) or for the stage just before the
formation of a black hole in which the frequency increases
steeply with time (see, e.g., the results for models SLy-
135135, SLy-120150, ALF2-135135, ALF2-130140,
ALF2-140140, H4-135135, and H4-140140). These quali-
tative features hold irrespective of the EOSs.
Figure 12 plots the Fourier spectra for some of gravita-

tional waves displayed in Figs. 7–11. Here, we plot the
effective amplitude defined by jhðfÞfj as a function of f
where hðfÞ is the Fourier spectrum of hþ � ih�. This
shows that there are indeed characteristic frequencies
�2 kHz & f & 4 kHz, at which the spectrum amplitude
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FIG. 12 (color online). Fourier spectra of gravitational waves for some of the results shown in Figs. 7–11. Top left: For m1 ¼ m2 ¼
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TABLE III. Characteristic frequencies of gravitational waves emitted by MNSs which are determined by two different methods:
Fourier peak denotes the peak frequencies of the effective amplitude hðfÞf. fave;5ms, fave;10ms, and fave;20ms denote the results for

Eq. (11) with 5, 10, and 20 ms time integration after the formation of the MNSs; the — denotes that the lifetime of MNSs is shorter
than the corresponding integration time. The deviation of fave shown here denotes �f. The multiple values shown for the Fourier peak

imply that we found many peaks for which their peak values of hðfÞf are larger than 80% of its maximum value. ffitave;10ms denote the

averaged frequency calculated from the best-fit results of Eqs. (15)–(17). The last four columns show the maximum values ofM for a
fitting procedure with the number of parameters, Np ¼ 13, 12, 11, and 10 (see Sec. V).

Fourier peak fave;5ms fave;10ms fave;20ms ffitave;10ms

Model �th (kHz) (kHz) (kHz) (kHz) (kHz) MNp¼13 MNp¼12 MNp¼11 MNp¼10

APR4-130150 1.8 3.40 3:48� 0:47 3:46� 0:37 3:49� 0:33 3:39� 0:29 0.910 0.894 0.894 0.883

APR4-140140 1.8 3.47 3:59� 0:64 3:57� 0:58 3:53� 0:44 3:59� 0:59 0.968 0.968 0.967 0.965

APR4-120150 1.6 3.31 3.54 3:47� 0:30 3:44� 0:27 — 3:44� 0:24 0.963 0.962 0.959 0.945

APR4-120150 1.8 3.31, 3.43 3:44� 0:30 3:41� 0:24 3:41� 0:21 3:41� 0:23 0.959 0.959 0.954 0.951

APR4-120150 2.0 3.18 3:32� 0:32 3:27� 0:26 3:27� 0:22 3:16� 0:20 0.924 0.924 0.919 0.919

APR4-125145 1.8 3.23 3:36� 0:31 3:31� 0:25 3:31� 0:23 3:20� 0:18 0.930 0.930 0.926 0.907

APR4-130140 1.8 3.28, 3.31, 3.40 3:30� 0:29 3:27� 0:28 3:29� 0:26 3:26� 0:26 0.982 0.982 0.981 0.968

APR4-135135 1.6 3.45 3:46� 0:42 3:45� 0:37 3:46� 0:30 3:44� 0:33 0.970 0.967 0.967 0.942

APR4-135135 1.8 3.21, 3.30 3:31� 0:41 3:28� 0:37 3:28� 0:34 3:27� 0:33 0.970 0.969 0.969 0.947

APR4-135135 2.0 3.29, 3.37 3:35� 0:39 3:33� 0:34 3:33� 0:29 3:29� 0:17 0.952 0.952 0.947 0.947

APR4-120140 1.8 3.14 3:15� 0:21 3:13� 0:19 3:12� 0:18 3:11� 0:16 0.982 0.981 0.981 0.972

APR4-125135 1.8 3.20 3:22� 0:25 3:19� 0:24 — 3:15� 0:17 0.975 0.975 0.974 0.963

APR4-130130 1.8 3.21 3:22� 0:28 3:19� 0:26 3:18� 0:24 3:18� 0:28 0.974 0.970 0.965 0.958

SLy-120150 1.8 3.34 3:31� 0:26 3:35� 0:24 — 3:32� 0:19 0.984 0.983 0.979 0.979

SLy-125145 1.8 3.32 3:29� 0:32 3:32� 0:27 — 3:31� 0:28 0.969 0.957 0.948 0.948

SLy-130140 1.8 3.39 3:35� 0:47 3:36� 0:40 — 3:38� 0:42 0.965 0.959 0.958 0.913

SLy-135135 1.8 3.48 3:41� 0:58 3:46� 0:48 — 3:47� 0:47 0.963 0.952 0.946 0.893

SLy-130130 1.8 3.16 3:17� 0:34 3:16� 0:29 3:18� 0:26 3:16� 0:28 0.988 0.988 0.987 0.972

ALF2-140140 1.8 2.92 2:93� 0:42 — — 2:90� 0:34 0.980 0.955 0.952 0.911

ALF2-120150 1.8 2.74, 2.82, 2.87 2:70� 0:19 2:71� 0:16 2:73� 0:15 2:61� 0:20 0.924 0.916 0.916 0.907

ALF2-125145 1.8 2.65 2:66� 0:14 2:66� 0:13 2:67� 0:13 2:63� 0:09 0.985 0.985 0.985 0.985

ALF2-130140 1.8 2.77 2:73� 0:19 2:75� 0:17 — 2:75� 0:12 0.981 0.979 0.978 0.977

ALF2-135135 1.8 2.77 2:74� 0:17 2:76� 0:15 — 2:74� 0:12 0.989 0.989 0.981 0.981

ALF2-130130 1.8 2.54, 2.63, 2.65 2:58� 0:18 2:56� 0:16 2:56� 0:15 2:55� 0:12 0.978 0.975 0.973 0.972

H4-130160 1.8 2.72 2:64� 0:26 — — 2:64� 0:26 0.973 0.965 0.963 0.942

H4-145145 1.8 2.90, 2.96 2:97� 0:56 — — 2:93� 0:49 0.965 0.965 0.942 0.941

H4-130150 1.8 2.45, 2.56 2:44� 0:17 2:45� 0:15 2:54� 0:17 2:42� 0:09 0.958 0.956 0.956 0.952

H4-140140 1.8 2.75, 2.81 2:63� 0:23 2:77� 0:41 — 2:69� 0:22 0.975 0.975 0.966 0.951

H4-120150 1.6 2.22, 2.32, 2.38 2:28� 0:16 2:29� 0:14 2:31� 0:14 2:30� 0:03 0.980 0.977 0.977 0.966

H4-120150 1.8 2.29, 2.39 2:30� 0:18 2:31� 0:15 2:33� 0:14 2:28� 0:09 0.955 0.955 0.955 0.939

H4-120150 2.0 2.30 2:24� 0:15 2:22� 0:14 2:26� 0:12 2:22� 0:08 0.983 0.980 0.980 0.973

H4-125145 1.8 2.44 2:41� 0:15 2:41� 0:13 2:44� 0:11 2:39� 0:13 0.981 0.981 0.980 0.980

H4-130140 1.8 2.43, 2.52 2:42� 0:17 2:42� 0:15 2:44� 0:13 2:40� 0:13 0.968 0.968 0.967 0.966

H4-135135 1.6 2.59 2:49� 0:19 2:54� 0:16 — 2:54� 0:15 0.985 0.968 0.966 0.960

H4-135135 1.8 2.53 2:44� 0:20 2:48� 0:16 2:54� 0:17 2:48� 0:14 0.984 0.982 0.978 0.963

H4-135135 2.0 2.49 2:39� 0:21 2:43� 0:17 2:47� 0:15 2:44� 0:14 0.977 0.977 0.972 0.972

H4-120140 1.8 2.34, 2.37, 2.43 2:30� 0:15 2:30� 0:14 2:33� 0:13 2:32� 0:06 0.948 0.948 0.947 0.912

H4-125135 1.8 2.26 2:29� 0:17 2:27� 0:14 2:26� 0:12 2:28� 0:14 0.973 0.971 0.971 0.966

H4-130130 1.8 2.31 2:35� 0:18 2:38� 0:14 2:38� 0:11 2:37� 0:12 0.982 0.982 0.980 0.980

MS1-130160 1.8 2.12 2:07� 0:15 2:06� 0:13 — 2:02� 0:14 0.967 0.967 0.965 0.956

MS1-145145 1.8 2.11 2:12� 0:15 2:09� 0:13 — 2:09� 0:12 0.979 0.979 0.978 0.978

MS1-140140 1.8 2.04, 2.09 2:09� 0:14 2:07� 0:12 2:05� 0:12 2:06� 0:12 0.972 0.972 0.968 0.964

MS1-120150 1.8 2.11 2:08� 0:11 2:09� 0:09 2:10� 0:07 2:08� 0:10 0.987 0.987 0.987 0.983

MS1-125145 1.8 2.02, 2.08 2:02� 0:14 1:99� 0:15 1:99� 0:14 1:97� 0:16 0.959 0.959 0.955 0.953

MS1-130140 1.8 2.05 2:06� 0:14 2:02� 0:13 2:00� 0:13 2:03� 0:11 0.978 0.976 0.975 0.973

MS1-135135 1.8 1.99, 2.02, 2.05 1:98� 0:17 1:96� 0:15 1:95� 0:14 2:00� 0:22 0.951 0.951 0.941 0.935

MS1-130130 1.8 1.96 1:94� 0:18 1:93� 0:15 1:91� 0:15 1:96� 0:22 0.950 0.950 0.948 0.943

Shen-120150 — 1.97, 2.03 2:02� 0:15 2:00� 0:13 2:00� 0:12 2:01� 0:07 0.985 0.977 0.977 0.977
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is high, irrespective of models (see also Table III for the
frequency of the spectrum peak). For a ‘‘soft’’ EOS that
yields a compact neutron star for the canonical mass (i.e.,
APR4, SLy, and ALF2 in this paper), the characteristic
frequency is higher with f * 3 kHz, while for other
‘‘stiff’’ EOSs that yield a large-radius neutron R *
13 km, it is lower typically as f� 2–2:5 kHz. The reason
for this property is explained as follows: The spin angular
velocity of the MNSs is close to the Kepler velocity, and
hence, the characteristic frequencies of gravitational waves

are qualitatively proportional to ðMMNS=R
3
MNSÞ1=2 where

MMNS and RMNS denote the typical mass and radius of a
MNS. Here, the value of RMNS should be approximately
proportional to the radius of neutron stars of the canonical
mass, and hence, it is reflected in the characteristic fre-
quency. It should also be mentioned that the characteristic
frequency depends on the value of �th: For the smaller
value of it, the frequency is slightly higher for many cases,
because the effect of shock heating is weaker, and the MNS
becomes more compact.

As pointed out in [23], we also find that a certain corre-
lation exists between the characteristic frequency and a
stellar radius of a cold spherical neutron star in isolation.
Figure 13 plots the frequency of the Fourier spectrum peak
as a function of the neutron star radius of mass 1:8M�
(upper panels) and 1:6M� (lower panels) for a given EOS
(denoted by R1:8 and R1:6 in units of km) for m ¼ 2:7M�
(left panels) and 2:6M� (right panels) [50]. For the m ¼
2:7M� case, we also plot the Fourier spectrum peak of the
results of [23] for comparison [52]. The dotted curves are

f ¼ ð4:0� 0:3Þ kHz
�ðR1:8=kmÞ � 2

8

��3=2
(7)

for the upper left panel,

f ¼ ð3:85� 0:15Þ kHz
�ðR1:8=kmÞ � 2

8

��3=2
(8)

for the upper right panel,

f ¼ ð4:15� 0:35Þ kHz
�ðR1:6=kmÞ � 2

8

��3=2
(9)

for the lower left panel, and

f ¼ ð3:95� 0:25Þ kHz
�ðR1:6=kmÞ � 2

8

��3=2
(10)

for the lower right panel. These curves approximately show
the upper and lower limits of the characteristic frequency.
We note that the subtraction factor of�2 for R1:8 and R1:6 is
empirically needed to capture the upper and lower limits for
the star of radius�11 km. The reason seems to be due to the
fact that general relativistic corrections play an important
role for the small value of the neutron star radius. The reason
why R1:8 is employed is that we found it a better choice to
get a clear correlation between the peak frequency and a
neutron star radius for our results. The choice ofR1:6 is done
following [23]. In both cases, our results of the correlation
between the characteristic frequency and a stellar radius are
largely consistent with the results of [23] within the uncer-
tainty represented with the dotted curves.
For the figure, we plotted all the values of the peak

frequency when we found multiple peaks; for some mod-
els, we plotted 2 or 3 points. We also plotted all the data
irrespective of the values of �th for APR4 and H4: Possible
unknown dispersion associated with the shock heating effect
is taken into account in these plots. Nevertheless, we still find
a fairly clear correlation for the choice of R1:8. In particular
for the lower-mass models (m ¼ 2:6M�), the dispersion is
quite small. This figure suggests that if we can determine the
peak frequency accurately, we will be able to constrain the
radius of the neutron star with the uncertainty of �1 km.
However, it is also found that it is not easy to reduce the
estimation error to 
 1 km, because of the presence of the
systematic dispersion of the peak frequency.
The peak frequencies are associated with the major

frequencies of the quasiperiodic oscillation of gravitational
waves emitted by the MNSs as found in Figs. 7–11.
However, as already mentioned, the (nonaxisymmetric)
oscillation frequency of the MNSs changes during the
evolution due to a quasiradial oscillation (which changes

the peak frequency as R�3=2
MNS ) and to the secular dissipation

processes of their angular momentum, and hence, the
major frequencies change with time, resulting in the broad-
ening of the peak or appearance of the multiple peaks (e.g.,
the spectra for APR4-135135, APR4-130140, H4-120150,
ALF2-130130, and ALF2-120150). This broadening is not
very large for particular models such as equal-mass models

Fourier peak fave;5ms fave;10ms fave;20ms ffitave;10ms

Model �th (kHz) (kHz) (kHz) (kHz) (kHz) MNp¼13 MNp¼12 MNp¼11 MNp¼10

Shen-125145 — 2.10, 2.18 2:15� 0:17 2:17� 0:15 2:15� 0:13 2:16� 0:12 0.972 0.966 0.964 0.963

Shen-130140 — 2.09, 2.12 2:08� 0:18 2:09� 0:14 2:06� 0:15 2:07� 0:14 0.972 0.971 0.971 0.967

Shen-135135 — 2.18 2:18� 0:18 2:23� 0:14 2:21� 0:11 2:27� 0:06 0.971 0.969 0.967 0.967

Shen-140140 — 2.28 2:29� 0:26 2:28� 0:19 2:27� 0:16 2:31� 0:05 0.989 0.989 0.989 0.989

Shen-150150 — 2.29 2:22� 0:24 2:13� 0:18 2:11� 0:16 2:25� 0:12 0.989 0.989 0.989 0.984

Shen-160160 — 2.49 2:38� 0:37 2:51� 0:50 — 2:49� 0:20 0.943 0.943 0.930 0.919

TABLE III. (Continued)
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of some EOSs (see a discussion in the last paragraph of this
section), and thus, for these particular cases, the character-
istic frequency may be determined with a small dispersion.
However, in general, the broadening value is �10% of the
peak frequencies which is �2–3:5 kHz. Therefore, it will
not be easy to strictly determine the peak frequencies from
the Fourier spectrum. This situation will bring a serious
problem in the real data analysis, in which the noise level is
by several 10% as large as the signal amplitude; the peak
will not be determined strictly due to the presence of many
fake peaks and spurious broadening.

To estimate the possible magnitude of the broadening,
we also determine the average frequency from the results
of the frequency f by [12]

fave :¼
R
fjhjdtR jhjdt ; (11)

where we used jhj ¼ ðh2þ þ h2�Þ1=2 as the weight factor.
Then, we define the physical deviation of the major
frequency by

�2
f
:¼

Rðf� faveÞ2jhjdtR jhjdt : (12)

Here, the time integration is performed for 5, 10, and 20 ms
after the formation of the MNSs, because for each time
segment, the frequencies are changed. Table III lists the
average frequency and the deviation determined for 5, 10,
and 20 ms integration.

Table III as well as Fig. 12 shows that the values of fave
agree approximately with the peak frequency of the Fourier
spectrum irrespective of the integration time. However, as
expected, the value of fave changes with time. It is also
found that the magnitude of the deviation �f is not negli-

gible. For APR4 and SLy, for which the neutron star radius
is rather small and the amplitude of a quasiradial oscilla-
tion induced at the formation of the MNSs is rather large,
the magnitude of the deviation is 0.3–0.4 kHz. This indi-
cates that for determining the peak frequency from the
Fourier spectrum, the uncertainty of this magnitude has
to be kept in mind. For other EOSs, the deviation is
relatively small. However, it is still 0.1–0.2 kHz. To sum-
marize, we conclude that the characteristic frequency of
gravitational waves emitted by the MNSs changes with
time in general, and such time variation is the major source
of the broadening of the peak frequency found in Fig. 13.
There is also an uncertainty due to the grid resolution of

the simulation. The averaged value of the frequency con-
verges within �0:1 kHz error. This error causes an uncer-
tainty of the correlations between the Fourier peak and the
radius of a neutron stars with an error about 0.1 km.
However, the half width of Fourier peaks, which is about
�f, is larger than the uncertainty due to the grid resolution.

Thus we consider that an uncertainty�0:1 kHz is not quite
significant.
Before closing this section, we summarize several inter-

esting properties found in the Fourier spectrum. The first
one is that the peak frequencies vary with the mass ratio
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FIG. 13 (color online). The frequency of the Fourier spectrum peak as a function of the neutron star radius of M ¼ 1:8M� (upper
panels) and M ¼ 1:6M� (lower panels) with a given EOS for m ¼ 2:7M� (left panels) and 2:6M� (right panels). In the right panels,
we plotted all the data (equal-mass and unequal-mass data) using the same symbol. In the left panels, the cross symbols denote the
data of [23].
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even for the same total mass m (see Table III) and that the
feature of this variation depends on the EOS. For APR4,
SLy, and ALF2, the frequency depends only weakly on the
mass ratio. For H4 and Shen, the frequency is lower for the
lower values of q, i.e., for a more asymmetric system. By
contrast, for MS1, the frequency tends to be higher for a
more asymmetric system. This property causes a disper-
sion in the relation between the peak frequency and R1:8

displayed in Fig. 13. The second one is that the peak
amplitude of the Fourier spectrum decreases with the
decrease of q for ALF2, H4, and Shen, while it increases
with the decrease of q for APR4 and MS1 (see Fig. 12). In
other words, for ALF2, H4, and Shen, the spectrum peak is
sharper for the equal-mass binaries, while for APR4 and
MS1, it is sharper for the asymmetric binaries. These
properties will be used for constraining the EOS if the
peak frequencies are determined for a variety of binary
neutron star mergers.

V. MODELING GRAVITATIONALWAVEFORMS
FROM MNS

In this section, we attempt to construct a fitting formula
of gravitational waveforms from MNSs.

A. Fitting formula

In this section, we describe possible fitting formulas for
the waveforms of quasiperiodic gravitational waves emit-
ted by MNSs. There are two conflicting requirements for
the fitting formulas:

(i) On the one hand, we want fitting formulas by which
various numerical waveforms are well fitted univer-
sally. This generally requires more numbers of free
parameters.

(ii) On the other hand, we want fitting formulas that are
controlled by minimal numbers of free parameters,
to minimize the computational costs for the fitting in
the parameter survey procedures. In addition, with
smaller numbers of free parameters, the risk of
unphysical fitting is decreased, and thus, the physi-
cal meaning of each parameter in the best-fitted case
will be clearer.

Thus, we have to find an optimized fitting formula that is
described by an optimized number of parameters. To dis-
cover the optimized fitting formula, as a first step, we
introduce a formula that reproduces many characteristic
properties of numerical waveforms, without caring for the
optimization. Then, we search for the way to reduce the
number of parameters while keeping the matching degree
as high as possible.

The universal features of gravitational waves emitted by
MNSs are described in Sec. IVand summarized as follows:

(i) The frequency of gravitational waves reaches a peak
soon after the merger sets in (or in other words, in the
final moment of the inspiral phase) and then experi-
ences a damping oscillation for several oscillation

periods, eventually settling approximately to a con-
stant value, although a long-term secular change
associated with the change of the state of MNSs is
always present.

(ii) Soon after the onset of the merger, the amplitude of
gravitational waves becomes very low. However,
subsequently, the amplitude steeply increases, and
then it decreases either monotonically or with
modulations.

(iii) The damping time scale of the amplitude is of the
order of 10 ms for most MNS models although for
some EOSs such as H4 and Shen, the damping time
scale is much longer than 10 ms.

The fact (iii) implies that the emissivity of gravitational
waves by MNSs is in general high for the first �10 ms
after their formation. Hence, to save the search costs, we
focus on gravitational waves in this time range, consider-
ing the 10 ms-window function

WðtÞ :¼
�
1 for ti � t � tf;

0 otherwise;
(13)

where t ¼ ti is the time at which the frequency peak is
reached and tf ¼ ti þ 10 ms. In the following, we define

the origin of the time by setting ti ¼ 0 for simplicity.
Beware that this notation of t is used solely for describing
the fitting formulas and is different from the retarded time
tret that was used in Figs. 7–11.
Taking into account the characteristic properties of

gravitational waves listed above, we first introduce a fitting
formula that contains 13 free parameters as follows. Using
the fact that a complex function of any gravitational-wave
signal hðtÞ can be uniquely decomposed into a pair of real
function APðtÞ and PPðtÞ as

hðtÞ ¼ APðtÞ exp ½�iPPðtÞ�; (14)

we consider the following forms of fitting formulas:

hfitðtÞ ¼ APfitðtÞ exp ½�iPPfitðtÞ�; (15)

where

APfitðtÞ¼
�
a1 exp

�
� t

ad

�
þa0

��
1

1þexp½ðt�acoÞ=tcut�
�

�
�
1�exp

�
� t

aci

��
; (16)

PPfitðtÞ ¼ p0 þ p1tþ p2t
2 þ p3t

3

þ exp

�
� t

pd

�
½pc cos ðpftÞ þ ps sin ðpftÞ�: (17)

Equation (16) shows that we model the fitting function for
the amplitude part in terms of three parts:

(1) a1e
�t=ad þ a0 denotes the evolution for the ampli-

tude which is assumed to be composed of an ex-
ponentially damping term and a constant term. a0,
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a1, and ad are free parameters that should be deter-
mined by a fitting procedure.

(2) ½1þ exp fðt� acoÞ=tcutg��1 denotes a cutoff term
that specifies a time interval of a high-amplitude
stage with aco being the center of the cutoff time
and tcut being the time scale for the shutdown. aco <
10 ms for the case that a black hole is formed within
10 ms after the formation of a MNS. aco is deter-
mined in the fitting process, while tcut is a parameter
that should be manually chosen and fixed; we here
choose it to be 0.1 ms for simplicity.

(3) 1� exp ð�t=aciÞ is a steeply increasing function
for t * ti with aci being the growth time scale.
The reason for introducing this term is that at t ¼
ti ¼ 0, the amplitude of gravitational waves is uni-
versally low, but after this moment, the amplitude
steeply increases and the time scale depends on the
total mass, mass ratio, and EOS (see waveforms
in Sec. IV).

We note that in this fitting formula, we do not take into
account the effect of the modulation in the amplitude: To
do so, we have to significantly increase the number of
fitting parameters. However these additional parameters
increase the search costs, and hence, in this paper we focus
on a relatively simple fitting formula.

Equation (17) shows that we model the fitting function
for the frequency in terms of a secularly evolving term
p0 þ p1tþ p2t

2 þ p3t
3 and damping oscillation term

e�t=pd½pc cos ðpftÞ þ ps sin ðpftÞ�. Here, eight constants
p0, p1, p2, p3, pd, pf , pc, and ps are free parameters that
should be determined by a fitting procedure.

Thus, in total, there are 13 parameters to be determined,

and we denote them by ~Q in the following. We here stress
that 13 parameters are the maximally necessary ones in our
present fitting procedure. In the following, we ask whether
it is possible to reduce the number as small as possible.

B. Determining the model parameters

1. Fitting procedure

First, we focus on the fitting formula that contains 13
parameters and describe how we determine these parame-
ters. For the determination, it might be natural to define the
following function:

MðhfitÞ :¼ ðhNR; hfitÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhNR; hNRÞðhfit; hfitÞ
p ; (18)

and consider maximizing the absolute value of this func-
tion. Here, ð�; �Þ is the inner product defined in the time
domain by

ða; bÞ :¼ Re

�Z tf

ti

aðtÞbðtÞdt
�
; (19)

and we note that the maximum value of MðhfitÞ is unity.

One problem to be pointed out is that Eq. (18) has a
freedom of the scale transformation as hfit ! Chfit with C
being an arbitrary constant, and hence, the amplitude of
the fitting function cannot be determined by maximizing
M. Thus, as an alternative, we define the following cost
function:

CCðhfitÞ :¼ �MðhfitÞ þ ½ðhNR; hNRÞ � ðhfit; hfitÞ�2
ðhNR; hNRÞ2

; (20)

and consider minimizing this function. Here, the second
term is in a sense the normalization factor by which the
ambiguity in the amplitude of hfit is fixed. We note that by
the minimization of CC, we can obtain hfit that maximizes
M and also the amplitude of hfit that agrees approximately
with that of hNR.
We use a CMA-ES (covariance matrix adaption evolu-

tion search) algorithm [53–55] to solve the minimization
problems. CMA-ES is a widely applicable optimization
method for N-input, 1-output real-valued functions y ¼
fð ~xÞ. CMA-ES belongs to a category of stochastic optimi-
zation algorithms such as, e.g., Markov chain Monte Carlo
methods and genetic algorithms. The CMA-ES algorithm
keeps track of a multivariate normal distributionN ð�;�Þ
from which guess parameters ~x are generated. The CMA-
ES algorithm proceeds by updating the mean � and the
covariance matrix � according to the values of fð ~xÞ for
randomly sampled ~x. Because of this, CMA-ES has many
preferable properties: It does not require the information of
rfð ~xÞ, the values of which are computationally expensive,
inaccurate or inaccessible in many cases, it is robust
against noise in f and/or tiny local minima in f, its result
is not affected by composing any increasing function g on
the output space gðfð ~xÞÞ, and its result is also not affected

by Affine transformation in the input space fðA~xþ ~bÞ if
the initial distribution is also modified by the inverse
transformation.
Despite such properties, minimizing CCðhfitÞ is not

straightforwardly achieved by CMA-ES because the func-
tion has lots of local minima in its 13-dimensional parame-
ter space. Therefore, we resort to metaheuristics that
decompose the main problem into multiple optimization
subproblems, each of which is solved by the CMA-ES
algorithm.
To begin with, we introduce two supplementary cost

functions as

CPðhfitÞ :¼
Z tf

ti

AP2
NRðPPNR � PPfitÞ2dt; (21)

CAðhfitÞ :¼
Z tf

ti

ðAPNR � APfitÞ2dt; (22)

where APNR and PPNR are amplitude and phase parts of
hNR, respectively, which are obtained by the decomposition
defined in Eq. (14). Then, instead of performing the mini-
mization procedure in the 13-parameter space altogether, we
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determine a subset of 13 parameters by a minimization
procedure in terms of CP and CA step by step.

Table IV shows an example of the parameter-search
procedure. In this example, 13 parameters of a waveform
are eventually updated after the following nine steps (the
step indices correspond to those in Table IV):

(0) In the beginning, we give initial-guess values (see
Sec. VB2) for all 13 parameters.

(1) In the first step, we update parameters ðp0; p1Þ by
minimizing the cost function CP.

(2) Using the new set of ðp0; p1Þ as a part of the updated
initial-guess parameters, we update ðp0; p1; p2Þ.

(3) Similarly, parameters ðp0; p1; p2; p3Þ are updated in
the third step.

(4) The parameters of the damping oscillation term in
phase ðpd; pf ; pc; psÞ are updated using the cost
function CP and fixing ðp0; p1; p2; p3Þ to be the
values obtained in the previous step.

(5) All of the parameters in phase (pd � ps and p0 �
p3) are updated starting from the values obtained in

the first–fourth steps as the initial guess and employ-
ing CP as the cost function.

(6) We update the exponentially damping term in
amplitude (a0, a1, ad) employing CA as the cost
function. Here, we fix the values of all the eight
parameters in phase (pd � p3) to be those deter-
mined in the fifth step.

(7) We update the parameters for the steeply increasing
term (aci), with three other parameters in amplitude
(a0, a1, ad) also subject to change.

(8) We update the parameters for the cutoff term (aco) in
a similar manner.

(9) Finally, we minimize the cost function CC using all
of the parameters obtained up to the eighth step as
the initial guess.

This procedure should be iterated until the sufficient con-
vergence is achieved.
The circles in each row of Table IV denote the parame-

ters that are updated at each step. For the fitting procedure
at each step, we use the CMA-ES algorithm. Note that in

TABLE IV. A procedure of determining 13 parameters is illustrated. The procedure in this example is composed of 9 steps. In the
first–fifth steps, we update ðp0; p1Þ, ðp0; p1; p2Þ, ðp0; p1; p2; p3Þ, ðpd; pf ; pc; psÞ, and all eight parameters of the phase part pi using the
cost function CP, respectively, and in the sixth–eighth steps, five parameters in the amplitude part ai are updated using the cost function
CA. At the ninth step, all the parameters are updated at the same time using the cost function CC. At each step, the values of parameters
determined in the previous steps are used as the initial-guess values. The leftmost letter (P or A or C) indicates the type of cost function
CP or CA or CC used in the corresponding step. See also the text for a more detailed description.

Np ¼ 13 pd pf pc ps p3 p2 p1 p0 aci aco a0 ad a1

1. (P) � �
2. (P) � � �
3. (P) � � � �
4. (P) � � � �
5. (P) � � � � � � � �
6. (A) � � �
7. (A) � � � �
8. (A) � � � �
9. (C) � � � � � � � � � � � � �

TABLE V. The standard values of parameters ~Qstd, their deviations �std, and their constraints.

Parameter (Qstd � �std) Dimension Constraints

a1 ¼ 0:113793577854 �0:2 1 a1 > 0
ad ¼ 3:61810442878� 10�3 �0:01 s

a0 ¼ 6:67194850219� 10�3 �1� 10�3 1 a0 > 0
aco ¼ 0:012 �0:01 s 3� 10�4 < aco < 1:2� 10�2

aci ¼ 2:28934356228� 10�4 �5� 10�4 s

p0 ¼ 4:12034039189 �37 1

p1 ¼ 1:56534759719� 104 �4� 103 s�1

p2 ¼ 0 �3� 105 s�2

p3 ¼ 0 �1� 107 s�3

ps ¼ 0:494703128127 �1 1

pc ¼ �0:116384976953 �1 1

pf ¼ 6:607469741287686� 103 �1� 103 s�1 pf > 0
pd ¼ 1:69866461255� 10�3 �2� 103 s
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the above procedure, we employ the cost function CP when
all the target parameters belong to the phase part (PP),
while we employ CA when all the target parameters belong
to the amplitude part (AP). We employ CC only when the
parameters in the search include parameters of both (AP)
and (PP) parts.

2. Standard set of the 13 parameters

The CMA-ES algorithm requires the values and deviations
of the initial guess for all the input parameters. As the search
procedure proceeds, we can obtain accumulated sets of 13
parameters determined in the different cycles of search pro-

cedures and for additional models. By taking median over
them, we may construct a standard set of the 13 parameters,
which can be used as the initial guess in the search procedure
that follows. Table V denotes the standard set of the parame-

ters ~Qstd and their deviations �std which were obtained from
the results of the search for all the numerical waveforms
employed in this paper. Here, we artificially set p2 and p3 to
be zero because we want to always test the quality of the
fitting functions that are linear in time for the phase part.
Note that this standard set will be improved as the search
procedure proceeds and asmorewaveforms are involved.We
use the determined 13 parameters for a set of the waveforms
as an initial guess in the next generation of fitting.

C. Fitting results

Figure 14 shows the cumulative distribution for the
maximum value of M. Here, see the plot for Np ¼ 13
that denotes the cumulative distribution for the case of the
13-parameter fitting (see also the column of MNp¼13 in

Table III which lists the maximum values of M for all the
numerical waveforms). This plot shows that for �90% of
the waveforms, the maximum value of M is larger than
0.95. Also for all the waveforms, the maximum value ofM
is larger than 0.90.
Figure 15 compares numerical waveforms with their

fitting results for four models, for all of which the value
of M is larger than 0.98. For these models, the amplitude
of gravitational waves emitted by a MNS decreases
monotonically with time and the corresponding frequency
is approximately constant only with small modulation. For
this type of the waveforms, the fitting can be well achieved
in our fitting formula.
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FIG. 15 (color online). Comparison of numerical waveforms with their fitting results for APR4-120140, SLy-130130, H4-135135
with �th ¼ 1:8 and Shen-140140. Gravitational waves (hþD=m) and the frequency of gravitational waves f (kHz) as functions of
retarded time are plotted. The red (thick) curves are numerical waveforms, as in Fig. 7, while the blue (thin) segment curves are the
corresponding fitting functions with the best-fit parameters. The numerical value written in the lower right corner of each panel is the
value of M.

KENTA HOTOKEZAKA et al. PHYSICAL REVIEW D 88, 044026 (2013)

044026-24



By contrast, the fitting is not as well achieved for the
case that the amplitude significantly modulates with time
in the early phase of the MNS evolution. Figure 16 shows
the sample for such cases. For all the models picked up in
this figure, the amplitude increases with time from t ¼ ti
and reaches a high value. Then, the amplitude once damps
at t� ti ¼ 2–5 ms, and subsequently, quasiperiodic gravi-
tational waves with slowly decreasing amplitude are emit-
ted. This type of gravitational waveform is often found for
the case of asymmetric binaries with APR4 and ALF2.
Nevertheless, the value of M is still larger than 0.9.

We notice that the fitting formula, which is constructed
with the data for 10 ms duration, could reproduce longer
data as well (e.g., 20 ms data). Indeed, the value of M for
20 ms duration data with the fitting formula is only 1%
smaller than the value of M listed in Table III for the
compact neutron star models, APR4, SLy, and ALF2. For
the less compact neutron star models, the value of M is
still 1%–10% smaller than the value listed in Table III. For
the softer EOSs, the duration of high-amplitude gravita-
tional waves is relatively short as &10 ms. Thus, the
longer data do not contribute much to the matching. This
is the reason that the value of M depends weakly on the
duration of the data. For the stiffer EOSs, in particular, for
H4, the duration of high-amplitude gravitational waves is
longer as *10 ms. For such gravitational waves, the
matching parameters have to be reconstructed for the
longer-duration data.

Before closing this subsection, we comment on the
convergence of the value of M. For the case that the
gravitational waveform has the modulation of the ampli-
tude, the value of M is lower for the higher-resolution
simulations, because the modulation of the amplitude is
more distinctive for the higher-resolution simulations (see
details in Appendix A). Therefore the value ofM is likely
to be overestimated for the waveforms which have the
large modulation.

D. Reduction of the number of the free parameters

We now explore possible fitting formulas in which the
number of free parameters is smaller than 13; some of the
13 parameters are fixed to particular values. A question to
ask in the reduction process is whether the search output in
the fitting formula composed of 13 parameters is insensi-
tive to some of the parameters. If this is the case, we could
effectively reduce the search space by fixing such insensi-
tive parameters to standard values. In fact this is the case:
We can construct fitting formulas that preserve nearly the
same quality even when we reduce the number of free
parameters to �11, as we can see in Figs. 14 and 17.
To access the quality of the reduced fitting formula, in

this paper, we introduce a quality function qð ~Q0Þ for a

subset of parameters ~Q0 � ~Q. qð ~Q0Þ is defined as the worst
value among the maximum values ofMwhen the fitting is

performed only for the subset of parameters ~Q0
:
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FIG. 16 (color online). The same as Fig. 15 but for APR4-130150, ALF2-120150, APR4-120150 (with �th ¼ 2:0), and APR4-
125145. This figure shows that our fitting formula (15) is relatively poor at fitting the modulating feature in the amplitude.
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qð ~Q0Þ :¼ min
NR models

½MðhfitÞ�: (23)

Then, we consider that the quality of a fitting formula is

better if the values of qð ~Q0Þ is larger.
We employ a simple heuristics to reduce the number of

free parameters starting from 13 free parameters obtained
in the best-fitting formula as follows:

(1) We can construct a reduced formula with 12 free
parameters, by fixing one of the parameters to the
standard value (listed in Table V).

(2) We measure the quality of all the reduced formulas
by performing fitting procedure described in
Sec. VB for each of them.

(3) We choose the reduced formula with the highest
quality and consider it as the best formula in the
12-parameter search.

We further repeat this to construct a reduced formula
with 11 free parameters, starting from the best formula in
the 12-parameter search. In general, we can define a
reduced formula with ðNp � 1Þ free parameters from a

Np-parameter formula, by choosing the free parameter

that has the least effect on the quality and by fixing it. In
this manner, we constructed 11 reduced formulas with
Np ¼ 2–12.

In the above heuristics, we search only for small sub-
spaces of all the possible parameter reduction spaces. To
confirm that our choice for the parameter reduction would
be the best one, we also tested other heuristics for reducing
the number of parameters. We also tried several different

formulas for the same choice of ~Q0
.

Also, it was sometimes found that for certain wave-
forms, an increase in Np could result in the decrease of

M. This may seem counterintuitive, but in reality such a
miss fitting is inevitable. This is because M is assured to
be the increasing function of Np only if the global optima

are always obtained. However, in practice, a fake solution,
which falls into a local minimum, is often obtained, and

hence, it is not easy to achieve the global optimization.
When we found such decrease in M, we performed the
fitting for a larger value of Np again, using the results of

fitting obtained from a lesser value of Np as the initial

guess.
An update in the standard set of parameters may also

result in the decrease of the quality for some of the reduced
formulas. In such cases, we can also reuse the results from
the past overwriting the fitting results for all the waveforms
consistently. The number of the degrees of freedom is still
Np after such operations. We can understand this visually

in the following way: What we call a reduced formula
corresponds to an Np-dimensional plane embedded in the

13-dimensional parameter space, and locally adopting a
different ‘‘standard set of parameters’’ corresponds to a
parallel displacement of the Np-dimensional plane in the

13-dimensional space.

E. Results of the parameter reduction

Table III lists the maximum values ofM for the cases of
Np ¼ 10–13 parameters (see the columns MNp¼10 to

MNp¼13). This table obviously shows that the maximum

values of M are approximately identical for Np ¼ 12 and

Np ¼ 13 (except for APR4-130150 and ALF-140140).

Therefore, the cumulative distributions for these two cases
are approximately identical as that found in Fig. 14 (see the
plots for Np ¼ 12 and 13). This implies that the search

procedure may well be performed in the fitting formula
with 12 free parameters fixing aco, which might be a
redundant parameter.
We further perform the reduction, and construct reduced

fitting formulas with 2–11 free parameters (Np ¼ 2–11).

We list the sets of the parameters for Np ¼ 2–13 in

Table VI. Figure 14 shows the cumulative distribution of
M for the formulas with Np ¼ 7–13. Figure 17 shows the

qualities of reduced formulas as a function of the number
of parameters. This figure indicates that the reduced

TABLE VI. The sets of free parameters in the chosen fitting formulas with Np ¼ 2–13. The value of M is not very sensitive to aco
and ps if the standard values listed in Table V are assigned.

Phase part Amplitude part Quality

Np ¼ 2 p1 p0 0.0274881661358768

Np ¼ 3 p1 p0 ad 0.4753105281276069

Np ¼ 4 pc p1 p0 ad 0.5908178259595284

Np ¼ 5 pc p1 p0 aci ad 0.6750096266165332

Np ¼ 6 pc p1 p0 aci ad a1 0.7053957819403283

Np ¼ 7 pc p2 p1 p0 aci ad a1 0.7305212430130907

Np ¼ 8 pd pc p2 p1 p0 aci ad a1 0.8388076222568087

Np ¼ 9 pd pc p2 p1 p0 aci a0 ad a1 0.8600728396291507

Np ¼ 10 pd pf pc p2 p1 p0 aci a0 ad a1 0.8831675719064657

Np ¼ 11 pd pf pc p3 p2 p1 p0 aci a0 ad a1 0.8943981384792208

Np ¼ 12 pd pf pc ps p3 p2 p1 p0 aci a0 ad a1 0.8943981384792208

Np ¼ 13 pd pf pc ps p3 p2 p1 p0 aci aco a0 ad a1 0.9096283876761225
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formula with Np ¼ 11–13 have approximately the same

quality, giving M> 0:9 for more than 98% of the wave-
forms. The reduced formulas with Np ¼ 8–10 have a

gradually decreasing quality, giving M> 0:9 for *80%
of the waveforms. Then, there is a substantial quality gap
between Np ¼ 7 and Np ¼ 8. This occurs when pd is fixed

to its standard value.
The last two columns of Table III also list the values of

MMp¼11 and MMp¼10. Comparing these data with

MMp¼13 also shows that the reduced formula with Np ¼
11 has the quality that is approximately the same as that for
Np ¼ 13. This implies that we may reduce the number of

the parameters to 11 by fixing the values of the other
parameters to be the standard values. We may further
reduce the number of free parameters to 10 if we can allow
the matching with M< 0:9 for �5% of the waveforms.

VI. SUMMARY

The latest discoveries of high-mass neutron stars with
mass 1:97� 0:04M� [14] and 2:01� 0:04M� [15] con-
strain that the maximum mass of (cold) spherical neutron
stars for a given hypothetical EOS has to be larger than
�2M�, and suggests that the EOS of neutron stars has to be
quite stiff. We performed a number of numerical-relativity
simulations employing stiff EOSs with a variety of the
plausible total mass and mass ratio of binary neutron stars.
We found that for the canonical total mass of binary
neutron stars m � 2:7M�, not a black hole but a MNS is
the canonical remnant, and that for many cases, it is a
HMNS. The MNSs are rapidly rotating and nonaxisym-
metric, and thus, they are often strong emitters of quasi-
periodic gravitational waves and efficiently exert the
torque to the envelope surrounding them. We explored
the evolution processes of the remnant MNSs and found
that their lifetime is much longer than the dynamical time
scale of the system	1 ms for most models. Their lifetime
also depends strongly on the EOSs and their total mass,
although they should always collapse to a black hole
eventually if they are hypermassive.

We classified the final fate of the MNSs by specifying
what determines their evolution time scale. There are at
least four ingredients that affect the evolution of the
MNSs: gravitational-wave emission, angular-momentum
transport via a hydrodynamical process associated with
the nonaxisymmetric structure of the MNSs, angular-
momentum transport process via magnetohydrodynamical
processes such as magnetic winding and MRI, and neu-
trino cooling. If the gravitational-wave emission and hy-
drodynamical angular-momentum transport determine the
evolution of a HMNS, its nonaxisymmetry plays a crucial
role and hence its lifetime will be short, &100 ms. If a
HMNS is alive for a longer time, magnetorotational pro-
cesses are likely to play an important role [40]: After a
substantial amount of angular momentum is transported

outward, the HMNS will collapse to a black hole. If the
system is not massive enough, the angular-momentum
transport alone is not likely to trigger the collapse to a
black hole. For such a system, neutrino cooling will play
an important role (e.g., [10,11]). If the system is hyper-
massive but the thermal pressure significantly contributes
to sustaining the self-gravity of the HMNS, the collapse
will occur in the neutrino cooling time scale of seconds. If
the system is not hypermassive but supramassive, the
SMNS will be alive for a time longer than the cooling
time scale. Their lifetime will be determined by the
dissipation time scale of angular momentum such as
magnetic dipole radiation.
In the later part of this paper, we studied in detail the

properties of quasiperiodic gravitational waves emitted by
MNSs. We found that the gravitational waveforms well
reflect the evolution process of the MNSs. Basically, the
waveforms have the following universal features: they are
quasiperiodic with an approximately constant frequency
�2–3:5 kHz, although the frequency changes with time in
particular in the early stage of the MNSs, the time-
variation part of the frequency is composed of an early
high-amplitude oscillation and a subsequent secular varia-
tion, and the amplitude decreases (approximately) mono-
tonically with time scale * 10 ms which is much longer
than the oscillation period and dynamical time scale of
the MNSs. Taking into account these universal features of
the gravitational waveforms, we constructed a fitting for-
mula that is used for modeling gravitational waves of a
variety of MNSs irrespective of EOSs and the values of
binary mass. It is found that the waveforms are well fitted
by 13 parameter models with the value of the matching
factors >0:90 for all the waveforms and >0:95 for �90%
of the waveforms. Even with 11 parameter models, the
value of the matching factors is larger than 0.90 for 98%
of the waveforms and * 0:95 for �75% of the
waveforms.
We also found a correlation between the characteristic

frequency of gravitational waves emitted by MNSs and a
neutron star radius, as found in [23]. However, it was also
clarified that the frequency has a systematic dispersion
because it changes with time during the evolution of the
MNSs. Because of this systematic component, the corre-
lation relation is not as sharp as that pointed out in [23], and
thus, we conclude that even if the characteristic frequency
is determined accurately, the systematic error for the
estimation of the neutron star radius of �1 km will be
inevitable. Nevertheless, the neutron star radius is con-
strained strongly, and therefore, measuring the character-
istic frequency is an important subject in the future
gravitational-wave observation.
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APPENDIX: CONVERGENCE

When we model a gravitational waveform in terms of
our fitting formula, the most important quantity is its
frequency. We here show the convergence property for
the numerical results of the frequency of gravitational
waveforms emitted by MNSs. Figure 18 plots the fre-
quency as a function of tret for APR4, ALF2, and H4
EOSs with m1 ¼ m2 ¼ 1:35M� and ðm1; m2Þ ¼
ð1:2M�; 1:5M�Þ for typical examples. For each model,
three grid resolutions are chosen (see Sec. II B and
Table V of [12]). We also provide the average frequency

TABLE VII. The resolution study for the characteristic frequency fave;10ms and the maximum values ofM for APR4, ALF2, and H4
EOSs with m1 ¼ m2 ¼ 1:35M� and ðm1; m2Þ ¼ ð1:2M�; 1:5M�Þ. Here the number of parameters is set to be Np ¼ 13.

flowave;10 ms fmiddle
ave;10 ms fhighave;10 ms

Model (kHz) (kHz) (kHz) Mlow Mmiddle Mhigh

APR4-120150 3:31� 0:23 3:28� 0:23 3:41� 0:24 0.964 0.972 0.959

APR4-135135 3:40� 0:36 3:34� 0:36 3:28� 0:37 0.970 0.981 0.970

ALF2-120150 2:68� 0:13 2:78� 0:15 2:71� 0:16 0.991 0.975 0.924

ALF2-135135 2:82� 0:21 2:82� 0:19 2:76� 0:15 0.988 0.990 0.989

H4-120150 2:27� 0:12 2:28� 0:14 2:31� 0:15 0.986 0.984 0.964

H4-135135 2:51� 0:14 2:52� 0:14 2:48� 0:16 0.982 0.990 0.984
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FIG. 18 (color online). The resolution study for the evolution of the frequency of gravitational waves emitted by MNSs for APR4,
ALF2, and H4 EOSs withm1 ¼ m2 ¼ 1:35M� and ðm1; m2Þ ¼ ð1:2M�; 1:5M�Þ. For each model, three grid resolutions are chosen; see
Sec. IIB and Table V of [12]. For aligning the curve at the onset of the merger, the time is shifted for the data of low and middle
resolutions. Spikes found for the plots of APR4-135135, APR4-120150, ALF-120150, and H4-120150 are not physical; these are
generated when the gravitational-wave amplitude is too low to determine the frequency accurately.
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and the maximum value of M for those models in
Table VII.

As we described in [12], the peak frequency of the
Fourier spectrum and the averaged value of the frequency
converge within �0:1 kHz error and the error is smaller
than the systematic dispersion �f. The convergence for

the stiffer EOS such as H4 is better than that for the softer
EOS such as APR4. The possible reason for this is that
neutron stars for the stiffer EOSs are less compact and
shock heating effects are weaker that those for the softer
EOS. (Note that in the presence of shocks the conver-
gence is achieved only at the first order.) Similarly, the
values of the frequency are found to converge to this level
at each stage of MNSs except for the case that a black
holes is formed; for this case, the frequency varies steeply
with time and the convergence at a given moment is
relatively poor.

As already noted in the caption of Fig. 7, spikes found for
the plots of APR4-135135, APR4-120150, ALF-120150,
and H4-120150 are not physical; these are generated when
the gravitational-wave amplitude is quite low and hence the
frequency cannot be determined accurately. Such spikes do
not play a serious role for determining the Fourier spectrum,
averaged frequency, and �f because the gravitational-wave

amplitude is small at a moment that the spikes are generated.
For instance, the difference in the averaged frequency

between H4-120150 (low) and H4-120150 (high), which
includes a spike, is only 2%.
For ALF, a black hole is formed in a relatively short time

scale; see, e.g., the plot of ALF-135135. This plot illus-
trates that for the lower resolution, the lifetime of the
HMNS is shorter. This is also the case for ALF-120150.
As pointed out in the last paragraph of Sec. III B, this is an
often-found property of our numerical simulations.
The value of M depends on the grid resolution of the

simulation (see Table VII). For equal-mass models, the
value of M varies only about 0.01 depending on the grid
resolution. For unequal-mass models, the dependence of
the value of M on the grid resolution is stronger than that
of the equal-mass models. Moreover, the value ofM is the
lowest for the waveform of the highest-resolution simula-
tions. The reason is as explained in Sec. VC: For unequal-
mass models, the gravitational-wave amplitude modulates
significantly at 2–5 ms after the merger (see, e.g., Fig. 8).
The shape of the modulation is more distinctive for the
waveform of the higher resolution simulation. It is difficult
for the fitting function, Eqs. (15)–(17), to deal with such
modulation in the gravitational-wave amplitude. Therefore
the value of M is low for the highest-resolution simula-
tions. To increase the value of M for these models we
would have to increase the number of the parameters of our
fitting formula.

[1] J. Abadie et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 624, 223 (2010); T. Accadia et al., Classical Quantum
Gravity 28, 025005 (2011); K. Kuroda et al., Classical
Quantum Gravity 27, 084004 (2010).

[2] V. Kalogera, K. Belczynski, C. Kim, R. Oshaughnessy,
and B. Willems, Phys. Rep. 442, 75 (2007).

[3] J. Abadie et al., Classical Quantum Gravity 27, 173001
(2010).

[4] E. E. Flanagan, and T. Hinderer, Phys. Rev. D 77, 021502
(R) (2008); T. Hinderer, B. D. Lackey, R. N. Lang, and
J. S. Read, Phys. Rev. D 81, 123016 (2010); T. Damour, A.
Nagar, and L. Villain, Phys. Rev. D 85, 123007 (2012);
J. S. Read, L. Baiotti, J. D. E. Creighton, J. L. Friedman, B.
Giacomazzo, K. Kyutoku, C. Markakis, L. Rezzolla, M.
Shibata, and K. Taniguchi, arXiv:1306.4065 [Phys. Rev. D
(to be published)].

[5] T.W. Baumgarte, S. L. Shapiro, and M. Shibata,
Astrophys. J. Lett. 528, L29 (2000).

[6] G. B. Cook, S. L. Shapiro, and S. A Teukolsky, Astrophys.
J. 398, 203 (1992).

[7] G. B. Cook, S. L. Shapiro, and S. A Teukolsky, Astrophys.
J. 424, 823 (1994).

[8] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 71,
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