
Measurability of the tidal deformability by gravitational waves from
coalescing binary neutron stars

Kenta Hotokezaka,1 Koutarou Kyutoku,2 Yu-ichiro Sekiguchi,3 and Masaru Shibata4
1Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

2Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan

4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 22 November 2015; published 31 March 2016)

Combining new gravitational waveforms derived by long-term (14 to 16 orbit) numerical-relativity
simulations with waveforms by an effective-one-body (EOB) formalism for coalescing binary neutron
stars, we construct hybrid waveforms and estimate the measurability for the dimensionless tidal
deformability of the neutron stars, Λ, by advanced gravitational-wave detectors. We focus on the
equal-mass case with the total mass 2.7M⊙. We find that for an event at a hypothetical effective distance of
Deff ¼ 200 Mpc, the distinguishable difference in the dimensionless tidal deformability will be ≈100, 400,
and 800 at 1σ, 2σ, and 3σ levels, respectively, for Advanced LIGO. If the true equation of state is stiff and
the typical neutron-star radius is R ≳ 13 km, our analysis suggests that the radius will be constrained within
≈1 km at 2σ level for an event atDeff ¼ 200 Mpc. On the other hand, if the true equation of state is soft and
the typical neutron-star radius is R ≲ 12 km, it will be difficult to narrow down the equation of state among
many soft ones, although it is still possible to discriminate the true one from stiff equations of state with
R ≳ 13 km. We also find that gravitational waves from binary neutron stars will be distinguished from
those from spinless binary black holes at more than 2σ level for an event atDeff ¼ 200 Mpc. The validity of
the EOB formalism, Taylor-T4, and Taylor-F2 approximants as the inspiral waveform model is also
examined.
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I. INTRODUCTION

The inspiral and the merger of coalescing compact
binaries are the most promising sources for ground-
based kilometer-size laser-interferometric gravitational-
wave detectors [1–4]. Among them, Advanced LIGO
started the first observational run from September 2015
[2] and has achieved the first direct detection of gravita-
tional waves from the merger of a binary black hole [5]. We
may expect that these gravitational-wave detectors will also
detect the signals of gravitational waves from binary
neutron-star mergers in a few years because the latest
statistical studies suggest that these gravitational-wave
detectors will observe gravitational waves from merger
events as frequently as ∼1–100=yr if the designed sensi-
tivity is achieved [6–8]. One of the primary purposes after
the first detection of gravitational waves from binary
neutron stars (and also a black-hole–neutron-star binary)
will be to extract information of the neutron-star equation
of state, which is still poorly constrained [9].
Extracting the tidal deformability of the neutron stars

from gravitational waves emitted by binary-neutron-star
inspirals is one of the most promising methods for
constraining the neutron-star equation of state [10–21].
For this purpose, we need an accurate theoretical template
of gravitational waves from binary neutron-star inspirals
taking into account tidal-deformation effects that influence

the dynamics of the late inspiral orbits and modify the
corresponding gravitational waveform. However, current
post-Newtonian (PN) waveforms are not appropriate for
the theoretical template, as Favata [18] and Yagi and Yunes
[19] independently showed that uncertainties in the known
PN waveforms can cause significant systematic errors in
the tidal deformability estimates due to the unknown
higher-order terms. In fact, Wade and his collaborators
[20] evaluated the systematic errors using the waveforms
derived from different PN families and confirmed that
the estimated tidal deformability can be significantly
biased. To derive an accurate theoretical template that is
free from such uncertainties, high-accuracy numerical-
relativity simulations are necessary. Several efforts for this
purpose have been done recently [22–30].
In our previous paper [27], we reported our latest

effort for deriving accurate gravitational waveforms from
inspiraling binary neutron stars of typical mass
(1.35M⊙ − 1.35M⊙). We performed simulations for 15
to 16 inspiral orbits (30–32 wave cycles) up to the merger
employing low-eccentricity initial data, then performed an
extrapolation procedure with respect to the grid resolution,
and finally derived waveforms with the total accumulated
phase error within ∼0.5 rad and amplitude error less than
2% to 3%. We then compared our numerical waveforms
with the waveforms derived in an effective-one-body
(EOB) formalism, developed by Bernuzzi, Nagar, and their
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collaborators [28] (see also Refs. [15,31–35]). We have
indicated that the EOB results agree well with the numeri-
cal-relativity results for a quite soft equation of state in
which the neutron-star radius is small (∼11 km), while for a
stiff equation of state with a radius ≳13.5 km, a slight
disagreement is present for the final inspiral stage just prior
to the merger.
Combining numerical-relativity waveforms and resum-

med PN waveforms (by a Taylor-T4 approximant), Read
and her collaborators constructed hybrid waveforms and
analyzed the measurability of the tidal deformability for the
first time [16]. The primary purpose of our paper is to
quantitatively update their previous results by performing
the same analysis as theirs using our new numerical
waveforms. The motivation for this comes from the fact
that the quality of our numerical waveforms is significantly
improved: (i) the cycles of the new waveforms are double
those of the waveforms previously used, (ii) the initial
orbital eccentricity is reduced by more than an order of
magnitude [36], and (iii) the convergence of the simulation
results is much better and the numerical error is much lower
than the previous results.
As a first step for constructing hybrid waveforms, we

will compare new numerical gravitational waveforms for
several equations of state (different from those employed in
our previous papers) with the EOB waveforms, and we will
reconfirm the conclusion in our previous paper [27]. Then,
we will analyze the measurability of the tidal deformability
using the new hybrid waveforms constructed by combining
the numerical-relativity and EOB results. In this paper, we
focus only on the measurability by ground-based advanced
gravitational-wave detectors.
By comparing the hybrid waveforms derived from the

numerical and EOB results with them, we also examine the
validity of other analytic/semianalytic methods for model-
ing gravitational waveforms, paying special attention to
Taylor-T4 (TT4) and Taylor-F2 (TF2) approximants in
which the tidal correction is incorporated up to the first PN
order (e.g., see Ref. [20]). We will indicate that the current
version of these Taylor approximants does not yield
waveforms as accurately as those by an EOB formalism
for equal-mass binary neutron stars, primarily because of
the lack of the higher-order PN terms.
The paper is organized as follows. In Sec. II, we briefly

summarize the formulation and numerical schemes emp-
loyed in our numerical-relativity study, and we also list the
equations of state employed. In Sec. III, we present our new
waveforms and compare them with those by the EOB and
TT4 approximants. We then construct hybrid waveforms
using the numerical and EOB waveforms. In Sec. IV, we
explore the measurability of the tidal deformability using
the hybrid waveforms. We also assess the validity of the
EOB, TT4 (hybrid-TT4), and TF2 approximants for mod-
eling inspiraling binary neutron stars. Section V is devoted
to a summary. Throughout this paper, we employ the

geometrical units of c ¼ G ¼ 1 where c and G are the
speed of light and the gravitational constant, respectively.

II. DERIVING NUMERICAL WAVEFORMS

We briefly summarize the formulation and numerical
schemes of our numerical-relativity simulation, equations
of state employed, and a method for deriving an extrapo-
lated gravitational waveform from the raw numerical-
relativity results.

A. Evolution and initial condition

We follow the inspiral, merger, and early stage of the
postmerger of binary neutron stars using our numerical-
relativity code, SACRA, whose details are described in
Ref. [37]. As in our previous long-term simulations [27],
we employ a moving puncture version of the Baumgarte-
Shapiro-Shibata-Nakamura formalism [38], locally incor-
porating a Z4c-type constraint propagation prescription
[39] (see Ref. [36] for our implementation) for a solution of
Einstein’s equation. SACRA implements a fourth-order finite
differencing scheme in space and time with an adaptive
mesh refinement (AMR) algorithm.
As in Ref. [27], we prepare nine refinement levels and 13

domains for the AMR algorithm. Each refinement domain
consists of a uniform, vertex-centered Cartesian grid with
ð2N þ 1; 2N þ 1; N þ 1Þ grid points for ðx; y; zÞ; the
equatorial plane symmetry at z ¼ 0 is imposed. The half
of the edge length of the largest domain (i.e., the distance
from the origin to outer boundaries along each axis) is
denoted by L, which is chosen to be larger than λ0, where
λ0 ¼ π=Ω0 is the initial wavelength of the gravitational
waves andΩ0 is the initial orbital angular velocity. The grid
spacing for each refinement level is Δxl ¼ L=ð2lNÞ, where
l ¼ 0–8. We denote Δx8 by Δx in the following. In this
work, we choose N ¼ 72, 60, and 48 for examining the
convergence properties of numerical results with respect
to the grid resolution. With the highest grid resolution
(for N ¼ 72), the semimajor diameter of each neutron star
is covered by about 120 grid points.
We prepare binary neutron stars in quasicircular orbits

for the initial condition of the numerical simulations. The
initial conditions are numerically obtained by using a
spectral-method library, LORENE [40]. In this paper, we
focus only on equal-mass systems with each neutron-star
mass being 1.35M⊙. We follow 14–16 orbits in this study
(≈57–62 ms duration for the last inspiral orbits). To do so,
the orbital angular velocity of the initial configuration is
chosen to be m0Ω0 ≈ 0.0155 (f ¼ Ω0=π ≈ 371 Hz for the
total mass m0 ¼ 2.7M⊙, where f denotes the gravitational-
wave frequency). Some parameters for the models and
settings for the simulations are listed in Table I.
For the computation of an accurate gravitational wave-

form in the numerical simulations, we have to employ
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initial data of a quasicircular orbit of negligible eccentricity.
Such initial data are constructed by an eccentricity-reduc-
tion procedure described in Ref. [36]. For the initial data
employed in this work, the residual eccentricity is ≲10−3.

B. Equation of state

We employ four tabulated equations of state for zero-
temperature neutron-star matter derived recently by Hempel
and his collaborators, and we refer to them as SFHo [41],
DD2 [42], TMA [43], and TM1 [43]. Here, TM1 employed
the same parameter set of a relativistic mean-field theory as
that of one of Shen’s equations of state [44]. All of these
equations of state have been derived in relativisticmean-field
theories. Some characteristic properties resulting from these
equations of state are listed in Table I. For all of them, the
predictedmaximummass for spherical neutron stars is larger
than the largest well-measured mass of neutron stars,≈2M⊙
[45]. The neutron-star radius with mass 1.35M⊙, R1.35, is
≈11.9, 13.2, 13.9 and 14.5 km for SFHo, DD2, TMA, and
TM1; i.e., these are soft, moderately stiff, stiff, and very stiff
equations of state, respectively.
In our previous works [25,27], we employed piecewise

polytropic equations of state approximating tabulated
equations of state. In this work, we employ the tabulated
equations of state as they are to preserve the original form
of each equation of state.
In the analysis for the measurability of the dimensionless

tidal deformability, Λ, we also employ the numerical results
for APR4 [46], for which a detailed numerical result was
already reported in Ref. [27]. For this numerical simulation,
we employed the piecewise polytropic approximation.
R1.35 for this equation of state is ≈11.1 km, and hence
this equation of state is softer than SFHo, DD2, TMA, or
TM1. As Table I shows, R1.35 and Λ are systematically
varied among the five equations of state employed. This is
the reason that we pick up these equations of state in our
present analysis for the measurability of Λ.
For the zero-temperature case, the thermodynamical

quantities, i.e., the pressure, P, and the specific internal
energy, ϵ, are written as functions of the rest-mass density, ρ.
Here, the zero-temperature equations of state satisfy
dϵ ¼ −Pdð1=ρÞ. In numerical simulations, we slightly

modify the original equations of state, adding a thermal
part, to approximately take into account thermal effects,
which play a role in the merger and postmerger phases. For
this prescription, we use the same method as that used in
our previous works (see, e.g., Refs. [27,47]).

C. Extraction of gravitational waves
and extrapolation procedures

Gravitational waves are extracted from the outgoing
component of the complex Weyl scalar Ψ4 [37]. Ψ4 can be
expanded in the form

Ψ4ðt; r; θ;φÞ ¼
X
lm

Ψl;m
4 ðt; rÞ−2Ylmðθ;φÞ; ð2:1Þ

where −2Ylmðθ;φÞ denotes the spin-weighted spherical
harmonics of weight −2 and Ψl;m

4 are expansion coeffi-
cients defined by this equation. In this work, we focus only
on the ðl; jmjÞ ¼ ð2; 2Þmode because we pay attention only
to the equal-mass binary, and hence this quadrupole mode
is the dominant one.
From the ðl; mÞ ¼ ð2; 2Þ mode, quadrupole gravitational

waveforms are determined by

hþðt; rÞ − ih×ðt; rÞ ¼ − lim
r→∞

Z
t
dt0

Z
t0

dt00Ψ2;2
4 ðt00; rÞ;

ð2:2Þ
where hþðt; rÞ and h×ðt; rÞ are the plus and cross modes of
quadrupole gravitational waves, respectively (note that the
waveforms hþ and h× are actually derived by the integra-
tion method of Ref. [48]; see also Refs. [27,36]).
We evaluate Ψ4 at a finite spherical-coordinate radius,

r ≈ 200m0, following Ref. [27]. The waveforms are
described as a function of the retarded time defined by

tret≔t − r�; ð2:3Þ

where r� is the so-called tortoise coordinate defined by

r�≔rA þ 2m0 ln

�
rA
2m0

− 1

�
; ð2:4Þ

TABLE I. Equations of state (EOS) employed, the maximum mass of spherical neutron stars for given EOS, circumferential radius,
dimensionless tidal deformability, and tidal Love number of l ¼ ð2; 3; 4Þ for spherical neutron stars of mass 1.35M⊙, angular velocity of
initial data, location of the outer boundaries along each axis, and the finest grid spacing in the three different resolution runs.m0 denotes
the total mass of the system for the infinite orbital separation. In this study, m0 ¼ 2.7M⊙. For m0Ω0 ≈ 0.0155, the corresponding
gravitational-wave frequency is ≈371 Hz.

EOS MmaxðM⊙Þ R1.35 (km) Λ k2;1.35 k3;1.35 k4;1.35 m0Ω0 L (km) Δx (km)

APR4 2.20 11.09 322 0.0908 0.0234 0.00884 0.0156 2572 0.167, 0.209, 0.251
SFHo 2.06 11.91 420 0.0829 0.0216 0.00766 0.0155 2858 0.155, 0.186, 0.233
DD2 2.42 13.20 854 0.1007 0.0272 0.00996 0.0155 3258 0.177, 0.212, 0.265
TMA 2.02 13.85 1192 0.1103 0.0316 0.01229 0.0155 3430 0.186, 0.223, 0.279
TM1 2.21 14.48 1428 0.1059 0.0300 0.01154 0.0155 3644 0.198, 0.237, 0.297
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with rA≔
ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
and A being the proper area of the

extraction sphere. For simplicity, we define it by
rA ¼ r½1þm0=ð2rÞ�2.
Since the waveform of Ψ2;2

4 , extracted at a finite radius,
r ¼ r0, is systematically different from that at null infinity,
we then compute an extrapolated waveform at r0 → ∞
using Nakano’s method as [49,50]

Ψl;m;∞
4 ðtret; r0Þ ¼ Cðr0Þ

�
Ψl;m

4 ðtret; r0Þ

−
ðl − 1Þðlþ 2Þ

2rA

Z
tret

Ψl;m
4 ðt0; r0Þdt0

�
;

ð2:5Þ
where Cðr0Þ ¼ 1 − 2m0=rA, as described in Ref. [27].
As we have already mentioned, we always perform

simulations for three different grid resolutions (with different
values of the grid spacing Δx), and we obtain three wave-
forms of different accuracy determined by Δx. Then, we
perform an extrapolation procedure for Δx → 0 employing
the samemethod as described in Ref. [27]. As in the previous
results, we found that the convergence order is within 4� 1
irrespective of the equations of state employed.
It should be noted that the extrapolated numerical wave-

forms have the accumulated phase errors only within
∼0.5 rad, as described in Ref. [27]. This value is much
smaller than the phase differences among the different wave-
forms by different modeling (see Sec. IV B). Therefore, we
expect that the numerical errors in our extrapolated

waveforms do not significantly change our results for the
analysis of the measurability described in Sec. IV.

III. CONSTRUCTING A HYBRID WAVEFORM

Because we follow only 14–16 inspiral orbits, only
gravitational waveforms with f ≳ 370 Hz can be derived.
For exploring the measurability of the tidal deformability,
such waveforms are not well suited. To supplement the
earlier waveform for f < 370 Hz, we consider hybridiza-
tion between the numerical waveform and a waveform
derived by an analytic/semianalytic calculation, by which
the waveform for the lower-frequency band is filled up.
For the hybridization, we first have to align the time

and phase of the numerical-relativity waveform, hNR,
and a waveform by an analytic/semianalytic formulation,
hSA. Here, complex waveforms hðtÞ are defined by
hþðtÞ − ih×ðtÞ, with hþðtÞ and h×ðtÞ representing the plus
and cross modes, respectively. We then calculate

Iðτ;ϕÞ ¼
Z

tf

ti

dtjhNRðtÞ − hSAðtþ τÞeiϕj2 ð3:1Þ

and search for τ’s and ϕ’s that minimize I. Here, t in this
section always denotes the retarded time, tret, and we
choose ti ¼ 5 ms and tf ¼ 20 ms, as in our previous paper
[27]. At t ¼ 5 ms and 20 ms, the gravitational-wave
frequency is f ≈ 380 Hz and 420 Hz, respectively (see
Fig. 7 in Appendix A), and the number of the wave cycle in
this duration is ∼6 (see Fig. 1). We choose this window
because we would like to employ the time for it as early as
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FIG. 1. Comparison of numerical (solid curves) and EOB (dot-dot curves) waveforms for the late inspiral phase. The upper left, upper
right, lower left, and lower right panels show the results for SFHo, DD2, TMA, and TM1, respectively. Gravitational waves (plus mode)
observed along the rotational axis (perpendicular to the orbital plane) are shown.D denotes the distance from the source to the observer.
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possible. Here, for the first ≈5 ms just after the simulations
started, the waveforms have unphysical modulation, and
hencewe choose 5 ms for ti. 20 ms for tf is rather ad hoc. To
check that our conclusion for the measurability of the tidal
deformability does not depend strongly on the choice of ti
and tf, we also construct other hybrid waveforms, choosing
ti ¼ 10 ms and tf ¼ 25 ms (f ≈ 390 and 430 Hz, respec-
tively), and use them for calibrating the results in Sec. IVA.
For the values of τ and ϕ that we determine, we construct

a hybrid waveform. Following Refs. [27,51], we define the
hybrid waveform by

hhybðtÞ ¼

8><
>:

hSAðt0Þeiϕ t ≤ ti;

hNRðtÞHðtÞþ hSAðt0Þeiϕ½1−HðtÞ� ti ≤ t ≤ tf;

hNRðtÞ t ≥ tf;

ð3:2Þ

where t0 ¼ tþ τ, and we choose a Hann window function
for HðtÞ as

HðtÞ≔ 1

2

�
1 − cos

�
π
t − ti
tf − ti

��
: ð3:3Þ

Figure 1 plots the extrapolated numerical waveforms and
waveforms by an EOB formalism [29] for four different
equations of state (see Fig. 3 and Appendix A of Ref. [27]
for the waveform with APR4 and the EOB formalism that
we employ in this work, respectively). For these plots, we
align the numerical and EOB waveforms in the same way
as the hybrid construction. It is found that the two wave-
forms agree well with each other in their early part, i.e., for
tret ≲ 45 ms (for the first ∼20 wave cycles). In particular,
the phases for the two waveforms agree with each other
with the disagreement of order 0.01 rad for this stage, as we
demonstrated in our previous work [27]. This suggests that
our hybridization would work well whenever we employ
the EOB waveforms, irrespective of the choice of ðti; tfÞ, as
long as they are sufficiently small,≪ 45 ms. We estimate a
degree of the disagreement in the matching window by

�
minτ;ϕIðτ;ϕÞR tf

ti dtfjhNRðtÞj2 þ jhSAðtÞj2g

�
1=2

; ð3:4Þ

and it is always as small as ≲2 × 10−2. This error comes
primarily from the error in amplitude of the numerical
waveforms because the estimated maximum error size is
2%–3% in the amplitude. On the other hand, the phase error
has a minor contribution for this error.
The numerical and EOB waveforms agree reasonably

well with each other even in the late inspiral phase, up to a
few wave cycles prior to the merger (see also Fig. 7 in
Appendix A for supplementary information). This indicates
that the tidal-deformation effects would be fairly well taken
into account in the employed EOB formalism, as we

already mentioned in Ref. [27]. Because of these reasons,
we construct hybrid waveforms employing the EOB wave-
forms as hSA and use them for analyzing the measurability
of the tidal deformability.
We note that for stiff equations of state like TMAandTM1

for which the dimensionless tidal deformability is larger than
1000, the disagreement between the numerical and EOB
waveforms is appreciable for the last fewwave cycles, aswas
already pointed out in Ref. [27]. This suggests that there is
still room for incorporating additional tidal effects into the
EOB formalism [52]. On the other hand, for softer equations
of state with Λ < 1000, the disagreement is minor. This
indicates that the EOB waveforms well capture the tidal-
deformation effects, as long as Λ ≪ 1000.
We also perform the hybridization employing the TT4

waveforms [53,54] incorporating the tidal effects up to the
first PN (1PN) order [14]. In the TT4 approximant, the
evolution of the gravitational-wave frequency is determined
by (see, e.g., Ref. [20])

dx
dt

¼ 16

5m0

x5
�
1 −

487

168
xþ 4πx3=2 þ 274229

72576
x2 −

254

21
πx5=2

þ
�
178384023737

3353011200
þ 1475π2

192
−
1712

105
γE

−
856

105
lnð16xÞ

�
x3 þ 3310

189
πx7=2

þ 39

8
Λx5 þ 5203

896
Λx6

�
; ð3:5Þ

where xðtÞ≔½πm0fðtÞ�2=3 and γE is Euler’s constant. We
assume that the quadrupole-wave amplitude is determined
by Eq. (71) of Ref. [55]. Here, for simplicity, we restrict our
attention only to the equal-mass case, and in addition, we
do not take into account the effect of the tidal deformability
in the amplitude because it plays only a minor role for
analyzing the measurability [32].
After the alignment procedure for time and phase, we

also compare the numerical waveforms with the TT4
waveforms. Figure 2 shows the results for the same
comparison as in Fig. 1. This shows that the agreement
between the numerical and TT4 waveforms is worse than
that between the numerical and EOB waveforms.
Specifically, the phase evolution in the TT4 approximant
is slower than that in the EOB formalism. We note that the
tidal effects accelerate the orbital evolution in the late
inspiral phase because the tidal force strengthens the
attractive force between two neutron stars for such orbits.
Thus, we conclude that the tidal effects are underestimated
in the employed TT4 approximant. This should be the case
not only for the very late inspiral phase but also for the
earlier inspiral phase. An analysis of the gravitational-wave
phase evolution indicates that this would be due to the lack
of the higher-order PN terms of order Oðx13=2Þ or more:
terms with more than 1.5PN order with respect to the
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leading-order tidal-deformation effect. We provide evi-
dence for this in Appendix B. For this reason, we suppose
that the EOB formalism could give a better waveform than
the TT4 formalism.
Figure 3 plots the Fourier spectra of the hybrid waveforms

(numerical plus EOB waveforms) together with a designed
noise curve of Advanced LIGO, S1=2n (for the zero detuning
high power configuration) [56] and with the spectrum of a
binary-black-holemerger ofmass 1.35M⊙ − 1.35M⊙. Here,
SnðfÞ denotes the one-sided noise spectrum density of
gravitational-wave detectors. The numerical waveform for
the binary black hole is taken from the SXS Gravitational
WaveformDatabase [57], and we employ SXS:BBH:001. In
this paper, the Fourier transform is defined by

~hðfÞ≔
Z

dthþðtÞ expð−2πiftÞ; ð3:6Þ

where hþðtÞ denotes the plus-mode gravitational waveform.
For binary neutron stars, the overall shape of h×ðtÞ is
approximately the same as that of hþðtÞ except for a π=2
phase difference, and hence, theFourier transformationof the
cross mode, h×ðtÞ, results approximately in −i ~hðfÞ.
The response of gravitational-wave detectors for a

gravitational-wave event of coalescing binary neutron stars
is written in the form

h̄ðtÞ ¼ Hþðθ;φ; ι;ψpÞhþðtÞ þH×ðθ;φ; ι;ψpÞh×ðtÞ; ð3:7Þ
where Hþ and H× are functions of the source angular
direction denoted by ðθ;φÞ, of the inclination angle of the
binary orbital plane with respect to the line of the sight to
the source denoted by ι, and of the polarization angle

denoted by ψp. Thus, the Fourier transformation of h̄ðtÞ is
written as

h̄ðfÞ ≈Hðθ;φ; ι;ψpÞ ~hðfÞ; ð3:8Þ
where H ¼ Hþ − iH×, for which jHj ≤ 1. Taking into
account this form, we define the effective distance to the
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FIG. 2. The same as Fig. 1, but for the case that TT4 waveforms are used for the comparison with the numerical waveforms.
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FIG. 3. Fourier spectra of the hybrid waveforms for five
different equations of state for a hypothetical effective distance
of Deff ¼ 100 Mpc. The dot-dot curve for Advanced LIGO
(referred to as aLIGO) denotes S1=2n . Here, Sn is the one-sided
noise spectrum density for the “zero detuning high power”
configuration [56]. The dot-dot-dot curve denotes the Fourier
spectrum for a spinless binary black hole of mass 1.35M⊙ −
1.35M⊙ (plotted only for f ≥ 375 Hz). To find the approximate
SNR, the spectrum is shown with an additional factor of 2;
see Eq. (3.9).
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source by Deff≔DjHj−1, where D is the proper distance to
the source. In the following, we always refer toDeff (notD)
as the effective distance to the source, and we typically
consider an event at Deff ¼ 200 Mpc. This is equivalent to
an event at a distance of 200 Mpc with the optimal
orientation and sky location. The reason for this choice
is that statistical studies have predicted typically ∼1
detection per year for Deff ≲ 200 Mpc [58].
Figure 3 clearly shows that the difference in the Fourier

spectra among the waveforms of different equations of state
becomes appreciable for f ≳ 500 Hz. In particular, for
f ≳ 700 Hz, the difference is remarkable. This stems
primarily from the difference in the tidal deformability.
For larger values of Λ, the spectrum amplitude decreases
more steeply for f ≳ 700 Hz because the binary orbit is
evolved faster. Here, we note that (i) the late inspiral
waveform determines the spectrum only for f ≲ 1 kHz,
(ii) the final-inspiral to merger waveform determines the
spectrum approximately for 1 kHz≲ f ≲ 2 kHz, and
(iii) several bumps and peaks for f ≳ 2 kHz are determined
by the postmerger waveform (i.e., by gravitational waves
from remnant massive neutron stars formed after the
merger). It should also be noted that the noise amplitude
of the gravitational-wave detectors monotonically increases
for f ≳ 500 Hz. This indicates that the equation of state
(tidal deformability) could be constrained primarily by
analyzing the spectrum in the late inspiral and merger
waveforms and that the tidal deformability could be more
accurately measured for stiffer equations of state of a larger
value of Λ.
We briefly comment on the strength of gravitational

waves found for 2–3.5 kHz as peaks of the Fourier
spectrum, which are emitted from the massive neutron
stars formed in the postmerger phase (see, e.g., Ref. [47]).
To assess the detectability for them, we estimate the signal-
to-noise ratio defined by

SNR ¼
�
4

Z
ff

fi

j ~hðfÞj2
SnðfÞ

df

�1=2
: ð3:9Þ

For evaluating the strength of the peaks, we choose fi ¼
2 kHz and ff ¼ 4 kHz and the one-sided noise spectrum
density for the zero detuning high power configuration of
Advanced LIGO as SnðfÞ [56]. It is found that the SNR is
0.5–0.9 for Deff ¼ 200 Mpc. For stiffer equations of state,
this value is larger (0.5, 0.6, 0.7, 0.9, and 0.9 for APR4,
SFHo, DD2, TMA, and TM1). Since a SNR≳ 5 would be
required for the confirmed detection (due to the presence of
the Gaussian and other noises in the detectors; see, e.g.,
Ref. [59]), this peak will be detected with a high confidence
level only for a nearby event with Deff ≲ 20 − 35 Mpc for
the Advanced LIGO-class detectors, even if perfect tem-
plates for this waveform could be prepared. We note that for
a gravitational-wave event of an equal-mass binary neutron
star with m0 ¼ 2.7M⊙ and Deff ¼ 200 Mpc, the total
signal-to-noise ratio for the entire inspiral phase will be

≈17 (for a choice of fi < 10 Hz and ff > 2 kHz) irre-
spective of the equations of state employed. Therefore, the
expected SNR for the kilohertz peaks is much lower than
the SNR for the inspiral signal for the Advanced LIGO-
class detectors. This motivates us to focus primarily on the
late inspiral phase for extracting the information of the
neutron-star equation of state—at least in the near future.
(Of course, we will be more optimistic about the detect-
ability of this peak with more sensitive gravitational-wave
detectors in the future.)

IV. MEASURABILITY OF THE TIDAL
DEFORMABILITY

Following Ref. [16], we define a measure of the
distinguishability of two waveforms by

jjh1 − h2jj2≔min
Δt;Δϕ

�
4

Z
ff

fi

j ~h1ðfÞ− ~h2ðfÞeið2πfΔtþΔϕÞj2
SnðfÞ

df

�
;

ð4:1Þ
where ~h1ðfÞ and ~h2ðfÞ are the Fourier transform of the
waveforms h1ðtÞ and h2ðtÞ. fi and ff are carefully chosen
later for the analysis of the measurability. In the following,
we always employ the one-sided noise spectrum density for
the zero detuning high power configuration of Advanced
LIGO as SnðfÞ [56].
As was shown in Ref. [60], ∥h1 − h2∥ ¼ 1 corresponds

to a 1σ error in parameter estimation, and hence two
waveforms h1 and h2 are said to be marginally distinguish-
able if ∥h1 − h2∥ ¼ 1. Thus, we assess the measurability of
the tidal deformability by calculating ∥h1 − h2∥ for a
variety of waveform combinations.
In the calculation of ∥h1 − h2∥, it is ideal to choose

fi < 10 Hz and ff > 4 kHz. Computationally, choosing
ff > 4 kHz does notmatter, whereas choosing the low value
of fi is expensive because the data size for the waveforms
increases approximately as f−8=3i . Here, we should keep in
mind that the noise amplitude of ground-based gravitational-
wave detectors steeply increases with the decrease of the
frequency for f < 50 Hz toward 10 Hz. Hence, it is practi-
cally possible to obtain an approximate result for ∥h1 − h2∥,
even if we choose a value of fi that is larger than 10 Hz.
Thus, as a first step, we calibrated how high a value of fi
would be acceptable by analyzing ∥h1 − h2∥ by using a TF2
approximant for ~h1 and ~h2. Here, the amplitude and the phase
of the TF2 approximant are calculated by using a stationary
phase approximation and the results are written simply in a
polynomial form with respect to ðπm0fÞ2=3 [54] (see also
Appendix C). In the present analysis, the tidal effect is
incorporated up to the 1PN order as in the TT4 case.
It is found (seeAppendixC for the results) that for fi ¼ 30

and 50 Hz, the results for ∥h1 − h2∥ are not significantly
different from that for fi ¼ 10 Hz: the values of ∥h1 − h2∥
are systematically underestimated by ≈5% and 15% for
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fi ¼ 30 and 50 Hz, respectively; see Appendix C. For
fi ¼ 100 Hz, the values of ∥h1 − h2∥ are underestimated
by up to∼30%. [We note that for fi ¼ 10, 30, 50, and 100Hz
with ff ¼ 4 kHz, the SNR of Eq. (3.9) is≈17, 16, 13, and 9
for Deff ¼ 200 Mpc.] Thus, in this paper, we employ fi ¼
30 Hz for the analysis of the measurability of the tidal
deformability performed in Sec. IVA and fi ¼ 50 Hz for the
calibration of the several model waveforms (see Sec. IV B).
For ff, we choose 1, 2, and 4 kHz. As we have already

mentioned, the contribution to the SNR from f ≥ 2 kHz is
minor, and hence the results for ∥h1 − h2∥ with fi ¼ 2 and
4 kHz are approximately identical (see Sec. IVA and
Appendix C).

A. Analysis with the hybrid waveforms

Table II lists the values of ∥h1 − h2∥ for all of the
combination of the hybrid waveforms with the five equa-
tions of state for an event ofDeff ¼ 200 Mpc. Figure 4 also
plots ∥h1 − h2∥ as a function of δΛ ¼ jΛ1 − Λ2j for fi ¼
30 or 50 Hz and ff ¼ 4 kHz. Here, δΛ denotes the absolute
value in the difference of the dimensionless tidal deform-
ability of two different equations of state. Table II shows
that the values of ∥h1 − h2∥ depend very weakly on the
value of ff, as long as it is larger than 2 kHz. Furthermore,
for ff ¼ 2 and 4 kHz, the values of ∥h1 − h2∥ are only
slightly [by ð0.1–0.4Þ × ðDeff=200 MpcÞ−1] larger than

those for ff ¼ 1 kHz. It is also found that the difference
is large for the combination of two soft equations of state.
All of these results agree totally with the results in
Appendix C, and hence we may conclude that they hold
universally irrespective of the model waveforms. From
these results, we confirm that the measurability is deter-
mined primarily by the late inspiral waveform, and the
contribution of the merger and postmerger waveforms
is minor.
Table II also shows that, for a given combination of two

waveforms, the values for fi ¼ 50 Hz are by ∼10% smaller
than those for fi ¼ 30 Hz. This also agrees quantitatively
with the results in the analysis in terms of the Taylor-F2
approximant (see Appendix C), and hence we could
suppose that the values of ∥h1 − h2∥ for fi ¼ 30 Hz would
be smaller by only ∼5% than those for fi ¼ 10 Hz.
Nevertheless, they depend slightly on the value of fi.
This implies that the measurability of the tidal effect is
determined not only by the late inspiral waveform but also
by the relatively early one.
We also calculated ∥h1 − h2∥ using other hybrid wave-

forms derived with ðti; tfÞ ¼ ð10; 25 msÞ; see Eq. (3.1).
We confirmed that the results depend only weakly on the
choice of ti and tf. Specifically, the change in the values of
∥h1 − h2∥ shown in Table II is within 0.1, irrespective of
the waveforms.

TABLE II. ∥h1 − h2∥ for a combination of hybrid waveforms with different equations of state for an event of Deff ¼ 200 Mpc for
which the total SNR would be ≈17 for our choice of Sn (for fi ≲ 10 Hz and ff ≳ 4 kHz). The left and right tables show the results for
fi ¼ 30 and 50 Hz, respectively. For the top, second, and third tables, ff ¼ 1, 2, and 4 kHz, respectively. Note that the listed values are
proportional to 200 Mpc=Deff and, for fi ¼ 30 and 50 Hz, the values for a given combination of two waveforms would be smaller than
those for fi ¼ 10 Hz by ≈5% and 15%, respectively (see Appendix C).

0.03–1 kHz APR4 SFHo DD2 TMA TM1 0.05–1 kHz APR4 SFHo DD2 TMA TM1

APR4 � � � 0.4 2.2 2.9 3.4 APR4 � � � 0.3 2.0 2.7 3.1
SFHo 0.4 � � � 1.9 2.7 3.2 SFHo 0.3 � � � 1.7 2.5 3.0
DD2 2.2 1.9 � � � 1.3 2.4 DD2 2.0 1.7 � � � 1.2 2.3
TMA 3.2 2.7 1.3 � � � 1.6 TMA 2.7 2.5 1.2 � � � 1.5
TM1 3.4 3.2 2.4 1.6 � � � TM1 3.1 3.0 2.3 1.5 � � �

0.03–2 kHz APR4 SFHo DD2 TMA TM1 0.05–2 kHz APR4 SFHo DD2 TMA TM1

APR4 � � � 0.7 2.3 3.0 3.5 APR4 � � � 0.6 2.2 2.8 3.2
SFHo 0.7 � � � 2.1 2.8 3.3 SFHo 0.6 � � � 1.9 2.6 3.1
DD2 2.3 2.1 � � � 1.6 2.5 DD2 2.2 1.9 � � � 1.5 2.4
TMA 3.0 2.8 1.6 � � � 1.7 TMA 2.8 2.6 1.5 � � � 1.7
TM1 3.5 3.3 2.5 1.7 � � � TM1 3.2 3.1 2.4 1.7 � � �

0.03–4 kHz APR4 SFHo DD2 TMA TM1 0.05–4 kHz APR4 SFHo DD2 TMA TM1

APR4 � � � 0.8 2.4 3.0 3.5 APR4 � � � 0.8 2.2 2.8 3.3
SFHo 0.8 � � � 2.1 2.8 3.3 SFHo 0.8 � � � 2.0 2.6 3.1
DD2 2.4 2.1 � � � 1.7 2.6 DD2 2.2 2.0 � � � 1.6 2.4
TMA 3.0 2.8 1.7 � � � 1.9 TMA 2.8 2.6 1.6 � � � 1.8
TM1 3.5 3.3 2.6 1.9 � � � TM1 3.3 3.1 2.4 1.8 � � �
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Figure 4 shows that for δΛ≳ 100, 400, and 800, ∥h1−h2∥
is larger than 1, 2, and 3, respectively, for Deff ¼ 200 Mpc
(note that iffi ¼ 10 Hz, thevalues of∥h1 − h2∥wouldbeby
∼5% and 15% larger than those for fi ¼ 30 and 50 Hz,
respectively; see Appendix C). This implies that, for an event
of Deff ¼ 200 Mpc, two equations of state are marginally
distinguishable by the observation of inspiral and merger
waveforms by advanced gravitational-wave detectors
if δΛ≳ 100.
The neutron-star radius increases approximately mono-

tonically withΛ. For the five equations of state employed in
this paper, the radius of 1.35M⊙ neutron stars is written as

R1.35 ¼ ð13.565� 0.076Þ km
�

Λ
1000

�
0.16735�0.0094

; ð4:2Þ

where the standard errors shown for this fitting formula are
at 1σ level. By taking the variation, the relative difference in
the radius, δR1.35, is related to δΛ by

δR1.35 ¼ ð0.91� 0.05Þ km
�

R1.35

13 km

��
δΛ
400

��
Λ

1000

�
−1
:

ð4:3Þ
For stiff equations of state that yield a large neutron-star
radius of R1.35 ≳ 13.5 km, i.e., Λ≳ 1000, the δΛ’s for two
different equations of state can become larger than ∼400 if
the difference in R1.35 is larger than ≈0.9 km. Thus, if the
true equation of state is stiff, the equation of state will be
strongly constrained for an event of the advanced detectors
at Deff ≲ 200 Mpc, by which the measurability of δΛ is
≈400 at the 2σ level.
By contrast, among soft equations of state, the difference

in Λ is not as large as 400 (for the typical neutron-star mass
1.30M⊙–1.40M⊙). For example, δΛ for the APR4 and
SFHo equations of state is ∼100, although the difference in

radius is ≈0.8 km for neutron stars of mass 1.35M⊙ in
these equations of state. This implies that it will not be easy
to accurately identify the true equation of state among
many candidate soft equations of state for a typical
Advanced LIGO event at Deff ¼ 200 Mpc. The reason
for this is quite simple: the phase difference between two
waveforms for two different soft equations of state is
appreciable only for a high-frequency range of ≳1 kHz,
for which the sensitivity of the operating and planned
gravitational-wave detectors is not very high (see Fig. 3).
This situation cannot be significantly improved even if we
take into account the merger and postmerger waveforms,
because gravitational waves in these phases have a high
frequency, and they do not contribute a lot to enhancing the
signal-to-noise ratio, as shown in Table II. However, even
if the true equation of state is soft, it will still be possible
to discriminate it from stiff equations of state that yield
Λ≳ 1000. Thus, the detection of gravitational waves
emitted at Deff ≲ 200 Mpc for the advanced detectors will
give us an impact even if the true equation of state is soft.
We also should mention that if, fortunately, we have a
nearby event at Deff ≪ 200 Mpc, the outlook will become
much more optimistic.
Next, we evaluate ∥h1 − h2∥ by employing hybrid

waveforms for binary neutron stars and spinless binary
black holes of mass 1.35M⊙–1.35M⊙, assuming
Deff ¼ 200 Mpc. For this analysis, a hybrid waveform
for the binary black hole is constructed by combining a
numerical waveform and an EOB one, as we already did for
binary neutron stars. Here, the numerical waveform is again
taken from the SXS Gravitational Waveform Database [57]
and we employ SXS:BBH:001. Table III lists the results
of ∥h1 − h2∥ and, in Fig. 4, we plot the data setting Λ ¼ 0
for the black-hole case (see the crosses). These show that
∥h1 − h2∥≳ 2 for Deff ¼ 200 Mpc, irrespective of which
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FIG. 4. ∥h1 − h2∥ for the hybrid waveforms as a function of δΛ ¼ jΛ1 − Λ2j, with Deff ¼ 200 Mpc (the open circles). The left and
right panels show results for ðfi; ffÞ ¼ ð30 Hz; 4 kHzÞ and (50 Hz, 4 kHz), respectively. The values of ∥h1 − h2∥ are proportional to
200 Mpc=Deff . The dashed curve in each plot is a fitting formula in the form ∥h1 − h2∥ ¼ AðδΛ=1000Þb, where ðA; bÞ ¼ ð3.31; 0.522Þ
and (3.09,0.511) for the left and right panels, respectively. The labels like APR4-SFHo show the combination of two equations of state
for each value of δΛ. The crosses denote the results of ∥h1 − h2∥ for the combination of binary neutron stars and binary black holes of
mass 1.35M⊙ − 1.35M⊙.
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neutron-star equations of state we employ. This indicates
that gravitational waves from binary neutron stars for
Deff ≲ 200 Mpc will be distinguished from those from
binary black holes of the same mass with a certain
confidence level.
Figure 4 also shows that the relation between ∥h1 − h2∥

and δΛ, satisfied for binary neutron stars, is approximately
satisfied even for the waveform combination of binary
neutron stars and binary black holes. This also indicates
that gravitational waves from binary neutron stars for
Deff ≲ 200 Mpc will be distinguished from those from
binary black holes at the 2σ level if the value of Λ for the
neutron stars is larger than ∼400.
Before closing this subsection, we note the following

point. By comparing our results with those in Ref. [16], it is
found that our results for the measurability of δΛ and R1.35
agree approximately with theirs. However, this is acciden-
tal. In Ref. [16], the measurability was explored by
choosing fi in Eq. (4.1) to be 200 Hz, while we choose
it to be 30 Hz. As we found in Table II (see also
Appendix C), the values of ∥h1 − h2∥ systematically
decrease with the increase of fi for a given value of ff.
We checked that for fi ¼ 200 Hz, the values of ∥h1 − h2∥
could be half of those for fi ¼ 30 Hz. This implies that our
results, based on new hybrid waveforms, actually show
weaker measurability than those in Ref. [16]. The precise
reason is not very clear. However, it is reasonable to
speculate that, in the previous work, the numerical dissipa-
tion and the absence of any appropriate extrapolation
procedure result in a spuriously shorter merger time, even
for the highest-resolution runs, as shown in Refs. [27,47], so
that the tidal effects could be spuriously overestimated.
In addition, as noted in Ref. [16], the systematic error in
their hybrid waveforms might be non-negligible because
of a small number of the wave cycles and large initial
residual eccentricity. These errors would also systematically
enhance the measurability of the tidal deformability of
Ref. [16].

B. Validity of analytic/semianalytic waveforms

We then evaluate ∥h1 − h2∥ by choosing the hybrid
waveforms to be h1, while the EOB, hybrid-TT4, and TF2
waveforms are h2. Here, as the EOB waveforms, we only
take into account the inspiral part. Note that in the EOB

formalism we employ in this paper, the amplitude
approaches zero if the orbital separation approaches
zero. The “hybrid-TT4” waveforms are constructed by
combining the numerical and TT4 waveforms, and the
Fourier transformation is then performed straightforwardly.
The TF2 approximant that we employ in this paper is
described in Appendix C.
The purpose of this analysis is to assess how appropriate

the EOB/hybrid-TT4/TF2 waveforms are as inspiralmodel
gravitational waveforms. We note that for the EOB and
TF2 waveforms employed, the spectrum with f ≳ 1 kHz
is not very realistic because of the absence of the merger
and postmerger waveforms, and hence it is not appropriate
to take the higher-frequency part into consideration for
the comparison with the hybrid waveforms. Also, as we
have already shown in Sec. IVA, the values of ∥h1 − h2∥
for ðfi; ffÞ ¼ ð50 Hz; 1 kHzÞ are only smaller by ∼0.2
than those for ðfi; ffÞ ¼ ð30 Hz; 1 kHzÞ for an event of
Advanced LIGO at Deff ¼ 200 Mpc. Thus, in this section,
all the analyses will be performed choosing ðfi; ffÞ ¼
ð50 Hz; 1 kHzÞ for simplicity.
Three panels of Table IV list the values of ∥h1 − h2∥ for

fi ¼ 50 Hz and ff ¼ 1 kHz for the combination of the
hybrid and other waveforms assuming Deff ¼ 200 Mpc.
From the comparison between Tables II and IV, it is found
that for the APR4, SFHo, DD2, and TMA equations of
state, the EOB waveforms can reproduce approximately the
same results of ∥h1 − h2∥ (within the error of �0.2) as for
the hybrid (hybrid-EOB) waveforms. This fact makes us
confirm again that the EOB formalism would have already
become robust for generating accurate inspiral waveform

TABLE III. The same as Table II but in between the hybrid
waveforms for binary neutron stars and binary black holes.

APR4 SFHo DD2 TMA TM1

0.03–1 kHz 1.4 1.8 2.9 3.4 3.8
0.03–2 kHz 1.9 2.1 3.1 3.6 3.9
0.03–4 kHz 1.9 2.1 3.1 3.6 3.9
0.05–1 kHz 1.3 1.6 2.7 3.2 3.5
0.05–2 kHz 1.8 1.9 2.8 3.3 3.6
0.05–4 kHz 1.8 2.0 2.9 3.3 3.7

TABLE IV. The same as Table II but between the hybrid and
EOB waveforms (1st-5th rows), between the hybrid and hybrid-
TT4 waveforms (6th-10th rows), and between the hybrid and TF2
waveforms (11th-15th row). fi ¼ 50 Hz and ff ¼ 1 kHz are
chosen.

0.05–1 kHz APR4 SFHo DD2 TMA TM1

EOB:APR4 0.2 0.3 1.9 2.6 3.1
EOB:SFHo 0.5 0.2 1.6 2.4 2.9
EOB:DD2 2.0 1.7 0.2 1.3 2.2
EOB:TMA 2.8 2.6 1.2 0.3 1.5
EOB:TM1 3.1 3.0 2.0 0.9 0.9

hybrid-TT4:APR4 0.2 0.5 2.1 2.7 3.2
hybrid-TT4:SFHo 0.2 0.2 1.9 2.6 3.0
hybrid-TT4:DD2 1.7 1.4 0.4 1.5 2.5
hybrid-TT4:TMA 2.3 2.1 0.7 0.6 1.9
hybrid-TT4:TM1 2.8 2.6 1.8 1.0 0.7

TF2:APR4 0.3 0.4 2.1 2.7 3.2
TF2:SFHo 0.4 0.3 1.8 2.5 3.1
TF2:DD2 1.9 1.6 0.4 1.5 2.4
TF2:TMA 2.7 2.5 1.0 0.5 1.7
TF2:TM1 3.0 2.9 1.8 0.6 1.1
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templates if the neutron-star equation of state is not very
stiff; i.e., Λ is smaller than ∼1000. By contrast, the EOB
waveforms may not be yet accurate enough for neutron
stars with very stiff equations of state. For TM1, this fact is
particularly noticeable: it is clearly found from the result of
∥h1 − h2∥ for the combination of the TM1 EOB and TM1
hybrid waveforms, which differs significantly from zero.
This suggests again that, for very stiff equations of state,
there is still room for improving the EOB formalism [52].
We also find from Table IV that the values of ∥h1 − h2∥

for the choice of the hybrid-TT4 or TF2 waveforms are
appreciably different from those in Table II (except for
the APR4 and SFHo equations of state; hybrid-EOB and
hybrid-TT4 waveforms agree with each other in a good
manner for these equations of state). This fact is also found
from, e.g., (i) the diagonal components in Table IV (i.e.,
for the case that h1 and h2 for the same equation of state
are employed) differ significantly from zero, particularly
for stiff equations of state; (ii) asymmetry between the
off-diagonal components, which should be absent for the
templates, is appreciable; and (iii) the hybrid-TT4 wave-
form for the TM1 equation of state matches better with the
hybrid (hybrid-EOB) waveform for the TMA than for the
TM1. If the hybrid waveforms would be more realistic

ones, these results imply that the hybrid-TT4 and TF2
waveforms would not function as measurement templates
as well as the EOB ones. This also indicates that the
templates by the TF2 and TT4 approximants would give a
systematic bias in the estimation of tidal deformability. This
agrees qualitatively with the finding in Ref. [20].
One of the reasons for the disagreement between the two

hybrid waveforms (hybrid-EOB and hybrid-TT4) is that the
effect of the tidal deformation would be underestimated in
the current TT4 approximant, due to the lack of higher-
order PN terms (see Sec. III and Appendix B). Another
reason is that the matching frequency in our present study
(f ∼ 400 Hz) would still be high. For such a frequency,
the EOB and TT4 waveforms do not agree well with each
other for high values of Λ and the phase difference is not
negligible; for stiff equations of state, the accumulated
phase difference is ∼0.3ðΛ=1000Þ rad for 50 Hz ≤ f ≤
400 Hz (see Appendix B). The phase difference that results
from the incompleteness of the tidal effects would be
proportional approximately to Λfαf, where α ≥ 8=3 [see
Appendix B and Eqs. (C3) and (C4)] and ff is the upper
end of the matching frequency. Thus, if the hybridization is
performed with a lower value of the matching frequency,
the disagreement between the two hybrid waveforms would
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FIG. 5. Comparison of the spectrum shapes of hybrid, Taylor-F2 (TF2), and EOB waveforms for SFHo (upper left panel), DD2
(upper right panel), TMA (lower left panel), and TM1 (lower right panel) equations of state.
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be smaller. Our numerical results (compare Figs. 1 and 2)
support that the EOB waveforms would be more accurate
to perform matching at f ∼ 400 Hz than the TT4 ones.
However, to confirm these speculations, we will have to
perform a longer-term simulation and will have to match
the waveform at a lower frequency.
One reason that the current version of the TF2 approx-

imant does not reproduce the hybrid waveforms is found
from the analysis of the spectrum shape. Figure 5 plots the
Fourier spectra of the three different models (hybrid, pure
EOB, and TF2) for the SFHo, DD2, TMA, and TM1
equations of state. In the spectrum of the EOB waveform, a
modulation is found. This is due to the fact that the time-
domain waveform is artificially terminated at the end of the
inspiral phase, and hence the spectrum is subject to the
Gibbs phenomenon. Besides this modulation, the spectrum
shapes of the hybrid and EOB waveforms are in fair agree-
ment for f ≲ 1 kHz. This should be the case because the
agreement between the two waveforms has already been
found, particularly for the equations of state with Λ < 1000
(see Fig. 1). By contrast, the spectrum amplitude of the TF2
approximant does not agree well with those of the hybrid
waveforms for the late inspiral phase (f ≳ 500 Hz), in
which the tidal effects as well as general relativistic gravity
play an important role. The steep decline of the spectrum
observed in the hybrid waveforms for f ≳ 500 Hz cannot be
well captured by the current version of the TF2 approximant,
particularly for the stiff equations of state like TMA and
TM1. This indicates that the tidal effects would not be
sufficiently taken into account in this TF2 spectrum ampli-
tude. (We note that this insufficiency is partly due to the use
of the stationary phase approximation.)
The phases of the Fourier transform in the hybrid and

TF2 waveforms also do not agree well with each other.
Figure 6 plots the absolute difference (the upper panel) and
phase difference (the lower panel) between the hybrid and

TF2 waveforms for given equations of state. Here, the
absolute difference of the waveforms for a given value of f
is defined by

j ~h1ðfÞ − ~h2ðfÞj
2j ~h1ðfÞj

; ð4:4Þ

where ~h1 and ~h2 denote the Fourier transform of the hybrid
and TF2 waveforms. For plotting Fig. 6, we choose Δt and
Δϕ, which minimize ∥h1 − h2∥ of Eq. (4.1) for fi ¼ 50 Hz
and ff ¼ 1 kHz. This figure shows that the absolute
difference in the waveform is determined primarily by the
phase difference and that the phase difference is generally
larger for larger values of Λ. This suggests that the absence
of higher-order PN terms in the tidal-deformation effect
would be one of the primary sources for the disagreement in
the phase.
We also note that the phase difference is present rather

uniformly for 50–1000 Hz, even for soft equations of state
like SFHo for which the tidal-deformation effect should be
minor. This suggests that the absence of not only the tidal
effect but also other nontidal higher-order PN terms like
4PN and higher-order terms would cause inaccuracy in the
TF2 approximants. A recent study for the extension of the
TF2 approximant in the context of binary black holes [61]
indeed suggests that the coefficients of the absent higher-
order PN terms in phase (ψTF2: see Appendix C) should be
large [the order of αk with k ≥ 9 in Eq. (C3) would of 104 or
more, i.e., comparable to the tidal-effect terms], perhaps
due to the use of the stationary phase approximation, and
this should affect the wave phase in the late inspiral stage.
Therefore, for improving the performance of the TF2
approximant, we will have to incorporate both the tidal
and nontidal higher-order PN terms, which are absent in the
current version. We plan to explore this issue in future work.

V. SUMMARY

Combining new gravitational waveforms derived by long-
term (14–16 orbits) numerical-relativity simulations with the
waveforms by an EOB formalism for coalescing binary
neutron stars, we constructed hybrid waveforms and esti-
mated the measurability for the dimensionless tidal deform-
ability of the neutron stars, Λ, by ground-based advanced
gravitational-wave detectors, using the hybrid waveforms as
the model waveforms. We found that, for an event at a
hypothetical effective distance of Deff ¼ 200 Mpc, the
distinguishable difference in the dimensionless tidal deform-
ability for 1.35M⊙ neutron stars will be ≈100, 400, and 800
at 1σ, 2σ, and 3σ levels, respectively, for Advanced LIGO. If
the true equation of state is stiff and the corresponding
neutron-star radius isR≳ 13 km, this suggests thatRwill be
constrained within ≈1 km at the 2σ level for an event of
Deff ¼ 200 Mpc. On the other hand, if the true equation of
state is soft and R≲ 12 km, it will be difficult to accurately
identify the equations of state among many soft candidates,
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although it is still possible to discriminate it from stiff
equations of state with R≳ 13 km. These results indicate
that measuring the tidal deformability is a promisingmethod
for constraining the neutron-star equation of state in the near
future.
The analysis in this paper was carried out for given

values of mass and mass ratio of the binaries. In reality,
these parameters have to be also determined in the data
analysis. The uncertainty in these parameters will enhance
the uncertainty in the estimation for the dimensionless
tidal deformability, as shown in Ref. [20]. Therefore, the
estimation for the measurability of the dimensionless tidal
deformability in this paper would be optimistic. We are
now deriving more numerical waveforms by changing the
mass and mass ratio. A more realistic analysis of the
measurability will be carried out in our next work.
We also examined the validity of the waveforms by the

EOB, TT4 (hybrid-TT4), and TF2 formalisms. Our analysis
shows that these waveforms deviate from our hybrid wave-
forms. Comparison between the hybridwaveforms and those
by these approximants suggests that the EOB waveform
would be better than others. However, there is still room for
improvement in the current EOB formalism, particularly for
neutron starswith stiff equations of state inwhichΛ > 1000.
For the current version of theTT4 andTF2 approximants, the
absence of higher-order PN terms is the likely source for the
inaccuracy. For the TT4, the absence of higher-order PN
terms in the tidal effects is themain source for the inaccuracy.
For the TF2, the absence of both higher-PN terms in the tidal

and nontidal effects is likely to be the source of the
inaccuracy. Improving these approximants is one of the
interesting issues to be addressed in the future.
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APPENDIX A: GRAVITATIONAL-WAVE
FREQUENCY EVOLUTION

For providing supplementary information of the gravi-
tational waveforms plotted in Fig. 1, we show gravitational-
wave frequency as a function of the retarded time for
numerical (solid curves) and EOB (dot-dot curves) wave-
forms in Fig. 7. As we have already described in Ref. [27],
the two frequency curves agree with each other, except for
tret ≲ 5 ms and for the stage just prior to the merger (around
tret ∼ 60 ms). The early-time spike around tret ≈ 2 ms and
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FIG. 7. Gravitational-wave frequency as a function of the retarded time for the SFHo (upper left panel), DD2 (upper right panel), TMA
(lower left panel), and TM1 (lower right panel) equations of state. The solid and dot-dot curves denote the results for numerical and EOB
waveforms, respectively. The vertical dashed lines show tret ¼ 5 and 20 ms. The spike at tret ≈ 2 ms is due to the unphysical modulation
of the gravitational waveforms (see the text).
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the associated modulation are caused by the fact that the
initial condition, which describes inspiral binary neutron
stars only approximately because a conformal flatness
formulation is employed (e.g., Ref. [62]), is contaminated
by an unphysical component of gravitational waves. Thus,
only the numerical waveforms with tret ≳ 5 ms are reliable.
The late-time disagreement is larger for the stiff equation of
state which has high values of Λ≳ 1000, as expected from
Fig. 1. This also indicates that there is still room for
incorporating additional tidal effects into the EOB formal-
ism to improve it. On the other hand, for softer equations of
state with Λ < 1000, like the SFHo equation of state, the
disagreement is minor. This indicates that the EOB wave-
forms well capture the tidal-deformation effects, as long
as Λ ≪ 1000.

APPENDIX B: COMPARISON OF THE EOB
AND TT4 WAVE PHASES

We compare the wave phases derived by the EOB and
TT4 equations of motion. Figure 8 plots the absolute value
of the difference in the wave phases (the wave phase of the
TT4 approximant, ΦTT4, minus that of the EOB formalism,
ΦEOB) as a function of the gravitational-wave frequency, f,
for the APR, SFHo, DD2, TMA, and TM1 equations of
state. For taking the difference, we align the two phases at
f ¼ 50 Hz. For f ≳ 400 Hz, ΦTT4 is always larger than
ΦEOB, and the difference steeply increases with f. This is
due to the fact that the orbital (gravitational-wave fre-
quency) evolution in the TT4 approximant is slower than
that in the EOB formalism in such a frequency band. On the
other hand, for f ≲ 200 Hz, ΦEOB is larger by ≲0.1 rad
than ΦTT4. This would stem from the difference in more
than 4PN nontidal terms between the EOB and TT4

equations of motion. To clarify this fact, we also plot
the curve for Λ ¼ 0 (see the curve labeled “BBH”).
To identify the source of the phase difference in the high-

frequency region f ≳ 400 Hz, we also plot a dot-dot line of
10ðf=1 kHzÞ3 ∝ x9=2 in Fig. 8. The slope of this curve
approximately captures the behavior of ΦTT4 − ΦEOB for
f ≲ 1 kHz. Note that the phase in the TT4 approximant is
calculated by

ΦTT4 ¼ 2

Z
x3=2

dx
ðdx=dtÞ

¼ 5

8

Z
x−7=2

dx
FðxÞ ; ðB1Þ

where the right-hand side of Eq. (3.5) should be substituted
for dx=dt and FðxÞ denotes the terms in ½� � �� of Eq. (3.5):
1 − 487x=168…. Equation (B1) indicates that the error
of ΦTT4, which is associated with the insufficiency for
incorporating higher-order PN tidal effects, should be of
order x4 for the 1.5PN tidal effect and x9=2 for the 2PN tidal
effect. The slope of Fig. 8 indicates that the lack of
such higher-PN tidal effects would be the dominant source
of the disagreement.
Figure 8 shows that the phase difference at f ≈ 400 Hz is

appreciable; it is ∼0.2, 0.3, and 0.4 rad for the DD2, TMA,
and TM1 equations of state, respectively. This difference
results in disagreement between the hybrid-EOB and
hybrid-TT4 waveforms, as illustrated in Sec. III. If the
hybridization could be done for a lower-frequency band,
the phase difference would be smaller than ∼0.1 rad and
the two hybrid waveforms would agree with each other in a
better manner. However, Fig. 8 suggests that the lack of the
more than 4PN nontidal terms in the TT4 approximant
would also cause the phase disagreement of Oð0.1Þ rad
even for f ≲ 300 Hz [if the coefficients of the 4PN terms
were of Oð100Þ, this would be the case]. This lack of terms
could give non-negligible damage for making a measure-
ment template. Higher-order nontidal terms will also be
required for improving the TT4 approximant.

APPENDIX C: MEASURABILITY IN THE
TAYLOR-F2 APPROXIMANT

By calculating ∥h1 − h2∥ in Eq. (4.1), we also analyzed
the measurability of the dimensionless tidal deformability
using a TF2 approximant of the inspiraling compact
binaries of mass 1.35M⊙ − 1.35M⊙. Again, we employ
the one-sided noise spectrum density for the zero detuning
high power configuration of Advanced LIGO as SnðfÞ [56].
Here, for the TF2 approximant, we employ the spinless
3.5PN phasing [54] incorporating the contribution of the
tidal deformability up to 1PN order with respect to the
leading-order tidal term [14,20]. For the Fourier amplitude,
we employ the 3PN formulation for the point-particle
approximation, described in Ref. [61], incorporating a tidal
correction up to the 1PN order [14,32]. Specifically, the
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spectrum is derived from a stationary phase approximation
and is assumed to be written in a polynomial form:

~hTF2ðfÞ ¼
m2

0

Deff

ffiffiffiffiffiffi
5π

96

r
ðπm0fÞ−7=6eiψTF2TðfÞATF2TðfÞ; ðC1Þ

where

ATF2TðfÞ ¼
X12
k¼0

Akðπm0fÞk=3; ðC2Þ

ψTF2TðfÞ ¼ 2πft0 − ϕ0 −
π

4

þ 3

32
ðπm0fÞ−5=3

X12
k¼0

αkðπm0fÞk=3; ðC3Þ

and the nonzero components of Ak and αk in our analysis
are

A0 ¼ 1; A2 ¼ −
37

48
; A4 ¼ −

9237931

2032128
;

A6 ¼
41294289857

7510745088
−
205π2

192

A10 ¼ −
27

16
Λ; A12 ¼ −

449

64
Λ; ðC4Þ

α0 ¼ 1; α2 ¼
2435

378
; α3 ¼ −16π;

α4 ¼
11747195

254016
; α5 ¼

9320

189
π½1þ lnðπm0fÞ�;

α6 ¼
1382467552339

1173553920
−
6848

21
γE −

7985π2

48

−
6848γE
63

lnð64πm0fÞ

α7 ¼
1428740

3969
π;

α10 ¼ −
39

2
Λ; α12 ¼ −

3115

64
Λ: ðC5Þ

Here, t0 is the coalescence time, ϕ0 is the coalescence
phase, γE is Euler’s constant, and m0 is the total mass. We
restrict our attention only to the formulation in the equal-
mass case.
The analysis for the measurability of the tidal deform-

ability was performed by varying fi and ff. Six results
with different values of fi and ff are listed in Table V. Here,
we should pay attention only to the results with ff smaller
than ∼2 kHz because, by the TF2 approximant, the merger
and postmerger waveforms are not taken into account.
Comparing the results of ðfi; ffÞ ¼ ð10; 2000 HzÞ,
ð30; 2000 HzÞ, ð50; 2000 HzÞ, and ð100; 2000 HzÞ, we
find that employing fi ¼ 30, 50, and 100 Hz, the values of
∥h1 − h2∥ are systematically underestimated by ∼5%, 15%,
and 30%, respectively.
Comparing the results of ðfi; ffÞ ¼ ð10; 500 HzÞ,

(10,1000 Hz), and (10,2000 Hz), it is found that the values

TABLE V. ∥h1 − h2∥ in a TF2 approximant for a 1.35M⊙–
1.35M⊙ binary at a hypothetical effective distance of Deff ¼
200 Mpc, with several values of fi and ff, which are shown in
the upper left corner of each table. “Λ ¼ 0” implies that the
dimensionless tidal deformability Λ employed is 0. * denotes the
relation of symmetry.

10–500 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 0.6 0.8 1.6 2.3 2.7
APR4 * � � � 0.2 1.0 1.7 2.1
SFHo * * � � � 0.8 1.5 1.9
DD2 * * * � � � 0.7 1.1
TMA * * * * � � � 0.5
TM1 * * * * * � � �

10–1000 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 1.5 1.9 3.2 3.7 4.1
APR4 * � � � 0.5 2.3 3.2 3.6
SFHo * * � � � 1.9 3.0 3.4
DD2 * * * � � � 1.5 2.4
TMA * * * * � � � 1.1
TM1 * * * * * � � �

10–2000 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 1.9 2.2 3.3 3.8 4.2
APR4 * � � � 0.7 2.5 3.3 3.7
SFHo * * � � � 2.2 3.0 3.5
DD2 * * * � � � 1.8 2.5
TMA * * * * � � � 1.3
TM1 * * * * * � � �

30–2000 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 1.8 2.1 3.1 3.7 4.0
APR4 * � � � 0.7 2.4 3.1 3.5
SFHo * * � � � 2.1 2.9 3.3
DD2 * * * � � � 1.7 2.4
TMA * * * * � � � 1.3
TM1 * * * * * � � �

50–2000 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 1.7 2.0 2.9 3.4 3.7
APR4 * � � � 0.6 2.2 2.9 3.2
SFHo * * � � � 1.9 2.7 3.1
DD2 * * * � � � 1.6 2.2
TMA * * * * � � � 1.2
TM1 * * * * * � � �

100–2000 Hz Λ ¼ 0 APR4 SFHo DD2 TMA TM1

Λ ¼ 0 � � � 1.4 1.6 2.4 2.7 3.0
APR4 * � � � 0.5 1.8 2.3 2.6
SFHo * * � � � 1.6 2.2 2.5
DD2 * * * � � � 1.3 1.8
TMA * * * * � � � 0.9
TM1 * * * * * � � �
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of ∥h1 − h2∥ are underestimated by a factor of 2 for
ff ¼ 500 Hz. This is reasonable because the tidal-
deformation effect in the phasing is accumulated most
significantly in the final-inspiral orbits. The values of
∥h1 − h2∥ for (10,1000 Hz) are only smaller by ≤ 0.2
than those for (10,2000 Hz) for the case that
∥h1 − h2∥ ≥ 2.5. On the other hand, for ∥h1 − h2∥ ≲ 2,
the difference between the two cases can be 0.3–0.4. For
such a case, it would be necessary to choose ff > 1 kHz.
To further describe the dependence of ∥h1 − h2∥ on the

choice of fi and ff, we generate Fig. 9. In the left three
panels of Fig. 9, we plot ∥h1 − h2∥ at Deff ¼ 200 Mpc as a
function of fi for ff ¼ 500–1000 Hz, with ðΛ1;Λ2Þ ¼
ð200; 0Þ (the top panel), (400,0) (the middle panel), and
(1000,0) (the bottom panel) (referred to as δΛ ¼ 200, 400,

and 1000), respectively. In the three right panels of
Fig. 9, we plot ∥h1 − h2∥ at Deff ¼ 200 Mpc as a function
of ff for fi ¼ 10–100 Hz, with δΛ ¼ 200 (top panels),
400 (middle panels), and 1000 (bottom panels),
respectively. As the left panels of this figure indicate,
the values of ∥h1 − h2∥ for fi ¼ 30 and 50 Hz are smaller
by ≈5% and 15%, respectively, than those for fi ¼ 10 Hz,
irrespective of δΛ, for which we choose a realistic range.
This suggests that, for ∥h1 − h2∥ ≲ 4, the values of
∥h1 − h2∥ are underestimated only for a small fraction
within 0.2 and 0.6, respectively, if we choose fi ¼ 30 and
50 Hz. Such a fraction (particularly for fi ¼ 30 Hz)
does not change our conclusion in this paper. As the right
panels indicate, this property is independent of the choice
of ff.
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The three right panels of Fig. 9 show that, for a large
value of δΛ≳ 400, ∥h1 − h2∥ depends only weakly on the
choice of ff as long as it is larger than ≈1.5 kHz. For
δΛ ¼ 200, ∥h1 − h2∥ appears to increase with ff, even at
ff ¼ 1.5 kHz. The reason for this is that, for a small value

of δΛ, the value of ∥h1 − h2∥ is accumulated relatively in a
higher frequency range. Thus, for such a case, it is
necessary to take a high value of ff ∼ 2 kHz: approxi-
mately the highest frequency of gravitational waves prior to
the merger.

[1] J. Abadie et al. (LIGO Scientific Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A 624, 223 (2010); T.
Accadia et al. (Virgo Collaboration), Classical Quantum
Gravity 28, 025005 (2011); 28, 079501(E) (2011); K.
Kuroda (LCGT Collaboration), Classical Quantum Gravity
27, 084004 (2010).

[2] Advanced LIGO, http://www.advancedligo.mit.edu/.
[3] AdvancedVIRGO, http://www.cascina.virgo.infn.it/advirgo/.
[4] KAGRA, http://gwcenter.icrr.u‑tokyo.ac.jp/en/.
[5] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[6] V. Kalogera, K. Belczynski, C. Kim, R Oshaughnessy, and

B Willems, Phys. Rep. 442, 75 (2007).
[7] J. Abadie et al. (LIGO Scientific and Virgo Collaborations),

Classical Quantum Gravity 27, 173001 (2010).
[8] C. Kim, B. B. P. Perera, and M. A. McLaughlin, Mon. Not.

R. Astron. Soc. 448, 928 (2015).
[9] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012).

[10] D. Lai, F. A. Rasio, and S. L. Shapiro, Astrophys. J. 420,
811 (1994).

[11] T. Mora and C. M. Will, Phys. Rev. D 69, 104021
(2004).

[12] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502(R)
(2008).

[13] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D 81, 123016 (2010).

[14] J. Vines, E. E. Flanagan, and T. Hinderer, Phys. Rev. D 83,
084051 (2011).

[15] D. Bini, T. Damour, and G. Faye, Phys. Rev. D 85, 124034
(2012).

[16] J. S. Read, L. Baiotti, J. D. E. Creighton, J. L. Friedman, B.
Giacomazzo, K. Kyutoku, C. Markakis, L. Rezzolla, M.
Shibata, and K. Taniguchi, Phys. Rev. D 88, 044042 (2013).

[17] W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck,
and S. Vitale, Phys. Rev. Lett. 111, 071101 (2013).

[18] M. Favata, Phys. Rev. Lett. 112, 101101 (2014).
[19] K. Yagi and N. Yunes, Phys. Rev. D 89, 021303 (2014).
[20] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F.

Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D 89,
103012 (2014).

[21] M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li,
M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck,
Phys. Rev. D 92, 023012 (2015).

[22] M. Thierfelder, S. Bernuzzi, and B. Brügmann, Phys. Rev. D
84, 044012 (2011).

[23] S. Bernuzzi, M. Thierfelder, and B. Brügmann, Phys. Rev. D
85, 104030 (2012).

[24] S. Bernuzzi, A. Nagar, M. Thierfelder, and B. Brügmann,
Phys. Rev. D 86, 044030 (2012).

[25] K. Hotokezaka, K. Kyutoku, and M. Shibata, Phys. Rev. D
87, 044001 (2013).

[26] D. Radice, L. Rezzolla, and F. Galeazzi, Mon. Not. R.
Astron. Soc. 437, L46 (2014).

[27] K. Hotokezaka, K. Kyutoku, H. Okawa, and M. Shibata,
Phys. Rev. D 91, 064060 (2015).

[28] S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour, Phys.
Rev. Lett. 114, 161103 (2015).

[29] S. Bernuzzi, T. Dietrich, and A. Nagar, Phys. Rev. Lett. 115,
091101 (2015).

[30] K. Barkett, M. A. Scheel, R. Haas, C. D. Ott, S. Bernuzzi,
D. A. Brown, B. Szilágyi, J. D. Kaplan, J. Lippuner, C. D.
Muhlberger, F. Foucart, and M. D. Duez, Phys. Rev. D 93,
044064 (2016).

[31] T. Damour and A. Nagar, Phys. Rev. D 81, 084016
(2010).

[32] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 85,
123007 (2012).

[33] T. Damour, A. Nagar, and S. Bernuzzi, Phys. Rev. D 87,
084035 (2013); the code is available at https://eob‑new.ihes
.fr.

[34] D. Bini and T. Damour, Phys. Rev. D 87, 121501(R) (2013).
[35] D. Bini and T. Damour, Phys. Rev. D 90, 124037 (2014).
[36] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D 90,

064006 (2014).
[37] T. Yamamoto, M. Shibata, and K. Taniguchi, Phys. Rev. D

78, 064054 (2008).
[38] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995);

T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998); M. Campanelli, C. O. Lousto, P. Marronetti,
and Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006);
J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van
Meter, Phys. Rev. Lett. 96, 111102 (2006).

[39] D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy,
and B. Brügmann, Phys. Rev. D 88, 084057 (2013).

[40] LORENE Web page: http://www.lorene.obspm.fr/.
[41] A. Steiner, M. Hempel, and T. Fischer, Astrophys. J. 774, 17

(2013).
[42] S. Banik, M. Hempel, and D. Bandyophadyay, Astrophys. J.

Suppl. Ser. 214, 22 (2014).
[43] M. Hempel, T. Fischer, J. Schaffner-Bielich, and M.

Liebendörfer, Astrophys. J. 748, 70 (2012).
[44] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl.

Phys. A637, 435 (1998).
[45] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.

Roberts, and J. W. T. Hessels, Nature (London) 467, 1081
(2010); J. Antoniadis et al., Science 340, 1233232
(2013).

MEASURABILITY OF THE TIDAL DEFORMABILITY BY … PHYSICAL REVIEW D 93, 064082 (2016)

064082-17

http://dx.doi.org/10.1016/j.nima.2010.07.089
http://dx.doi.org/10.1016/j.nima.2010.07.089
http://dx.doi.org/10.1088/0264-9381/28/2/025005
http://dx.doi.org/10.1088/0264-9381/28/2/025005
http://dx.doi.org/10.1088/0264-9381/28/7/079501
http://dx.doi.org/10.1088/0264-9381/27/8/084004
http://dx.doi.org/10.1088/0264-9381/27/8/084004
http://www.advancedligo.mit.edu/
http://www.advancedligo.mit.edu/
http://www.advancedligo.mit.edu/
http://www.advancedligo.mit.edu/
http://www.cascina.virgo.infn.it/advirgo/
http://www.cascina.virgo.infn.it/advirgo/
http://www.cascina.virgo.infn.it/advirgo/
http://www.cascina.virgo.infn.it/advirgo/
http://www.cascina.virgo.infn.it/advirgo/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1016/j.physrep.2007.02.008
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1093/mnras/stu2729
http://dx.doi.org/10.1093/mnras/stu2729
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1086/173606
http://dx.doi.org/10.1086/173606
http://dx.doi.org/10.1103/PhysRevD.69.104021
http://dx.doi.org/10.1103/PhysRevD.69.104021
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1103/PhysRevD.85.124034
http://dx.doi.org/10.1103/PhysRevD.85.124034
http://dx.doi.org/10.1103/PhysRevD.88.044042
http://dx.doi.org/10.1103/PhysRevLett.111.071101
http://dx.doi.org/10.1103/PhysRevLett.112.101101
http://dx.doi.org/10.1103/PhysRevD.89.021303
http://dx.doi.org/10.1103/PhysRevD.89.103012
http://dx.doi.org/10.1103/PhysRevD.89.103012
http://dx.doi.org/10.1103/PhysRevD.92.023012
http://dx.doi.org/10.1103/PhysRevD.84.044012
http://dx.doi.org/10.1103/PhysRevD.84.044012
http://dx.doi.org/10.1103/PhysRevD.85.104030
http://dx.doi.org/10.1103/PhysRevD.85.104030
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1103/PhysRevD.87.044001
http://dx.doi.org/10.1103/PhysRevD.87.044001
http://dx.doi.org/10.1093/mnrasl/slt137
http://dx.doi.org/10.1093/mnrasl/slt137
http://dx.doi.org/10.1103/PhysRevD.91.064060
http://dx.doi.org/10.1103/PhysRevLett.114.161103
http://dx.doi.org/10.1103/PhysRevLett.114.161103
http://dx.doi.org/10.1103/PhysRevLett.115.091101
http://dx.doi.org/10.1103/PhysRevLett.115.091101
http://dx.doi.org/10.1103/PhysRevD.93.044064
http://dx.doi.org/10.1103/PhysRevD.93.044064
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1103/PhysRevD.87.084035
http://dx.doi.org/10.1103/PhysRevD.87.084035
https://eob-new.ihes.fr
https://eob-new.ihes.fr
https://eob-new.ihes.fr
http://dx.doi.org/10.1103/PhysRevD.87.121501
http://dx.doi.org/10.1103/PhysRevD.90.124037
http://dx.doi.org/10.1103/PhysRevD.90.064006
http://dx.doi.org/10.1103/PhysRevD.90.064006
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevD.88.084057
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/10.1088/0067-0049/214/2/22
http://dx.doi.org/10.1088/0067-0049/214/2/22
http://dx.doi.org/10.1088/0004-637X/748/1/70
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232


[46] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.
Rev. C 58, 1804 (1998).

[47] K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi, Y.-I.
Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev. D 88,
044026 (2013).

[48] C. Reisswig and D. Pollney, Classical Quantum Gravity 28,
195015 (2011).

[49] C. O. Lousto, H. Nakano, Y. Zlochower, and M. Campanelli,
Phys. Rev. D 82, 104057 (2010).

[50] H. Nakano, Classical Quantum Gravity 32, 177002
(2015).

[51] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and J. L.
Friedman, Phys. Rev. D 89, 043009 (2014).

[52] However, see T. Hinderer et al., arXiv:1602.00599.
[53] M. Boyle, D. A. Brown, L. E. Kidder, A. H. Mroué, H. P.

Pfeiffer, M. A. Scheel, G. B. Cook, and S. A. Teukolsky,
Phys. Rev. D 76, 124038 (2007).

[54] P. Ajith et al., arXiv:0709.0093.

[55] M. Boyle, A. Buonanno, L. E. Kidder, A. H. Mroué, Y. Pan,
H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 78, 104020
(2008).

[56] See https://dcc.ligo.org/cgi‑bin/DocDB/ShowDocument?
docid=2974.

[57] See https://www.black‑holes.org/waveforms/.
[58] J. Abadie et al., Classical Quantum Gravity 27, 173001

(2010); C. Kim, B. B. P. Perena, and M. A. McLaughlin,
Mon. Not. R. Astron. Soc. 448, 928 (2015).

[59] J. Clark, A. Bauswein, L. Cadonati, H.-Th. Janka,
C. Pankow, and N. Stergioulas, Phys. Rev. D 90, 062004
(2014).

[60] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev. D
78, 124020 (2008).

[61] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J.
Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[62] K. Taniguchi and M. Shibata, Astrophys. J. Suppl. Ser. 188,
187 (2010).

HOTOKEZAKA, KYUTOKU, SEKIGUCHI, and SHIBATA PHYSICAL REVIEW D 93, 064082 (2016)

064082-18

http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevD.88.044026
http://dx.doi.org/10.1103/PhysRevD.88.044026
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1103/PhysRevD.82.104057
http://dx.doi.org/10.1088/0264-9381/32/17/177002
http://dx.doi.org/10.1088/0264-9381/32/17/177002
http://dx.doi.org/10.1103/PhysRevD.89.043009
http://arXiv.org/abs/1602.00599
http://dx.doi.org/10.1103/PhysRevD.76.124038
http://arXiv.org/abs/0709.0093
http://dx.doi.org/10.1103/PhysRevD.78.104020
http://dx.doi.org/10.1103/PhysRevD.78.104020
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1093/mnras/stu2729
http://dx.doi.org/10.1103/PhysRevD.90.062004
http://dx.doi.org/10.1103/PhysRevD.90.062004
http://dx.doi.org/10.1103/PhysRevD.78.124020
http://dx.doi.org/10.1103/PhysRevD.78.124020
http://dx.doi.org/10.1103/PhysRevD.93.044007
http://dx.doi.org/10.1088/0067-0049/188/1/187
http://dx.doi.org/10.1088/0067-0049/188/1/187

