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Using the Hilbert-Huang transform (HHT), we analyze gravitational waves from late inspiral, merger,
and post-merger phases of binary neutron stars coalescence, computed by a general relativistic numerical
simulation. The HHT analysis has been developed as a method for time series analysis of nonlinear and
nonstationary data, and it enables us to perform a high resolution time frequency analysis of signals with
strong frequency modulation by evaluating the instantaneous variation of amplitude and frequency of data.
We find that we can clearly observe the time evolution of the instantaneous frequency of the post-merger
waveforms. It is found that temporal variation of frequency of post-merger waveforms can be evaluated
within 5% error if BNS coalescences occur within 10 Mpc. This accuracy allows us to constrain the
equation of state of neutron stars and to evaluate the radius of a fiducial neutron star of 1.8M⊙ with a few
hundred meters accuracy.
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I. INTRODUCTION

Advanced LIGO detectors [1] recently observed the first
gravitational-wave (GW) signal from merging black holes
with high statistical significance [2].
Gravitational waves produced by the coalescence of binary

neutron stars (BNSs) are also a promising source for ground-
based GW detectors, Advanced LIGO, Advanced Virgo [3],
and KAGRA [4]. When GWs from BNSs are observed, we
can constrain the equation of state (EOS) of the neutron stars
(NSs) and can examine the hypothesis of the central engine of
short γ-ray bursts. The detection rate of such events for the
ground-basedGWdetectors is estimated to be 4–400 yr−1 by
theoretical and statistical studies [5].
The EOS of high-density nuclear matter for NSs is still

poorly known. Under assumptions that a NS is in cold,
spherically symmetric, general relativistic, hydrostatistic
equilibrium, there is one-to-one correspondence between
the EOS and mass-radius relation of NSs [6]. Therefore,
the EOS will be constrained if the mass and radius of NSs
are evaluated through the observation of GWs from
coalescences of BNS.
Many hypothetical EOSs have been proposed from the

theoretical study in nuclear physics. Each EOS is charac-
terized by the maximum mass of neutron stars. NSs of high
mass such as 1.97� 0.04M⊙ [7] and 2.01� 0.04M⊙ [8]
have been discovered through electromagnetic observations.

The existence of these NSs suggest that the maximum mass
of NSs must predict greater than 2M⊙.
Recently, the gravitational waveforms from the coales-

cences of BNS and dynamics of post-merger phase have
been explored in detail by general relativistic numerical
simulations (e.g., [9–14]). These gravitational waveforms
reflect the mass and the EOS of NSs as well as the dynamics
of the BNS merger. A black hole is promptly formed after
the coalescences for soft EOSs or for high-mass BNS, while
a massive NS (MNS) is formed after the coalescences for
stiff EOSs or for low-mass BNS. We note that the mass of
MNS can be heavier than the maximum mass of spherical
NSs, since MNSs formed after the coalescences are sup-
ported by thermal pressure and the centrifugal force resulting
from rapid and differential rotation.
Previous studies [11–13] have suggested the possible

presence of a relation between the radius of a fiducial NS
and a peak frequency of dominant quadrupolar mode in the
Fourier spectrum of GWs from MNSs. If we can determine
the peak frequency, the radii of a fiducial NS will be
constrained, leading to a strong constraint of the EOS of
NSs. This information allows us to constrain the EOS of
NSs. In Ref. [15], after the detection of GW fromMNSs by
the coherent WaveBurst, the peak frequencies are charac-
terized by reconstructed post-merger signal. Clark et al.
[16] attempted a construction of templates of post-merger
signals by using principle component analysis. Both studies
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show that the EOSs of NSs are strongly constrained by
observing GWs from MNS.
In this paper, we explore an another possibility to

obtain information on EOS from the time evolution of
the instantaneous frequency of GW from MNS by using
the Hilbert-Huang transform (HHT). The HHT, which
consists of an empirical mode decomposition followed
by the Hilbert spectral analysis, has been developed by
Huang et al. [17–19]. Compared with the Fourier
decomposition and wavelet decomposition, the empiri-
cal mode decomposition approach has an advantage for
analyzing the nonstationary and nonlinear data since it
decomposes the signal into intrinsic mode functions
based on the time scale of the signal itself with adaptive
nature. The HHT is not limited by time-frequency
uncertainty, and thus, it provides a high resolution
time-frequency analysis.
The HHT is a powerful tool to extract the information

from the gravitational waveforms. Applications of the HHT
to the data analysis of GWs, mainly from burst sources
including supernovae and coalescence of supermassive
black holes, have already been proposed in Refs. [20–25].
It could also be a powerful tool for analyzing GWs from
the BNS coalescences, in particular, for the merger and
post-merger phases. In this paper, we describe a method
for analyzing GWs from late inspiral, merger, and post-
merger phases of BNSs using the HHT, after the detection
of post-merger signals. We use gravitational wave signals
from late inspiral, merger, and post-merger phases of
BNS coalescences computed with numerical relativity
simulations.
We consider two kinds of EOS. One is a finite-

temperature EOS that includes contributions of Λ hyperons
(Hyp-EOS). The other is a purely nucleonic EOS
(Shen-EOS).
The numerical simulation data show that the instanta-

neous frequency of the post-merger signals from MNS
increase with time in the case of Hyp-EOS. But no such
evolution is found for Shen-EOS.
We inject those signals into the simulated noise of

Advanced LIGO and analyze the data with HHT. We find
that, when the source is located at 10 Mpc, we can clearly
identify the frequency evolution of the post-merger signals
on the time-frequency map which frequency evolution
agrees with the injected signals. We confirm that we can
distinguish the difference of the frequency evolution
between two EOS models.
The paper is organized as follows. In Sec. II, we

briefly review the Hilbert-Huang transform. In Sec. III,
we briefly describe the numerical waveforms that we
employ in this paper. In Sec. IV, the results of the HHT
analysis are shown and the implication of the results is
discussed. In Sec. V, we discuss the accuracy of derived
instantaneous frequency of GWs from MNS. Section VI
is devoted to a summary.

II. THE HILBERT-HUANG TRANSFORM

In this section, we briefly review the HHT. The HHT
analysis consists of two parts. The first one is the
empirical mode decomposition (EMD), in which the
time-series data are decomposed into intrinsic mode
functions (IMFs). This is just a preconditioning for the
next step. In the second part of the HHT, the Hilbert
transform is applied to each IMF, and we obtain an
analytic complex representation of each IMF. From this,
we derive the instantaneous frequency (IF) and the
instantaneous amplitude (IA) of each IMF. This part is
called the Hilbert spectrum analysis (HSA). The IF and
IA provide a time-frequency representation of data that is
well suited for resolving nonlinear and transient features
of the original data.
We assume that the input sðtÞ is given by sampling a

continuous signal at discrete time series, tj ¼ jΔt for
j ¼ 0; 1;…; N − 1, where N is the number of data points
and Δt is the sampling interval.

A. Empirical Mode Decomposition and Ensemble
empirical mode decomposition

1. Empirical mode decomposition

For any time-series data, it is known that the Hilbert
transform of the data does not always yield physically
meaningful results. Huang et al. [18] showed that the IA
and IF have physically meaningful results if the time-series
data satisfy the following conditions (hereinafter referred to
as the IMF condition):
(A) For all data sets, the number of extrema and the

number of zero crossings have to either be identical
or differ at most by one.

(B) At any data point, the mean values of the upper
and the lower envelopes defined by using the local
maxima and minima, respectively, have to be zero.

These empirical conditions indicate that the data have a
vertical symmetry around zero point. However, the
observational data sðtÞ do not generally satisfy these
conditions. Thus, the observational data sðtÞ should be
decomposed by using the EMD. When using the EMD,
we implicitly assume that, at any given time, the data may
have many coexisting oscillatory modes of significantly
different frequencies, one superimposed on the other. For
each of these modes, we define an IMF that satisfies the
IMF condition. With the definition of the IMF, we can
thus decompose any data through the EMD, which, in a
sense, is a sifting process using a series of high-pass
filters. The outline of this algorithm is summarized as
follows, and Fig. 1 shows a schematic example of this
procedure.
The above procedures are summarized as follows. In the

beginning, we set gðtÞ ¼ s1ðtÞ ¼ sðtÞ, using the original
data. Then the EMD procedure is performed identifying all
the local extrema (Fig. 1(a)). The local maxima and minima
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are connected by cubic splines to form the upper envelope
UðtÞ and the lower envelope LðtÞ, respectively (Fig. 1(b)).
All data are usually encompassed between them. Let their
mean mðtÞ ¼ ðUðtÞ þ LðtÞÞ=2 and update gðtÞ by sub-
tracting it from gðtÞ to obtain the first proto-mode; gðtÞ ¼
gðtÞ −mðtÞ (Fig. 1(c)). The mean mðtÞ contains the DC
offset and components in a low frequency band of the
signal, and therefore, gðtÞ is expected to satisfy the IMF
condition. However, that is usually not the case, but
iteration of the above procedure is necessary if gðtÞ still
contains two or more oscillatory components. Finally,
gðtÞ becomes the IMF1, c1ðtÞ ¼ gðtÞ, if the IMF condition
is satisfied approximately after several iterations
(Fig. 1(d)).
In practice, these conditions are not satisfied precisely.

Thus, we have to define an approximate criterion for
stopping the interaction procedure. This is controlled by
a stoppage criterion. Several different types of stoppage
criteria have been adopted. In this paper, we use a criterion
determined by using the Cauchy type of convergence test,
which was used in [18]

P
N−1
j¼0 jmðtjÞj2P
N−1
j¼0 jgðtjÞj2

< ϵ; ð1Þ

with a predetermined value ϵ.
The first IMF1 c1ðtÞ should contain the finest scale or the

shortest-period oscillation in the signal. It is subtracted
from the original data to obtain the residual s2ðtÞ ¼
s1ðtÞ − c1ðtÞ, which contains the longer-period oscillations.
It is then treated as a new data source and subject to the

same process of EMD as described above to obtain the IMF
of the next lowest frequency.
The procedure is iteratively applied to all subsequent

siðtÞ. The decomposition process finally stops when the
residual, snþ1ðtÞ, becomes monotonic or has only one
extremum, from which no more IMF can be extracted.
Then, the original data are decomposed into n IMFs
and a residue, rðtÞ ¼ snþ1ðtÞ; sðtÞ ¼ P

n
i¼1 ciðtÞ þ rðtÞ.

The residue rðtÞ can be either the adaptive local
median or trend. In practice, numerical errors occa-
sionally prevent the residual snþ1ðtÞ from being
monotonic, and thus, the decomposition process is
ceased if the residual becomes much smaller than
previous IMFs.

2. Ensemble empirical mode decomposition

In the original form of EMD, however, mode mixing
often occurs when either a single IMF consists of signals of
widely disparate scales, or when signals of a similar scale
reside in different IMF components. To mitigate this effect,
Wu and Huang [26] proposed ensemble EMD (EEMD),
which defines the true IMF components as the mean of an
ensemble of trials, each consisting of the signal plus a white
(Gaussian) noise of finite standard deviation (finite
amplitude).
The EEMD algorithm is composed of the follow-

ing steps:
(i) Add a white (Gaussian) noise with the standard

deviation σe to the original data sðtÞ.
(ii) Decompose the data with the white noise into

IMFs.

FIG. 1. Outline of EMD sifting algorithm and schematic example. Note that the magnitude of the vertical axis gradually decreases in
each step. (a) Local extrema of time series. (b) Upper and lower envelopes formed by connecting extrema and their mean. (c) Subtraction
of mean from time series. (d) IMF1 obtained after several iterations.
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(iii) Repeat steps (i) and (ii) several times but with a
different white Gaussian noise series at each time.

(iv) Obtain the ensemble means for the series of the
obtained IMFs of the decompositions. The number
of trials, Ne, has to be larger than 100.

Algorithm Empirical Mode Decomposition (EMD)

procedure EMD (sðtÞ)
s1ðtÞ⇐sðtÞ
i⇐1
while siðtÞ includes osillatory modes do

▹See Note 1 below.
gðtÞ⇐siðtÞ
repeat

gmax½j�⇐ local maxima of gðtÞ (Fig. 1(a))
gmin½j�⇐ local minima of gðtÞ
UðtÞ⇐ the upper envelope joining gmax½j�
LðtÞ⇐ the lower envelope joining gmin½j�

using cubic splines, respectively
mðtÞ⇐ðUðtÞ þ LðtÞÞ=2 (Fig. 1(b))
gðtÞ⇐gðtÞ −mðtÞ (Fig. 1(c))

until StopCrðgðtÞ; mðtÞÞ
ciðtÞ⇐RðtÞ [the i-th IMF] (Fig. 1(d))
siþ1ðtÞ⇐siðtÞ − ciðtÞ
i⇐iþ 1

end while
rðtÞ⇐siðtÞ [the residual]

end procedure
function StopCrðgðtÞ; mðtÞÞ

if a stoppage criterion is satisfied then
▹See Note 2 below.

return true
else

return false
end if

end function

Note 1: The decomposition completes when siðtÞ becomes
monotonic or has only one extremum.

Note 2: The sifting process stops if the IMF condition is satisfied.
See also the text below.

In the algorithm of EMD/EEMD, some predeterminant
parameters such as ϵ, σe andNe exist. The method of setting
the parameters is discussed in [23]. The EMD/EEMD
parameters used in this paper are shown in Table II.

B. Hilbert spectral analysis

The HHT can provide a time-frequency-energy para-
digm of data. In this approach, the nonlinearity and
nonstationarity can be extracted in a better manner than
in the traditional paradigm of constant frequency and
amplitude. For instance, the nonstationarity can be found
directly from the IF and IA (see below). This is the reason
that the Hilbert spectral analysis (HSA) was included as a
part of the HHT.

The Hilbert transform of a function uðtÞ is defined as

vðtÞ ¼ 1

π
P
Z

∞

−∞

uðτÞ
t − τ

dτ ¼ uðtÞ �
�
1

πt

�
; ð2Þ

where P and � denote taking the Cauchy principal value
of the singular integral and the convolution, respectively. If
a function uðtÞ belongs to the Lebesgue space Lp for
1 < p < ∞, the Hilbert transform is well defined and
gðtÞ ¼ uðtÞ þ ivðtÞ is the boundary value of a holomorphic
function gðzÞ ¼ aðzÞeiθðzÞ in the upper half-plane [27,28].
Then, the instantaneous amplitude AinstðtÞ and the instanta-
neous phase function θinstðtÞ are defined by

AinstðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtÞ2 þ vðtÞ2

q
; ð3Þ

θinstðtÞ ¼ tan−1
�
vðtÞ
uðtÞ

�
: ð4Þ

The instantaneous frequency FinstðtÞ is defined as

FinstðtÞ ¼
1

2π

dθinstðtÞ
dt

¼ 1

2πAinstðtÞ2
�
uðtÞ dvðtÞ

dt
− vðtÞ duðtÞ

dt

�
: ð5Þ

We emphasize that the meaning of the IF, which is a
function of time, is very different from that of the Fourier
frequency, which is constant by definition. Indeed, as the IF
is a continuous function, it can reflect a modulation of a
base frequency over a small fraction of the base wave cycle.
Through EMD/EEMD, we obtain the IMFs ciðtÞ (real

part). From Eq. (2), we can obtain the imaginary part, or
the conjugate function, of each ciðtÞ. Therefore, the HSA
derives Ainst;iðtÞ and Finst;iðtÞ of each IMF ciðtÞ. Through
this procedure, the HHT allows us to extract instantaneous
time-frequency and time-amplitude trajectories. This time-
frequency-amplitude map (HHT map) allows for a high
resolution time-frequency analysis of waveforms with
strong frequency modulation.

III. SETUP FOR SIMULATION

In this section, we explain the setup for our data analysis
simulation. We prepare the simulated time-series data of
Advanced LIGO by combining Gaussian noise with a
gravitational waveform from late inspiral, merger, and post-
merger phases of BNS computed by numerical-relativity
simulations.

A. Gravitational waveform from late inspiral,
merger, and post-merger phases of BNS

We choose five GWs computed by Sekiguchi et al.
[10,29]. These gravitational waveforms were computed for
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NSs of two finite-temperature EOSs. One is a finite-
temperature EOS which includes contributions of Λ
hyperons (Hyp-EOS) [30], and the other is a purely
nucleonic EOS (Shen-EOS). The maximum masses of
zero-temperature spherical NSs for Hyp-EOS and Shen-
EOS are Mmax;Shen ≃ 1.8M⊙ and Mmax;Shen ≃ 2.2M⊙,
respectively. GWs were computed only for symmetric
binaries with MNS ¼ 1.35M⊙ and 1.5M⊙ for Hyp-EOS
(refered to as H135 and H15) and Shen-EOS (S135 and
S15), and MNS ¼ 1.6M⊙ for Shen-EOS (S16). The char-
acteristics of the models used in this paper are shown in
Table I.
The waveforms consist of three parts: the late inspiral

waveform, the merger waveform, and the post-merger
waveform. Gravitational waves from the late inspiral phase
are essentially identical to each other for the models with
Hyp-EOS and Shen-EOS for the same mass. The wave-
forms in the merger and post-merger phases depend
strongly on the total mass of binaries and the EOS. For
all models used in this paper, a MNS is formed and the
quasi-periodic GWs from the remnant MNS are emitted.
Since the MNSs collapse to a black hole before relaxing to
a stationary spheroid, the amplitude of quasi-periodic GWs
damps steeply at the black hole formation for H135
and H15. The frequency of GW increases with time for
H135 and H15 (Hyp-EOS models) [10], while it is
approximately constant (around 2 kHz) for S135, S15
and S16 (Shen-EOS).
Detailed description of general relativistic numerical

simulations and gravitational waveforms used in this paper
are found in [10,29].

B. Simulation data

We use the simulated time-series noise data of
Advanced LIGO. With a sensitivity curve of Advanced
LIGO (the zero-detuned, high-power sensitivity curve
[31]), we produce the simulated Gaussian noise in fre-
quency domain. The sampling frequency fsamp is set to
fsamp ¼ 1=Δ t ¼ 16384 Hz, and the frequency range of the

detector noise is set to be from 20 to 8182 Hz. Time-series
noise data, nðtÞ, is produced by the inverse Fourier trans-
form of the simulated noise in frequency domain.
The hypothetical observational data sðtÞ is produced by

injecting the GW signal hðtÞ into the Gaussian noise nðtÞ;
sðtÞ ¼ hðtÞ þ nðtÞ, where hðtÞ can be expressed in terms of
antenna pattern functions Fþð~esðtÞÞ and F×ð~esðtÞÞ, which
depend on the direction of the source ~esðtÞ ¼ ðθsðtÞ;ϕsðtÞÞ,
as well as polarizations components hþðtÞ and h×ðtÞ of the
GWs as

hðtÞ ¼ Fþð~esðtÞÞhþðtÞ þ F×ð~esðtÞÞh×ðtÞ: ð6Þ

In this paper, since we consider optimally located sources at
the zenith of a detector, we set Fþð~esÞ ¼ 1 and F×ð~esÞ ¼ 0,
for simplicity. We discuss the expected detectability of the
post-merger signal with an optimal matched filter analysis.
The strength of the signal is characterized by the matched-
filter signal-to-noise ratio (SNR) ρopt defined as

ρ2opt ¼ 4

Z
fNyq

flow

j ~hðfÞj2
SnðfÞ

df; ð7Þ

where ~hðfÞ is the Fourier transform of the signal, and SnðfÞ
is the one-side power spectral density of noise. Here, fNyq
and flow are the Nyquist frequency and low frequency
cutoff, respectively. If we set the threshold for the detection,
ρopt, we obtain the maximum distance, Ropt, and the signal
can be detected. Here, ρopt at 10 Mpc and Ropt for ρopt ¼ 5

are listed in Table I.
Fig. 2 shows an example of data sðtÞ, where the

H135 GW signal at a distance of 5 Mpc is injected into
the simulated time-series noise data of Advanced LIGO.

TABLE I. Waveform models used in this paper. Maximum
mass of Hyperon and Shen EOS are 1.8M⊙ and 2.2M⊙,
respectively. Here, τMNS denotes the duration of the emission
of quasi-periodic GWs from the MNS, and ρopt is the matched-
filter signal-to-noise ratio of the post-merger signal evaluated for
an optimally oriented source at 10 Mpc. Also, Ropt is the distance
at which the post-merger signal produces ρopt ¼ 5.

Model MNS½M⊙� τMNS[ms] ρopt Ropt[Mpc]

H135 1.35 11 5.4 10.8
H15 1.5 3 4.1 8.2
S135 1.35 >25 5.6 11.2
S15 1.5 >25 6.2 12.4
S16 1.6 9 6.4 12.8

−8

−6

−4

−2

 0

 2

 4

 6

 8

−10 −5  0  5  10  15

10
21

 h
+

t −  tmerge (ms)

Injected signal + Noise
Injected signal

FIG. 2. Example of data sðtÞ. The black curve denotes signal
hðtÞ plus noise nðtÞ, and the green curve denotes the injected
signal (H135) at 5 Mpc, where tmerge approximately denotes the
time at which two stars come into contact.
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IV. RESULTS OF HHT

In this section, we present the results of HHT analysis of
the simulation data described in Sec. III.

A. IMF, IA, and IF

First, we apply the EEMD to each data set with the signal
described in Sec. III B. For each of IMFs, we compute the
IA and IF with HSA.
The values of EEMD parameters, which were discussed

in Sec. II A 2, are summarized in Table II.
In Fig. 3, we show the results of HHT for the H135 GW

signal at a hypothetical distance of 5 Mpc injected in
Advanced LIGO noise. In this case, the data is decomposed
into 8 IMFs, but those only from IMF1 to IMF6 are plotted,
since it is clear that no GW signal is included in IMF7 and
IMF8. The upper panel in each figure box shows ciðtÞ as
the red curve and the injected signal as the dashed blue
curve. The IA is plotted in the middle panel of each figure
box, while the bottom panel shows the IF as the red curve,
and the frequency of the injected signal as the dashed
blue curve.
From this figure it is recognized that the IFs of IMF4 and

IMF5, Finst;4 and Finst;5, clearly capture the frequency
modulation in the late inspiral phase from −8 to 0 ms,
even though the signal is split into two IMFs, and each IA,
Ainst;4 and Ainst;5, is therefore smaller than the amplitude of
the injected signal. The signal during this phase will be
reconstructed more closely by adding the IMF4 and IMF5
together. Signals with a frequency band of 500 Hz or below
would appear in IMF6 and higher IMFs if we used a longer-
term waveform including earlier inspiral components. A
significant decrease in Ainst;4 is observed at t ¼ tmerge, and
thus, we may determine the merger time with reasonable
accuracy. In any case, however, the matched filter method
should attain higher accuracy than HHT for analysis of
chirp signals in the inspiral phase.
IMF3 from 0 to 10 ms, on the other hand, captures the

signal emitted from the MNS formed after the merger,
while some portion of the signal is allotted to IMF2,
especially in the later stage. The IF of IMF3, Finst;3, agrees
substantially with that of the injected signal. However,
Finst;3 stays in the same frequency band even after the black
hole formation. During this period, IMF3 captures the noise

in that frequency band. As for the IA, Ainst;3 decreases
gradually even before the black hole formation. Therefore,
it is difficult for the HHT to determine when the black hole
is formed.
Based on the obtained IFs and IAs, we plot the time-

frequency-amplitude map, which we call the HHT map, in
the left of Fig. 4. In this figure, we use the time resolution
Δt ¼ 1=16384 s and frequency resolution Δf ¼ 20 Hz.
The frequency evolution can be seen clearly, and it agrees
approximately with that of the injected signal.
We show the HHT map and its enlargement for S15 in

the right of Fig. 4. We also plot the Finst;3 in the post-merger
phase for H135 and S15 as functions of time in Fig. 5.
As already pointed out in [10] and discussed in

Sec. III A, the frequency of GWs from MNS increases
with time for Hyp-EOS, while the frequency is approx-
imately constant (besides a periodic oscillation) for Shen-
EOS. Figure 5 indeed shows that the IF of H135 increases
overall until 10 ms, while the IFs of S15 is essentially
constant until 12 ms, when a black hole is formed. We may
therefore distinguish the difference of the frequency evo-
lution between Hyp-EOS models and Shen-EOS models.

B. Statistical error

Since we generate the detector noise nðtÞ with a
Gaussian random variate, the results of the analysis will
be changed even for the same injected signal if a different
seed of random numbers is used. Since the (E)EMD is a
data-driven decomposition method, the results of the HHT
may be affected by the different realization of noise.
Therefore, we investigate the statistical property of the
results of the HHT. We perform the HHT for 1000 samples,
each of which is generated by adding a Gaussian random
variate with a different seed.
The result for the H135 signal at a hypothetical distance

of 5 Mpc is shown in Fig. 6. Each of the top panels shows
the mean value of the IA for corresponding IMF as the red
curve and its standard deviation (�1σ) as the green shaded
region. In each of the bottom panels, we plot the mean value
of the IF (red curve) for corresponding IMF and its standard
deviation (�1σ) (green shaded region) as well as the
frequency of the injected signal (dashed blue curve), which
is computed from hþðtÞ and h×ðtÞ obtained by numerical-
relativity simulations.
We find that the standard deviation of the IF is smaller

in the period when the IA of the corresponding IMF is
larger. We also find that the Finst;3 from 0 to 10 ms agrees
with the frequency of GWs emitted after the merger very
well. Similarly, the Finst;4 from −10 to 0 ms agrees with the
frequency of GWs emitted in the late inspiral and the IF of
Finst;5 from −10 to −5 ms agrees with the frequency of the
first half of the late inspiral. On the other hand, the standard
deviation of the IF of each IMF are large when there exists
only noise.

TABLE II. EEMD parameters.

Model ϵ σe Ne

H135 10−6 0.5 200
H15 10−4 0.5 200
S135 10−4 0.5 200
S15 10−6 0.5 200
S16 10−2 1.0 200
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For other injected signals given in Table I, we generally
obtained the similar results to those discussed in Secs. IVA
and IV B.

C. Characteristics of frequency evolution

From the discussion in Sec. IVA, we may distinguish the
difference of the frequency evolution between Hyp-EOS
models and Shen-EOS models. In this subsection, we
characterize the frequency evolution by using the linear
regression.

We make the linear regression for Finst;3 using the least
squares method with weights:

Finst;3ðtÞ ¼ β1 þ β2t; ð8Þ

with the fitting time range from 3 to 11 ms for H135 and
from 3 to 12 ms for S15. The coefficient of β1 and β2 are the
intercept and gradient, respectively. The frequency evolu-
tions are characterized with the gradient β2.
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FIG. 3. A result of HHT. GW signal H135 at a hypothetical distance of 5 Mpc injected in Advanced LIGO noise is used. The upper
panel in each figure box shows the IMF ciðtÞ (red curve) as well as the injected H135 waveform (dashed blue curve). The middle panel
shows the IA of corresponding IMF. The bottom panel shows the IF of the corresponding IMF (red curve) as well as the frequency of
injected signal (dashed blue curve).
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Using the results in Sec. IV B, we perform the fitting to
evaluate the coefficient β2 from 1000 samples. Figure 7
shows the distribution of β2 for H135 (purple region) and
S15 (green region). The mean and the standard deviation of
β2 become ð40.3� 18.7Þ Hz=ms for H135 and ð5.4�
12.2Þ Hz=ms for S15. From these results, we can confirm
that Finst;3 increases with time for H135, while Finst;3 is
approximately constant for S15. This fact suggests the
possibility that we can distinguish the EOS from the
evolution of the IF of MNS by using the HHT analysis.
Note, however, that since the distribution of β2 for H135
and S15 overlap each other in Fig. 7, there is a possibility

that we cannot distinguish the frequency evolution clearly
at this distance.

V. ACCURACY OF THE FREQUENCY
EVOLUTION

Now we focus on the GWs emitted in the merger and
post-merger phases. A MNS is formed after the merger for
the models considered in this paper. We now examine how
accurately we can measure the GW frequency from MNS
with the HHT.
In order to evaluate the measurement accuracy of the IF

of GWs from MNS, we define [23]

δ ¼ 100 ×
WTSS½Finst;iðtÞ − FsignalðtÞ�

WTSS½FsignalðtÞ�
; ð9Þ

WTSS½FinstðtÞ� ¼
X
j

A2
instðtjÞF2

instðtjÞ; ð10Þ

where FsignalðtÞ is the frequency of the injected signal.
We evaluate δ by using the IF and IA of IMF c2 or c3 for

each model listed in Table I. In Table III, we show the mean
value of δ and the standard deviation for an event at a
distance of 10 Mpc. The mean values and the standard
deviation of δ are plotted as functions of the source distance
in Fig. 8.
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We find that if the time duration of quasi-periodic GWs
emitted from the MNS is long enough, the frequency
modulation can be evaluated with good accuracy for Hyp-
EOS and Shen-EOS cases. For example, although for H15,
δ is about 30% at 10 Mpc, δ is less than 5% for other
models. This difference can be explained from the duration
of the quasi-periodic GWs emitted from MNS in Table I.

In the previous study [13], the relation between the peak
frequency of the Fourier spectrum fpeak and the radius
parameter R1.8, which is the radius of a cold, spherical
neutron star of mass 1.8M⊙ in general relativistic hydro-
static equilibrium, was discussed. It is given as

fpeak ¼ ð4.0� 0.3Þ kHz
�ðR1.8=kmÞ − 2

8

�
−3=2

: ð11Þ
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FIG. 6. Example of statistical property of the IA and IF. The GW signal H135 at a hypothetical distance of 5 Mpc is used. Each upper
panel shows the mean of IA (red curve) of corresponding IMF and its standard deviation (�1σ) (green shaded region). Each bottom
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FIG. 7. Distribution of β2 for H135 (purple region) and S15
(green region).

TABLE III. The value of δ� 1σ for an event at a hypothetical
distance of 10 Mpc. Range (the third column) denotes the time
duration of summation in Eq. (10).

Model IMF Range [ms] δ� 1σ [%]

H135 3 [2, 11] 2.4� 1.2
H15 3 [2, 3] 29.6� 8.5
S135 3 [2, 12] 3.0� 3.6
S15 3 [2, 12] 1.0� 0.6
S16 2 [2, 9] 2.0� 0.8
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The peak frequency fpeak can be evaluated from the time
integration of the IF. For models other than H15, since δ is
the square-sum of difference between the IF of IMF and the
injected signal, the measurement error of fpeak may be
much smaller than the value of δ. By using the fpeak − R1.8

relation given by Eq. (11), the measurement accuracy of the
IF is transformed into the accuracy of R1.8 within a few
hundred meters.

VI. SUMMARY

We performed the HHT analysis of GWs emitted from
the late inspiral, merger, and post-merger phases of
coalescence of BNSs. We used the waveforms computed
by general relativistic numerical simulations and the
simulated time-series noise data of Advanced LIGO.
From the results of the HHT analysis, we found that the
frequency evolution can be seen clearly on the time-
frequency map, and that the frequency evolution agrees
with that of the injected signals. As pointed out in [10] and
discussed in Sec. III A, the frequency of GWs from MNS
increases with time for Hyp-EOS, while the frequency is
overall unchanged for Shen-EOS. We confirmed that we
can distinguish the difference of the frequency evolution
between Hyp-EOS models and Shen-EOS models in
Secs. IVA and IV C. This fact suggest a possibility that
we may be able to distinguish the EOS from the evolution
of the IF of MNS by using the HHT analysis.
We also investigated the statistical property of the

measurement accuracy of the IF for each of injected signals.
We found that for models in which MNS signals last for
10 ms or more, the frequency modulation can be evaluated

with error less than 5% for an event at a distance of 10 Mpc.
These results suggest that we can evaluate the radius
parameter R1.8 with accuracy within a few hundred meters
if a nearby (lucky) event is detected by Advanced LIGO.
The peak frequency can also be evaluated by using usual

Fourier spectrum of data. In that sense, the peak frequency
derived from the HHT is just an additional evidence of the
peak frequency. Note, however, that, as stated above, the
information which can be obtained by the HHT analysis is
not limited to the peak frequency. We can also clearly
observe the frequency evolution of the signals. This is one
of the most important advantages of the HHT analysis.
In this paper, we assumed that the sources are located at

the distance of 5 or 10 Mpc. The expected detection rate at
10 Mpc is ∼10−4 − 0.1 events yr−1 [5]. Thus, Advanced
LIGO, Advanced Virgo and KAGRA may not observe
BNS coalescences at such distance. On the other hand, in
the case of a planned future detector, such as the Einstein
Telescope [32], the detectable distance will be increased
by factor of ∼10. In that case, the expected event rate
becames ∼0.1–100 events yr−1. Thus, we may have to
wait until such future detectors are realized before the
HHT analysis of MNS signals presented in this paper
become useful.
In this paper, we used simulated Gaussian noise of

Advanced LIGO. However, the noise of real laser inter-
ferometer detectors show non-Gaussianity and nonstatio-
narity. Therefore, we are planning to apply our method to
real laser interferometer data in the near future.
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