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Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous
hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star
surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with
our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long
time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous
angular momentum transport works but also an outflow could be driven from a hot envelope around the
neutron star for a time scale ≳100 ms with the ejecta mass ≳10−2 M⊙, which is comparable to the typical
mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars
surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars,
could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently
high, i.e., if the viscous α parameter is ≳10−2. The present numerical result indicates the importance of a
future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous
effect in the merger remnants of binary neutron stars by the first-principle manner.
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I. INTRODUCTION

The recent discoveries of two-solar mass neutron stars
[1] imply that the equation of state of neutron stars has to be
stiff enough to support the self-gravity of the neutron stars
with mass ≳2 M⊙. Numerical-relativity simulations with
stiff equations of state that provide the maximum neutron-
star mass larger than 2 M⊙ have shown that massive
neutron stars surrounded by a massive torus are likely to
be the canonical remnants formed after the merger of binary
neutron stars of typical total mass 2.6–2.7 M⊙ (see, e.g.,
Refs. [2,3]). Because a shear layer is inevitably formed on
the contact surface of two neutron stars at the onset of the
merger, the Kelvin-Helmholtz instability [4,5] is activated
and the resulting vortex motion is likely to quickly amplify
the magnetic-field strength toward ≳1016 G. In addition,
because the remnant massive neutron stars and a torus
surrounding them are in general differentially rotating and
magnetized, they are subject to magnetorotational insta-
bility (MRI) [6]. As shown by a number of high-resolution
magnetohydrodynamics (MHD) simulations for accretion
disks (see, e.g., Refs. [7–9]), MHD turbulence is likely to
be induced for differentially rotating systems and its effect
determine the subsequent evolution of the system (but see
also Ref. [10] for a possibly significant role of neutrinos for
relatively low-magnetic field cases). As a result, (i) angular
momentum is likely to be transported outward and thermal
energy is generated by dissipating rotational kinetic energy
in the massive neutron star and surrounding torus and (ii) a
massive hot torus is likely to be further developed around
the massive neutron stars.

For exploring MHD processes and the resulting turbulent
state for the remnants of binary neutron-star mergers,
nonaxisymmetric (extremely) high-resolution simulation
is necessary if we rely entirely on a MHD simulation
(see, e.g., Ref. [5] for an effort on this). The reasons for this
are that the wavelength for the fastest growing modes of
the Kelvin-Helmholtz instability and MRI is much shorter
than the stellar size for the typical magnetic-field strength
(∼1011–1013 G), and in addition, the MHD turbulence is
preserved only in a nonaxisymmetric environment: Here,
note that in axisymmetric systems, the turbulence is not
preserved for a long time scale according to the antidynamo
theorem [11]. This implies that we would need a huge
computational cost for studying realistic evolution of the
merger remnants of binary neutron stars (see, e.g., Ref. [5]),
and it is practically not an easy task to obtain a compre-
hensive picture for the evolution of this system by sys-
tematically performing a large number of MHD simulations
changing neutron-star models and the magnetic-field
profiles. To date, this problem has not been solved because
the well-resolved MHD simulation has not been done yet.
One phenomenological approach for exploring the evo-

lution of differentially rotating systems such as the merger
remnants is to employ viscous hydrodynamics in general
relativity [12]. The global-scale viscosity is likely to be
effectively generated through the development of the
turbulent state induced by the local MHD processes, and
thus, relying on the viscous hydrodynamics implies that
we employ a phenomenological approach, averaging
(coarse graining) the local MHD and turbulence processes.
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A demerit in this approach is that we have to artificially
input the viscous coefficient, which would be naturally
determined in the MHD simulations. Thus, we cannot
obtain the real answer by one simulation in this approach.
We can at best obtain answers for given values of the
viscous coefficient, which has to be varied for a wide
range to obtain a possible variety of the answers. However,
we also have several merits in this approach. First, we may
perform an axisymmetric simulation to follow the long-
term transport processes. We also would not need
extremely high-resolution simulations in this approach,
because we do not have to consider short-wavelength
MHD instabilities. Thus, we can reduce the computational
costs significantly, and hence, with relatively small com-
putational costs, we are able to systematically explore the
phenomenological evolution of differentially rotating sys-
tems including differentially rotating neutron stars, a torus
surrounding them, and black hole-torus systems.
One caveat for employing viscous hydrodynamics in

relativity is that it could violate the causality if we choose
an inappropriate set of the basic equations. Indeed, in
relativistic Navier-Stokes-type equations [12,13] in which
basic equations are parabolic type, the causality is violated.
On the other hand, if we employ Israel-Stewart-type
formulations [14], the resulting equation is not parabolic
type but telegraph type, and hence, the causality is
preserved [15]. In this paper, we employ a simplified
version of the Israel-Stewart formulation to incorporate
shear-viscosity effects neglecting the bulk viscosity and
other transport processes. It is shown that in this case, the
hydrodynamics equations are significantly simplified and
they can be numerically solved in a method quite similar to
those for pure hydrodynamics, while the major effects of
the shear viscosity can be qualitatively captured.
The primary purpose of this paper is to show that our

choice of viscous hydrodynamics formalism works well
for long-term simulations of differentially rotating systems.
We perform simulations for rotating neutron stars sur-
rounded by a torus for a long time scale, focusing in
particular on the long-term mass ejection process from the
torus. In this paper, we do not take into account detailed
microphysics effects such as neutrino transport and we
focus only on the purely viscous hydrodynamics. We plan
to present the results of more detailed studies incorporating
microphysics effects in a future publication.
This paper is organized as follows: In Sec. II, we

describe our formulation for simplified shear-viscous
hydrodynamics. In Sec. III, we apply our formulation to
an axisymmetric general-relativistic simulation for a differ-
entially rotating neutron star, and show that with a plausible
shear viscosity, an outflow may be driven from a massive
neutron star and a torus surrounding it that are the typical
outcomes of binary neutron star mergers. Section IV is
devoted to a summary. Throughout this paper, we employ
the units of c ¼ 1 ¼ G where c andG are the speed of light
and gravitational constant, respectively.

II. FORMULATION

A. Viscous hydrodynamics for the general case

We write the stress-energy tensor of viscous fluid as

Tab ¼ ρhuaub þ Pgab − ρhντ0ab; ð2:1Þ

where ρ is the rest-mass density, h is the specific enthalpy,
ua is the four velocity, P is the pressure, gab is the
spacetime metric, ν is the viscous coefficient for the shear
stress, and τ0ab is the viscous tensor. In terms of the specific
energy ε and pressure P, h is written as h ¼ 1þ εþ P=ρ.
τ0ab is a symmetric tensor and satisfies τ0abu

a ¼ 0.
We suppose that ν is a function of ρ, ε, and P and give
the relation below.
Taking into account the prescription of Ref. [14], we

assume that τ0ab obeys the following evolution equation:

Luτ
0
ab ¼ −ζðτ0ab − σabÞ; ð2:2Þ

where Lu denotes the Lie derivative with respect to ua, and
we set σab as

σab ≔ hachbdð∇cud þ∇ducÞ ¼ Luhab; ð2:3Þ

with hab ¼ gab þ uaub and ∇a being the covariant deriva-
tive associated with gab. By introducing Eq. (2.2), the
viscous hydrodynamics equation becomes a telegraph-type
equation [14,15]. Here, ζ is a nonzero constant of ðtimeÞ−1
dimension and it has to be chosen in an appropriate manner
so as for τ0ab to approach σab in a short time scale because it
is reasonable to suppose that τ0ab should approach σab in a
microphysical time scale. Thus, we typically choose it so
that ζ−1 is shorter than the dynamical time scale of given
systems (but it should be much longer than the time-step
interval of numerical simulations, Δt, in the practical
computation).
Equation (2.2) can be rewritten as

Luτab ¼ −ζτ0ab; ð2:4Þ

where τab ≔ τ0ab − ζhab. We employ this equation for τab
as one of the basic equations of viscous hydrodynamics,
and hence, the stress-energy tensor is rewritten as follows:

Tab ¼ ρhð1 − νζÞuaub þ ðP − ρhνζÞgab − ρhντab: ð2:5Þ

Using the timelike unit vector field normal to spatial
hypersurfaces, na, and the induced metric on the spatial
hypersurfaces γab ≔ gab þ nanb, we define

ρh ≔ Tabnanb; ð2:6Þ

Ji ≔ −Tabnaγbi; ð2:7Þ
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Sij ≔ Tabγ
a
iγ

b
j: ð2:8Þ

Here, the time and spatial components of na are written as
nμ ¼ ðα−1;−α−1βiÞ where α and βi are the lapse function
and the shift vector, respectively. The explicit forms of ρh
and Ji are

ρh ¼ ρhw2ð1 − νζÞ − ðP − ρhνζÞ
− ρhνw−2τijūiūi; ð2:9Þ

Jk ¼ ρhwukð1 − νζÞ − ρhw−1ντ̄k
lul; ð2:10Þ

where w ≔ −naua ¼ αut, ūi ¼ γijuj, and τ̄k
l ¼ τkjγ

jl with
the bars denoting spatial components. Note that we used
τabua ¼ 0 and τabnb ¼ τa

iuiw−1. We also note that uj is
equal to γjaua.
Then, a general-relativistic Navier-Stokes-type equation,

derived from γk
a∇bTb

a ¼ 0, is written in a form as

∂tð
ffiffiffi
γ

p
JkÞ þ ∂j½

ffiffiffi
γ

p ðαSjk − βjJkÞ�

¼ ffiffiffi
γ

p �
−ρh∂kαþ Jj∂kβ

j −
α

2
Sij∂kγ

ij

�
; ð2:11Þ

and the energy equation, derived from na∇bTb
a ¼ 0, is

∂tð ffiffiffi
γ

p
ρhÞ þ ∂j½ ffiffiffi

γ
p ðαJj − βjρhÞ�

¼ ffiffiffi
γ

p ðαSijKij − JiDiαÞ; ð2:12Þ

where Ji ¼ γijJj, Di is the covariant derivative associated
with γij, and Kij is the extrinsic curvature of spatial
hypersurfaces. The transport terms are rewritten using

αSjk − βjJk ¼ Jkvj þ αPtotδ
j
k

− ρwhν

�
τ̄k

j

ut
−
βj þ vj

w2
τ̄k

lul

�
; ð2:13Þ

−ρhβi þ αJi ¼ ρhvi þ ðvi þ βiÞPtot − ραhνw−1τ̄ijuj

þ ρhνw−2ðvi þ βiÞτ̄jkujuk; ð2:14Þ

where Ptot ≔ P − ρhνζ and τ̄jk ¼ γijτ̄i
k.

In addition to these equations, we have the continuity
equation for the rest-mass density, ∇aðρuaÞ ¼ 0, which is
written as usual as

∂tðρ ffiffiffi
γ

p
wÞ þ ∂jðρ ffiffiffi

γ
p

wvjÞ ¼ 0; ð2:15Þ

where vj ≔ uj=ut.
In viscous hydrodynamics simulations, ρh, Ji, and ρw are

evolved (here
ffiffiffi
γ

p
is supposed to be obtained by solving

Einstein’s evolution equations). This implies that it is
straightforward to obtain the following quantities:

e ≔
ρh
ρw

¼ hwð1 − νζÞ − P − ρhνζ
ρw

− hνw−3τijūiūj; ð2:16Þ

qj ≔
Jj
ρw

¼ h½ujð1 − νζÞ − νw−2τ̄j
kuk�: ð2:17Þ

By contrast, h and w have to be calculated by using the
normalization relation uaua ¼ −1, which is written as

w2 ¼ γijuiuj þ 1: ð2:18Þ

The procedure for a solution of h and w is described later.
Spatial components of Eq. (2.4) are explicitly written in

the form

uμ∂μτij þ τiμ∂juμ þ τjμ∂iuμ ¼ −ζτ0ij: ð2:19Þ

Here, we focus only on the spatial components of this
equation, because other components of τμν are determined
from τabub ¼ 0. Multiplying ρα

ffiffiffi
γ

p
and using the continu-

ity equation (2.15) and ταβuβ ¼ 0, we obtain

∂tðρw
ffiffiffi
γ

p
τijÞ þ ∂kðρw

ffiffiffi
γ

p
τijvkÞ

þ ρw
ffiffiffi
γ

p ðτik∂jvk þ τjk∂ivkÞ ¼ −ρα
ffiffiffi
γ

p
ζτ0ij: ð2:20Þ

Since ρw
ffiffiffi
γ

p
is determined by solving the continuity

equation, τij is obtained by solving this equation.
Next we describe how to determine h and w. These

quantities are determined from Eqs. (2.16)–(2.18). First, we
write Eq. (2.17) as

qj ¼ hAj
kuk; ð2:21Þ

where Aj
k is a matrix and a function only of w2 because

τ̄j
k is obtained by solving the evolution equation of τij.

This implies that by inverting Eq. (2.21), uk is written as

uk ¼ h−1ðA−1Þkjqj ≕ h−1Qk; ð2:22Þ

and hence, for a given set of qj and τij, uk can be considered
as a function of h−1 and w2. Substituting Eq. (2.22) into
(2.18), we obtain a relation between h and w as

w2 ¼ h−2γijQiQj þ 1; ð2:23Þ

where Qk can be considered as a function of w2.
Equation (2.16) can be also considered as the other

relation between h and w for a given equation of state,
P ¼ Pðρ; εÞ or P ¼ Pðρ; hÞ. Thus, by solving simultaneous
equations composed of Eqs. (2.16) and (2.23), we can
determine h and w.
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B. Setting the viscous parameter

In the so-called α-viscous model, we have the relation
(see, e.g., Ref. [16])

ρhνΩ ≈ αvP; ð2:24Þ

where Ω denotes the local value of the angular velocity
and αv is the so-called α-viscous parameter, which is a
dimensionless constant. In the α-viscous model, we assume
that the fluid is in a turbulent state and ν is written
effectively as lturbvturb where lturb is the size of the largest
turbulent cells and vturb is the velocity of the turbulent
motion relative to the mean gas motion. Since lturb < R and
vturb < cs where R is the maximum size of the object
concerned (i.e., here the equatorial stellar radius) and cs is
the sound velocity, ν may be written as ν ¼ αvRcs where
αv < 1. For rapidly rotating systems, RΩ ∼ cs. With the
definition of the sound velocity, P=ρh ∼ c2s , Eq. (2.24) is
obtained. We suppose that αv should be of the order 10−2

taking into account the latest results of high-resolution
MHD simulations for accretion disks (e.g., Refs. [7–9]).
Thus, in the α-viscous model, ν is written as

ν ¼ αvc2sΩ−1: ð2:25Þ

In this paper, we consider viscous hydrodynamics evolu-
tion of a differentially rotating neutron star. In practice,
it is not easy to appropriately determine Ω from the local
angular velocity of neutron stars in a dynamical state, and
hence, in this work, we simply set

ν ¼ αvc2sΩ−1
e ; ð2:26Þ

where Ωe is the angular velocity at the equatorial stellar
surface of the initial state of neutron stars (see, e.g., a filled
circle in the left panel of Fig. 2). The relation, Ω≲ Ωe, is
satisfied for rapidly rotating neutron stars and tori (or disks)
located in the vicinity of the neutron stars. Thus, Eq. (2.26)
agrees approximately with Eq. (2.25) for the outer region
and the inner envelope of the neutron stars, to which we pay
special attention in this paper. On the other hand, ν is
underestimated for a region far from the rotation axis, to
which we do not pay strong attention.

C. Axisymmetric equations

We solve viscous hydrodynamics equations in axisym-
metric dynamical spacetime in the following manner.
Einstein’s equation in axial symmetry is solved by a
cartoon method [17,18], and hence, the basic field equa-
tions are solved in the y ¼ 0 plane of Cartesian coordinates.
Thus, here, we describe viscous hydrodynamics equations
in axial symmetry using Cartesian coordinates with y ¼ 0.
To do so, the basic equations are first written in cylindrical
coordinates ðϖ;φ; zÞ, and then the coordinate transforma-
tion, x ¼ ϖ cosφ and y ¼ ϖ sinφ, should be carried out.

The resulting equations are as follows: The continuity
equation is written as

∂tρ� þ
1

x
∂xðρ�xvxÞ þ ∂zðρ�vzÞ ¼ 0; ð2:27Þ

where ρ� ≔ ρw
ffiffiffî
γ

p
and γ̂ ¼ γ=ϖ2: ϖ2 is the determinant

of the flat-space metric in the cylindrical coordinates. Each
component of the viscous hydrodynamics equation is
written in the forms

∂tSx þ ∂x½Sxvx þ α
ffiffiffî
γ

p
Ptot − ρ�hντ̂xx�

þ ∂z½Sxvz − ρ�hντ̂xz�

¼ Fx þ
1

x
½Syvy − Sxvx� −

ρ�hν
x

½τ̂yy − τ̂x
x�; ð2:28Þ

∂tSz þ ∂x½Szvx − ρ�hντ̂zx�
þ ∂z½Szvz þ α

ffiffiffî
γ

p
Ptot − ρ�hντ̂zz�

¼ Fz −
1

x
½Szvx − ρ�hντ̂zx�; ð2:29Þ

∂tSy þ
1

x2
∂x½x2ðSyvx − ρ�hντ̂yxÞ�

þ ∂zðSyvz − ρ�hντ̂yzÞ ¼ 0; ð2:30Þ

where Si ≔
ffiffiffî
γ

p
Ji, and

τ̂j
i ≔

τ̄j
i

ut
−
βi þ vi

w2
τ̄j

kuk;

Fp ≔ −S0∂pαþ Si∂pβ
i −

α

2

ffiffiffî
γ

p
Sij∂pγ

ij: ð2:31Þ

Here, the index p denotes x or z, and i, j, and k denote
x, y, or z.
The energy equation is written in the form

∂tS0 þ
1

x
∂x

�
x

�
S0vx þ ðβx þ vxÞ

ffiffiffî
γ

p
Ptot −

ρ�hν
w

τ̂xkuk

��

þ ∂z

�
S0vz þ ðβz þ vzÞ

ffiffiffî
γ

p
Ptot −

ρ�hν
w

τ̂zkuk

�

¼ α
ffiffiffî
γ

p
SijKij − SiDiα; ð2:32Þ

where S0 ≔
ffiffiffî
γ

p
ρh and τ̂ij ¼ γikτ̂k

j. We note that the terms
associated with τ̂ij in Eqs. (2.30) and (2.32) are responsible
for the angular-momentum transport and viscous heating,
respectively.
The method for a solution of these hydrodynamics

equations is the same as in Refs. [18,19]: The transport
terms are specifically evaluated using a Kurganov-Tadmor
scheme [20] with a piecewise parabolic reconstruction for
the quantities of cell interfaces. We do not take into account
the modification of the characteristic speed by the viscous
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effect for simplicity because the local transport time scale
of fluid elements, R=jvij, is much shorter than the viscous
time scale, R2=ν, in our choice of the alpha viscosity (here,
R denotes a characteristic length scale of the system). That
is, the local characteristic speed of the fluid dynamics
would be modified only slightly by the viscous effect.
The evolution equations for τij are written as

∂tðρ�τxxÞ þ ∂xðρ�τxxvxÞ þ ∂zðρ�τxxvzÞ

¼ −2ρ�
�
τxx∂xvx þ τxy∂xvy þ τxz∂xvz − τxy

vy

x

�

−
ζρ�
ut

τ0xx − ρ�τxx
vx

x
; ð2:33Þ

∂tðρ�τxyÞ þ ∂xðρ�τxyvxÞ þ ∂zðρ�τxyvzÞ

¼ −ρ�
�
τxy∂xvx þ τyy∂xvy þ τyz∂xvz − τyy

vy

x

�

−
ζρ�
ut

τ0xy − 2ρ�τxy
vx

x
; ð2:34Þ

∂tðρ�τxzÞ þ ∂xðρ�τxzvxÞ þ ∂zðρ�τxzvzÞ

¼ −ρ�
�
τxx∂zvx þ τxy∂zvy þ τxz∂zvz þ τxz∂xvx

þ τyz∂xvy þ τzz∂xvz − τyz
vy

x

�

−
ζρ�
ut

τ0xz − ρ�τxz
vx

x
; ð2:35Þ

∂tðρ�τyyÞ þ ∂xðρ�τyyvxÞ þ ∂zðρ�τyyvzÞ

¼ −
ζρ�
ut

τ0yy − 3ρ�τyy
vx

x
; ð2:36Þ

∂tðρ�τyzÞ þ ∂xðρ�τyzvxÞ þ ∂zðρ�τyzvzÞ

¼ −ρ�
�
τxy∂zvx þ τyy∂zvy þ τyz∂zvz

�

−
ζρ�
ut

τ0yz − 2ρ�τyz
vx

x
; ð2:37Þ

∂tðρ�τzzÞ þ ∂xðρ�τzzvxÞ þ ∂zðρ�τzzvzÞ
¼ −2ρ�ðτxz∂zvx þ τyz∂zvy þ τzz∂zvzÞ

−
ζρ�
ut

τ0zz − ρ�τzz
vx

x
: ð2:38Þ

For the characteristic speed of these equations, we simply
employ vx and vz for the x and z-directions, respectively.
From the regularity condition for the tensor quantity, we
find the boundary conditions for τij at the symmetric axis,
ϖ ¼ 0, as τxx ¼ τyy, τxy ∝ ϖ2, τxz ∝ ϖ, and τyz ∝ ϖ.
From Eqs. (2.27) and (2.30), it is immediately found that

the baryon rest mass, M�, and angular momentum, J, are
conserved quantities, which are defined by

M� ≔ 2π

Z
ρ�xdxdz; ð2:39Þ

J ≔ 2π

Z
Syx2dxdz: ð2:40Þ

In numerical simulations, we monitor these quantities and
check that they are preserved to be (approximately) con-
stant. Note that these quantities are precisely conserved
unless matter is ejected from the outer boundaries, because
we solve the conservative forms for the equations of ρ� and
Sy. We also monitor the kinetic energy and internal energy
defined, respectively, by

Tkin ¼ π

Z
ρ�hukvkxdxdz; ð2:41Þ

Eint ¼ 2π

Z
ρ�εxdxdz: ð2:42Þ

These values clearly show how the viscous dissipation
proceeds: Tkin and Tkin=Eint decrease by converting the
kinetic energy to the internal energy.
We also calculate the mass and energy fluxes through a

sphere far from the central object and evaluate the total
mass and energy for the outflow component. The mass and
energy fluxes are defined, respectively, by

FM ¼ 2π

I
r¼const

dðcos θÞρ�vrr2; ð2:43Þ

FE ¼ −2π
I
r¼const

dðcos θÞTt
rr2α

ffiffiffî
γ

p
: ð2:44Þ

Then, we calculate the outflowed mass and energy as
functions of time by

MoutðtÞ ¼
Z

t

0

FMdt0; ð2:45Þ

EoutðtÞ ¼
Z

t

0

FEdt0: ð2:46Þ

Here, the internal energy of the outflow component is much
smaller than the kinetic energy if we evaluate the outflow
quantity in a far zone. Thus, we define the kinetic energy of
the outflow by Tout ≈ Eout −Mout.
Before closing Sec. II, we should comment on the

method of evaluating the derivative of vi, which appears
in the equations for τij and does not appear in ideal fluid
hydrodynamics. For the numerical results presented in this
paper, we evaluate it by simple second-order centered finite
differencing. However, vi is not always continuous and
hence this treatment could introduce a nonconvergent error.
We monitor the violation of the Hamiltonian constraint,
H ¼ 0, in particular focusing on the following rest-mass-
averaged quantity,
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ERR ¼ 1

M�

Z
ρ�

jHjP
kjHkj

d3x; ð2:47Þ

where H ¼ P
kHk and Hk denotes individual components

in H like 16πρh, KijKij, ðKk
kÞ2, and the three-dimensional

Ricci scalar. ERR shows the global violation of the
Hamiltonian constraint. For ERR ¼ 0, the constraint is
satisfied, while for ERR ¼ 1, the Hamiltonian constraint is
by 100% violated. Figure 1 shows the evolution of ERR
for the model with αv ¼ 0.01 (see the next section for the
details of our models). This figure illustrates that the
convergence with respect to the grid resolution is far less
than second order. However, the degree of the violation is
reasonably small with ERR≲ 0.01 in our simulation time.
This approximately indicates that the Hamiltonian con-
straint is satisfied within 1% error, and hence, we suppose
that the results obtained in this paper would be reliable at
least in our present simulation time.
For a long-term simulation, however, the violation is

accumulated and eventually it could be so large that we
are prohibited to derive a reliable numerical result or the
computation crashes. For suppressing the numerical error,
we need to implement a better scheme of evaluating this
slowly convergent derivative term.

III. NUMERICAL SIMULATION

A. Brief summary of the simulation setting

Our method for a solution of Einstein’s equation is the
same as that in Ref. [19]: We employ the original version of
the Baumgarte-Shapiro-Shibata-Nakamura formulation
with a puncture-type gauge [21]. The gravitational field
equations are solved in the fourth-order finite differencing
scheme. The axial symmetry is imposed using the cartoon
method [17–19], as already mentioned. A fourth-order
Lagrange interpolation scheme is used for implementing
the cartoon scheme.
A differentially rotating neutron star, which is used as an

initial condition, is modeled employing a piecewise poly-
tropic equation of state with two pieces,

Ppwp ¼
�
κ1ρ

Γ1 ρ ≤ ρ1;

κ2ρ
Γ2 ρ ≥ ρ1;

ð3:1Þ

where κ1 and κ2 are polytropic constants and Γ1 and Γ2

are polytropic indices, respectively. ρ1 is a constant of
the nuclear-density order: We here set it to be
≈2.0 × 1014 g=cm3. In this work, we choose Γ1 ¼ 4=3
and Γ2 ¼ 11=4, respectively.
For constructing initial models, we assume a very simple

profile for the angular velocity given by utuφ¼ Â2ðΩ0−ΩÞ
where Ω0 is the angular velocity along the rotation axis. As
in Ref. [22], we set Â ¼ 0.8Re, and then, the angular
velocity is approximately given by

Ω ≈
Ω0ð0.8ReÞ2

ϖ2 þ ð0.8ReÞ2
; ð3:2Þ

where Re denotes the equatorial coordinate stellar radius.
For the simulation, we pick up a high-mass neutron star
with the coordinate axial ratio 0.3 (i.e., the ratio of the polar
coordinate radius to Re is 0.3). The important quantities for
the initial condition are listed in Table I.
We note that the initial angular-velocity profile

employed in this paper is qualitatively different from that
of the merger remnants of binary neutron stars: For the
realistic binary neutron-star merger, the angular velocity
near the rotation axis is rather slow, reflecting the fact
that the velocity vectors of two neutron stars have the
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t (ms)

αv=0.01,low
αv=0.01,midd
αv=0.01,high

FIG. 1. Evolution of ERR defined in Eq. (2.47) for the model
with αv ¼ 0.01. The results with three different grid resolutions
are plotted.

TABLE I. Key quantities for the initial conditions and parameters of an equation of state employed in the present numerical
simulation: Baryon rest mass, M�, gravitational mass, M, coordinate equatorial radius, Re, circumferential radius at the equatorial
surface, Rc, the maximum rest-mass density, ρmax, angular velocity at ϖ ¼ 0, Ω0, angular velocity at the equatorial surface, Ωe,
dimensionless angular momentum, J=M2, a polytropic constant, κ1, and the value of ρ1 [see Eq. (3.1)], respectively. We note that the
initial values of Tkin=M and Eint=M are 0.048 and 0.062, respectively. The Kepler angular velocity at the equatorial surface is calculated
as ΩK ≔

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

e

p
≈ 9.0 × 103 rad=s.

M�ðM⊙Þ MðM⊙Þ Re (km) Rc (km) ρmax (g=cm3) Ω0 (rad=s) Ωe (rad=s) J=M2 κ1 (cm3=s2 g1=3) ρ1 (g=cm3)

2.64 2.37 11.7 15.7 1.00 × 1015 2.48 × 104 5.25 × 103 0.866 1.24 × 1014 2.04 × 1014
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counterdirection at the merger, and hence, shocks that
dissipate their kinetic energy are formed [2]. Then, the
merger remnant neutron star is weakly differentially rotat-
ing and surrounded by a thick torus. Starting from the
differentially rotating neutron star employed in this paper,
we soon have a (approximately) rigidly rotating neutron
star surrounded by a massive torus, as we show below. Such
an outcome is similar to the merger remnant. One of the
major purposes of this paper is to pay attention to long-term
evolution of this type of outcome.
During numerical evolution, we employ a modified

version of the piecewise polytropic equation of state in
the form

P ¼ PpwpðρÞ þ ðΓ − 1Þρ½ε − εpwpðρÞ�; ð3:3Þ
where εpwpðρÞ denotes the specific internal energy asso-
ciated with Ppwp satisfying dεpwp ¼ −Ppwpdρ−1 and the
adiabatic constant Γ is set to be 3=2. The second term is
added to take into account a shock heating effect. We
choose a relatively small value of Γ in this work to mildly
incorporate the shock heating effects.
Numerical simulations are performed in cylindrical

coordinates ðx; zÞ, and a nonuniform grid is used for x
and z. Specifically, we employ the following grid structure
(the same profile is chosen for z),

Δx ¼
�Δx0 x ≤ xin;

Δxi ¼ fΔxi−1 x > xin;
ð3:4Þ

where Δx0 is the grid spacing in an inner region with
xin ≈ 1.1Re. Δxi ≔ xiþ1 − xi with xi being the location of
the ith grid point. At i ¼ in, Δxi ¼ Δx0. f determines the
nonuniform degree of the grid spacing and we set it to be
1.01. We change Δx0 as Re=75 (low resolution), Re=100
(middle resolution), and Re=125 (high resolution) to con-
firm that the dependence of the numerical results on the
grid resolution is weak. We note that Re=125 ¼ 94 m in
our model. The outer boundary is located at ≈230Re ≈
2600 km for all the grid resolutions. Unless otherwise
stated, we show the results in the high-resolution runs in the
following.
When using a nonuniform grid, numerical instability is

often induced in a long-term simulation due to the gradual
growth of high-frequency noises in the geometric variables,
in particular in the extrinsic curvature. To suppress the
growth of unstable modes associated with the numerical
noises, we incorporate a six-order Kreiss-Oliger-type dis-
sipation term as (see, e.g., Ref. [23]),

Q → Qþ σ
Δx60
720

Qð6Þ; ð3:5Þ

where σ is a constant of order unity and Q denotes the
geometric quantities. Qð6Þ in the present axisymmetric
simulation is calculated by

Qð6Þ ¼ ∂6Q
∂x6 þ ∂6Q

∂z6 : ð3:6Þ

Note that the coefficient in the second term of Eq. (3.5) is
written in terms of Δx0 (not Δxi) because the accumulation
of the high-frequency noise causes the problem only in
the inner region. We find that with this prescription, the
ERR in Eq. (2.47) can be kept to be ≲10−2 for t≲ 500 ms
(see Fig. 1).
The viscous coefficient is written in the form of

Eq. (2.26). We choose αv ¼ 0.005, 0.01, 0.02, and
0.03.ζ is set to be ≈3Ω0. The viscous angular-momentum
transport time scale is approximately defined by R2=ν [24]
and estimated to be

tvis ≈ 14 ms

�
αv
0.01

�
−1
�

cs
0.2c

�
−2
�

R
10 km

�
2

×

�
Ω

5 × 103 rad=s

�
; ð3:7Þ

where we assumed Eq. (2.25) for ν. In the vicinity of
the rotation axis (for a small value of R and a high value
of cs), the time scale should be initially short. Thus, in
∼10ðαv=0.01Þ−1 ms, the angular momentum is expected to
be transported outward in the differentially rotating neutron
star initially prepared.

B. Numerical results

First, we summarize the typical viscous evolution
process of our differentially rotating neutron-star model,
paying attention to the case of αv ¼ 0.01.
In the very early stage of its evolution, angular momen-

tum in the central region of the neutron star is efficiently
transported outward in ∼10P0 where P0 ¼ 2π=Ω0: the
rotation period along the rotation axis. As a result, the
initially differentially rotated state changes to an approx-
imately rigid rotation state for x≲ Re: see Fig. 2 for the
evolution of the profile of the angular velocity Ω along
the x axis. In the present model, the angular velocity in
the (approximately) rigidly rotating state is only slightly
smaller than the Kepler velocity defined by

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

e

p
which

is 9.0 × 103 rad=s initially. (For larger values of αv, the
relaxed angular velocity is slightly smaller: see the right
panel of Fig. 2.) After a nearly rigidly rotating state is
achieved, the effect of the angular-momentum transport
inside the neutron star becomes weak and its angular
velocity decreases only slowly as a result of the outward
angular-momentum transport induced by the viscous effect
that occurs in the outer region of the neutron star: see the
right panel of Fig. 2. Since the angular velocity in the
vicinity of the rotation axis is monotonically and steeply
reduced in a few ms, we plot only the subsequent evolution
in Fig. 2. This figure shows that although the decreased
time scale of the angular velocity is quite long, it is
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certainly reduced in a time scale of ∼102 ms. This is due
to the presence of the dense envelope and dense torus
surrounding the neutron star to which the angular momen-
tum is gradually transported from the main neutron-star
body. Thus, the time scale of ∼102 ms is determined by the
evolution time scale of the torus (see below). Figure 2 also
shows that the numerical results for the long-term evolution
of the neutron star depend very weakly on the grid
resolution irrespective of the values of αv.
Figure 3 displays the evolution of density profiles on the

equatorial plane for αv ¼ 0.01 and 0.03. Figure 4 also
displays the evolution of density profiles on the x − z plane
for αv ¼ 0.01. These figures show that in a short time scale
after the onset of the simulations, dense tori with the
maximum density ∼1012 g=cm3 are formed around the
neutron stars. As Figs. 3 and 4 show, the density of the tori
subsequently decreases with time due to a long-term
viscous process. Specifically, matter expands outward by
the viscous heating and angular-momentum transport (see
Fig. 4 and discussion below). These figures indicate that the

viscous braking of the neutron-star rotation should continue
as long as the dense envelope and torus surrounding it
presents [for a time scale ofOð100 msÞ]. The right panel of
Fig. 2 also shows that the spin-down rate of the neutron star
depends only weakly on the grid resolution.
Because of the long-term angular-momentum transport, a

dense and massive torus surrounding the central neutron star
is evolved: see Fig. 4. The neutron-star mass decreases (torus
mass increases) gradually with time. Figure 5 displays the
rest mass contained in given radii as functions of time for
αv ¼ 0.01 (thin curves) and 0.03 (thick curves). The chosen
radii are 13, 66, 200, 330, and 660 km (dashed, solid, dotted,
dot-dot, and dash-dot curves). Up to t ∼ 100 ms, the matter
is ejected from the central neutron star and constitutes a
torus, and for t≳ 100 ms, the rest mass of the neutron star is
approximately fixed (see the dashed curves labeled by
r ¼ 13 km). At t ∼ 100 ms, the neutron-star rest mass,
defined by the rest mass for r ≤ Re, is reduced to 89%
and 85% of the total rest mass for αv ¼ 0.01 and 0.03,
respectively.
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The torus mass should depend on the initial profile of the
angular velocity and the compactness of the neutron star.
Since we knew that tori of such high mass and high density
are often formed around the massive neutron star in the
simulations of binary neutron-star mergers [2,3], in the
present work, we chose the initial condition that could form
the object similar to the merger remnant of binary neutron
stars.
After the formation of the torus, the matter in the torus

expands outward. This is found from Fig. 5: Differences
between the dashed curves of r ¼ 13 km and any other
curves decrease with time; e.g, for αv ¼ 0.03, by compar-
ing the curves of r ¼ 13 and 66 km, we find that the mass
of the inner part of the torus is ∼0.1 M⊙ at t ¼ 50 ms and it
decreases to ∼0.02 M⊙ at t ¼ 300 ms.
The matter of the torus on the equatorial plane has nearly

Keplerian motion (see the left panel of Fig. 2). Thus, in the
outer envelope of the neutron star and in particular in the
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torus, differential rotation remains, and hence, viscous
angular-momentum transport continuously works in the
outer part of the system. Consequently, the viscous heating
plays an important role even after the neutron star settles to
a rigidly rotating state. The time scale for this process
should be much longer than the viscous time scale in the
differentially rotating neutron star, because the values of R
and ν−1 are larger in the outer part than the inner part [see
Eq. (3.7) for the definition of the viscous time scale, tvis].
Figure 6 plots the evolution of total kinetic energy and the

ratio of the total kinetic energy to total internal energy as
functions of time. Due to the continuous viscous process, the
kinetic energy is dissipated and converted to the internal
energy. Forαv ¼ 0.005–0.03, the kinetic energy is decreased
by ∼50%–70% until t ≈ 300 ms. Here, the dissipation rate
of the kinetic energy is higher for the larger value of αv. The
ratio of the kinetic to internal energy decreases in a similar
manner to that for the kinetic energy, i.e., the increase rate of
the internal energy ismuch lower than the decrease rate of the
kinetic energy. Our interpretation for this is that the increase
of the internal energy resulting from theviscous dissipation is
consumed by the adiabatic expansion of the torus, as Fig. 4
indicates this fact.
Since no cooling effect except for the adiabatic expan-

sion is taken into account in this study (although we
conservatively include the shock-heating effect by choos-
ing a small value of Γ), the geometrical thickness of the
torus is monotonically increased by the viscous heating.
We note that in the presence of a rapidly rotating neutron
star at the center (in the absence of a black hole that
absorbs matter), torus matter cannot efficiently fall onto
the neutron star. Thus, unless the torus matter is ejected
outwards, it continuously contributes to the viscous heating

and resulting increase of its geometrical thickness. In
reality, the neutrino emission would come into play for
this type of the dense system. The typical neutrino cooling
time scale may be longer than the viscous heating time
scale of ∼100 ms for the region of the density larger than
∼1011 g=cm3 because neutrinos are optically thick and
trapped in the torus [25]. However, after the torus expands
and its density is decreased, subsequent expansion may be
prohibited by the neutrino cooling. On the other hand,
neutrino irradiation may enhance the torus expansion and
mass ejection because the torus and outer part of the
neutron star are quite hot and can be strong neutrino
emitters. Incorporating the neutrino physics is one of the
issues planned for our future work.
As a result of the monotonic increase of the geometrical

thickness of the torus, a funnel structure is eventually
formed (see the bottom panels of Fig. 4). Figure 7 displays
snapshots of the density profiles for a wide region of
1000 × 1000 _km at t ≈ 100, 200, and 300 ms for αv ¼
0.005 (left), 0.01 (middle), and 0.03 (right), respectively.
Vertically expanding matter is clearly found in this figure.
This is very similar to and qualitatively the same as the
structure found in MHD simulations in general relativity
(e.g., Refs. [26,27]). This agreement is reasonable because
in both cases, viscous or MHD shock heating enhances the
geometrical thickness, and thus, the rotating matter expands
in the vertical direction. This result suggests that viscous
hydrodynamics would capture an important part of the
MHD effects such as shock heating and subsequent torus
evolution at least qualitatively.
Due to the continuous viscous heating in the outer part of

the neutron star and surrounding torus, a part of the matter
of the torus is outflowed eventually. Figure 8 displays the
rest mass of the outflowed and ejected matter, Mout and
Mesc, and the averaged velocity of the ejecta as functions
of time. Here, the outflowed component is estimated from
the rest-mass and energy fluxes for a coordinate sphere at
r ¼ 1173 km, and if the specific energy for a fluid
component becomes positive, i.e., ut < −1, we specify it
as the ejecta component. The averaged velocity of the
ejecta is defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tesc=Mesc

p
where Tesc is the kinetic

energy of ejecta: a fraction of Tout that satisfies ut < −1.
We note that the curves for Meje with different grid
resolutions, in general, do not agree well with each other
(this is in particular the case for small values of αv for which
the ejecta mass is small). Our interpretation for this is that
while the outflow is actively driven, there are many fluid
components which are marginally unbound with ut ≈ −1,
and hence, it is not feasible to accurately specify the ejecta
components. However, the final values of the ejecta mass
and kinetic energy depend weakly on the grid resolutions:
These values are determined within a factor of ∼2.
The upper panel of Fig. 8 shows that irrespective of the

values of αv, a fraction of the matter goes away from the
central region. This is reasonable because geometrical
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of αvζ.
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thickness of the torus surrounding the central neutron star
always grows irrespective of αv (see Fig. 7). The total
amount of the outflowed mass is larger for the larger values
of αv for a given moment of time, because the viscous
heating rate is higher.
The outflow component comes primarily from the matter

originally located at the torus, as we already mentioned
(see Fig. 5). Figure 8 indicates that the outflowed mass
eventually converges to a relaxed value for αv ¼ 0.02 and
0.03. This is because the mass of the torus surrounding the
central neutron star decreases with time as mentioned
already. Thus, the final outcome after the evolution of
differentially rotating neutron stars is likely to be a rigidly
rotating neutron star surrounded by a low-density torus and
a widely spread envelope as Fig. 7 indicates.
Figure 8 shows that for αv ≥ 0.02, the total mass of the

ejecta is ≳10−2 M⊙. This value is approximately equal to
or larger than those in the dynamical mass ejection of
binary neutron-star mergers, for which the typical ejecta
mass is 10−3–10−2 M⊙ [28]. Thus, the long-term viscous
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mass ejection from the merger remnant may be the
dominant mechanism of the mass ejection (see, e.g.,
Refs. [29–31] for similar suggestions). On the other hand,
for αv ¼ 0.005 and 0.01, the ejecta mass is of order 10−5

and 10−3 M⊙, respectively: Only a small fraction of the
outflow material can be ejecta. This indicates that to get a
large value of the ejecta mass by the viscous process, an
efficient viscous heating is necessary (in reality, strong
MHD turbulence is necessary).
The bottom panel of Fig. 8 shows that the averaged

velocity of the ejecta is ≲0.1c irrespective of the values of
αv. This is smaller than that for the dynamical mass ejection
[28] but the result is consistent with other viscous hydro-
dynamics results (see, e.g., Ref. [29]). As discussed in
Sec. I, rotating massive neutron stars surrounded by a
massive torus are likely to be canonical outcomes of the
binary neutron-star merger. During the binary merger, the
matter is dynamically ejected, in particular, at the onset
of the merger with the typical averaged velocity ∼0.2c [28].
If the remnant massive neutron stars are long lived, they
may subsequently eject the matter by the viscous effect.
As suggested in this paper, the averaged velocity for it
would be less than half of the velocity of the dynamical
ejecta. Therefore, the viscous ejecta will never catch up
with the dynamical ejecta: The ejecta are composed of two
different components. In the binary neutron-star mergers,
the dynamical ejecta are likely to have a quasispherical
or weakly spheroidal morphology [28]. Thus, the viscous
ejecta are likely to be surrounded by the dynamical ejecta.
As described in Refs. [32,33], in the viscous ejecta as

well as in the dynamical ejecta, r-process nucleosynthesis is
likely to proceed because the ejecta are dense and neutron
rich, and then the ejecta emit high-luminosity electromag-
netic signals fueled by the radioactive decay of the unstable
r-process heavy elements. In the presence of strong viscous
wind, there may be two components in the light curve,
while in its absence, the dynamical ejecta are the primary
sources for the electromagnetic signals [34]. As Kasen and
his collaborators illustrate, the shape of the light curve is
quite different depending on the presence or the absence
of the viscous wind. Our present result indicates that the
viscous ejecta would be surrounded by the quasispherical
dynamical ejecta. This suggests that the emission from the
viscous ejecta could be absorbed by the dynamical ejecta,
and then the absorbed energy could be reprocessed and
power up the emissivity of the dynamical ejecta.
The electromagnetic signal associated with the decay of

unstable r-process elements is one of the most promising
electromagnetic counterparts of the binary neutron-star
mergers. For the detection of these electromagnetic coun-
terparts, we need a theoretical prediction as accurately as
possible. The present study suggests that the light curve of
this electromagnetic signal is uncertain due to the uncer-
tainty of the viscous parameter that determines the ejecta
mass. This implies that for the prediction of the

electromagnetic signals, we have to perform numerical
simulations taking into account a wide variety of the
possibilities for the viscous parameter. Ultimately, we need
to perform a sufficiently high-resolution MHD simulation
with no symmetry that can uniquely clarify the evolution of
the differentially rotating merger remnants in the first-
principle manner.

IV. SUMMARY

Employing a simplified version of the Israel-Stewart
formulation for general-relativistic viscous hydrodynamics
that can minimally capture the effects of the viscous
angular-momentum transport and the viscous heating, we
successfully performed axisymmetric numerical-relativity
simulations for the evolution of a differentially rotating
neutron star, which results in an approximately rigidly
rotating neutron star surrounded by a massive torus. The
detailed evolution process of this model with a sufficiently
high viscous parameter is summarized as follows. First,
by the outward angular-momentum transport process, the
initially differential rotation state is forced to be an
approximately rigid rotation state in the inner region of
the neutron star. At the same time, the torus with substantial
mass is formed due to the viscous angular-momentum
transport from the neutron star. The time scale for this early
evolution is quite short ∼10 ms (i.e., the viscous time scale
of the differentially rotating neutron star). The outcome in
this stage is similar to the merger remnant of binary neutron
stars.
Subsequently, the torus mass (including envelope sur-

rounding the torus) increases spending a long time scale
∼100 ms and eventually reaches ∼0.3–0.4 M⊙ in the
present model (this mass should depend on the initial
choice of the models). After the formation of the system
composed of a (approximately) rigidly rotating neutron star
and a differentially rotating massive torus, the viscous
effect still plays an important role near the outer surface of
the neutron star and in the torus. Due to the subsequent
long-term viscous heating effect there, the thermal pressure
of the torus is increased, and as a result, the geometrical
thickness of the torus monotonically increases. Also, the
torus gradually expands along the equatorial direction
because of the viscous angular-momentum transport. For
a sufficiently high viscous parameter, eventually, a strong
outflow is driven from the torus. The ejecta mass can reach
≳0.01 M⊙ for αv ≥0.02 in our model. Therefore, if a
viscous process is efficient for the remnant of binary
neutron-star mergers, it is natural to expect the ejecta of
large mass that is comparable to or larger than the mass of
the dynamical component to be ejected during the merger
phase. Since its velocity is likely to be smaller than 0.1c,
the viscous-driven ejecta are surrounded by the dynamical
ejecta for which the typical velocity is ∼0.2c.
As we discussed in Sec. I, the remnants of binary

neutron-star mergers are in general differentially rotating
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objects (typically a massive neutron star surrounded by a
torus), which would be evolved by MHD turbulence. Thus,
in reality, the evolution of the merger remnants should be
determined by the MHD processes, and to clarify it, we
have to perform a high-resolution nonaxisymmetric MHD
simulation in general relativity, for which the resolution has
to be higher than the current best one [5]. As we showed in
this paper, if the effective viscous parameter, αv, is larger
than a critical value, a substantial amount of matter is
ejected from the merger remnant. Even for the case that αv
is smaller than the critical value, a large amount of matter
could expand to a region far from the central merger
remnant. Thus, the picture for the evolution of the merger
remnant could be significantly different from that in the
absence of the MHD effects. A future high-resolution
MHD simulation is awaited for precisely understanding
the evolution process of the merger remnant. However, in
the near future, such simulations cannot be done because
of the restricted computational resources. The second-best
strategy for exploring the mass ejection process from the
merger remnant is to perform a detailed viscous hydro-
dynamics simulation systematically changing the viscous
parameter in a plausible range.
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Note added.—Recently, a paper by David Radice [35] was
submitted. He describes another viscous hydrodynamics
formalism that works well. Although he focuses only on
the case with a small viscous parameter [in the terminology
of alpha viscosity, he focuses only on the cases of
αv ¼ Oð10−3Þ or less], we find that his results agree
qualitatively with our findings.

APPENDIX: BLACK HOLE AND TORUS:
TEST SIMULATION

In this appendix, we show results of a test simulation for
the system composed of a black hole and a massive torus
following the request by our referee who asked us to
demonstrate more evidence that our formalism is capable of
performing a long-term viscous hydrodynamics simulation.
The purpose of this appendix is to demonstrate that our
formalism indeed enables us to perform simulations for
strongly self-gravitating systems. A more detailed study
for the black hole-torus systems will be presented in a
future work.

For this simulation, we prepare an equilibrium state
composed of a black hole and a massive torus as the initial
condition using the method of Ref. [36]. For this equilib-
rium state, we employ a nonrotating black hole with the
puncture mass Mbare surrounded by a massive torus with
the rest mass 2.356Mbare. The initial black hole mass
measured by the area of the black hole horizon is
M0 ¼ 1.072Mbare. We note that the initial black hole mass
is slightly different from Mbare because of the presence of
the massive torus. The torus is modeled by the Γ ¼ 4=3
polytropic equation of state and during the simulation, we
employ P ¼ ρε=3 as the equation of state. Following
Ref. [37], we determine the specific angular momentum
of the torus by providing the relation of j ¼ jðΩÞ ∝ Ω−1=4

where j and Ω are the specific angular momentum and
angular velocity, respectively. Note that for j ∝ Ω−b with
b → 1=3, the velocity profile approaches the Keplerian.
With our choice of b ¼ 1=4, the velocity profile looks close
to the Keplerian (see Fig. 9). The inner and outer edges of
the torus are set to be 5 and 100Mbare (see the first panel of
Fig. 10). In the following, we employ a unit in which
Mbare ¼ 10 M⊙ to show the density.
In reality, the system with such a massive torus would

be unstable to nonaxisymmetric instability like the
Papaloizou-Pringle instability [38], even though the angu-
lar velocity profile is far from that of the j ¼ const law.
The purpose of this test simulation is to confirm that our
viscous hydrodynamics formalism enables us to perform a
long-term stable simulation for this self-gravitating system.
Hence, disregarding the nonaxisymmetric instability, we
perform an axisymmetric simulation.
In this test simulation, we set ν ¼ αvc2s=Ωi where we

choose Ωi ¼ 6−3=2M−1
bare, αv ¼ 0.1, ζ ¼ 3Ωi: We employ a

high value of αv to accelerate the evolution. The setup of
the computational domain is as follows: Δx0 ¼ 0.03Mbare,
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10-2

10-1

 1  10  100

Ω
M

ba
re

x / Mbare

∝ x-3/2

t=0 Mbare
t=25000 Mbare

FIG. 9. Profiles of Ω as a function of the cylindrical radius on
the equatorial plane for the torus surrounding the black hole at
t ¼ 0 and t ≈ 20560Mbare. The dot-dot line denotes the inclina-
tion of x−3=2. The angular velocity profiles are only slightly
modified during the evolution and they appear to be always close
to the Keplerian one.
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xin ¼ 1.2Mbare, and f ¼ 1.01 (see Sec III A for these
quantities). The outer boundary along each axis is located
at ≈555Mbare.
During the viscous hydrodynamics process, angular-

momentum transport actively works in the torus, and as
a result, a part of the matter of the torus falls into the black
hole. Then, the mass and spin of the black hole increase
monotonically until the spin parameter reaches a suffi-
ciently high value. After the high-spin state is reached, the
evolution speed of the black hole is decelerated because the
specific angular momentum at the innermost stable circular
orbit around the high-spin black hole becomes lower than
the values of most of the torus matter and the infalling of
the matter into the black hole is suppressed. In this test
simulation, we follow the evolution of the system until the
dimensionless spin, χ, is relaxed to be ≈0.85 (see Fig. 11).
For the analysis of this process, we have to determine

the mass and spin of the black hole. Using the methods
described in Ref. [36], we analyze the quantities of the
apparent horizons of the black hole. First, assuming that the
black hole has the same properties as Kerr black holes even
in the case that it is surrounded by the matter, the mass of
the black hole is determined by

MC ≔
Ce

4π
and MBH ¼ 2Mirr

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p ; ðA1Þ

where Ce is the equatorial circumferential length of
horizons and Mirr is the irreducible mass of the black hole

which is determined from the area of apparent horizons byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH=16π

p
. We describe the method to determine χ in the

next paragraph. Note that all the geometrical quantities are
determined for the apparent horizons. We remark that for
Kerr black holes, MC ¼ MBH is satisfied. We also approx-
imately estimate the mass of the black hole by summing
up the total rest mass of the matter swallowed by the
black hole, Mb, and the initial black hole mass, M0.
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FIG. 10. The same as Fig. 6 but for the evolution of density profiles for the system of a black hole and a massive torus. Time and spatial
coordinates are show in units of Mbare.
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parameter (lower) of the black hole. The mass is determined by
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M0 þMb. The dimensionless spin is determined from AAH
together with the mass determined by Ce=4π (solid curve) and
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This approximate mass of the black hole is referred to as
M0 þMb in the following. We note that the energy of the
matter swallowed by the black hole is smaller than Mb
because of the presence of the gravitational binding energy,
and hence, M0 þMb slightly overestimates the black hole
mass (as shown in Fig. 11).
We determine χ by two methods. In the first method,

we measure Cp=Ce which is a monotonically decreasing
function of χ. Here Cp is the meridian circumferential
length of horizons. Using the value of χ determined by
this method, we subsequently determine MBH shown in
Eq. (A1). In the second method, we use the relation of
MC ¼ MBH for determining the value of χ.
Figure 10 displays the evolution of the density profile

of the torus. Due to the angular-momentum transport
inside the torus, a part of the matter falls into the black
hole and another part of the matter expands outwards
(second and third panels of Fig. 10). By the long-term
viscous heating effect, the inner part of the torus is
heated up significantly, in particular, after a high-spin
state with χ ≳ 0.8 is reached (fourth panel of Fig. 10),
and then, it expands to a vertical direction. By this
outflow, a part of the torus matter is ejected from the

system (fifth panel of Fig. 10). Eventually, a funnel
structure is formed along the rotation axis of the black
hole (sixth panel of Fig. 10). In this final stage of the
evolution, the dimensionless black hole spin is ≈ 0.85
(see Fig. 11).
Figure 11 plots the evolution of the mass and dimen-

sionless spin of the black hole. We note that for χ ≪ 0.1,
the accuracy for the determination of χ is not very good
because the values of Cp=Ce andMirr=ðCe=4πÞ are close to
unity irrespective of the value of χ.
Besides such an early phase of the evolution, it appears

that the quantities of the black hole are determined
accurately because two independent methods for determin-
ing the mass and spin give approximately the same values.
In addition, M0 þMb agrees approximately with the black
hole mass determined by two methods. It is also reasonable
that M0 þMb is slightly larger than MC and MBH.
It is found that by the viscous accretion process, the

system eventually relaxes to a system of a rapidly rotating
black hole surrounded by a geometrically thick accretion
torus. Such an outcome is often found in general-relativistic
MHD simulations (e.g., Refs. [26,27]). Our viscous hydro-
dynamics simulation captures such a feature.
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