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Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous
hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger
and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of
the so-called viscous alpha parameter of the order 10−2 the degree of the differential rotation in the remnant
massive neutron star is significantly reduced in the viscous time scale, ≲5 ms. Associated with this, the
degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of
quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for
modeling the evolution of the merger remnants of binary neutron stars we would have to take into account
magnetohydrodynamics effects, which in nature could provide the viscous effects.
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I. INTRODUCTION

The merger of binary neutron stars is one of the promising
sources of gravitationalwaves forground-basedgravitational-
wave detectors such as advanced LIGO, advanced VIRGO,
and KAGRA [1]. This fact has motivated the community of
numerical relativity to construct a reliable model for the
inspiral,merger, and postmerger stages of binary neutron stars
by numerical-relativity simulations.
The recent discoveries of two-solar mass neutron stars [2]

strongly constrain the possible evolution processes in the
merger and postmerger stages because the presence of these
heavy neutron stars implies that the equation of state of
neutron stars has to be stiff enough to support the self-gravity
of the neutron stars with mass≳2 M⊙. Numerical-relativity
simulations with a variety of hypothetical equations of state
that can reproduce the two-solar-mass neutron stars have
shown that massive neutron stars surrounded by a massive
torus are likely to be the canonical remnants formed after
the merger of binary neutron stars of typical total mass
2.6–2.7 M⊙ (see, e.g., Refs. [3–8] and Refs. [9,10] for a
review).
Because the remnant massive neutron stars are rapidly

rotating and have a nonaxisymmetric structure, they could
be a strong emitter of high-frequency gravitational waves of
frequency 2.0–3.5 kHz (e.g., Refs. [5–10]). This aspect has
attracted special attention in the last decade, and many
purely hydrodynamics or radiation hydrodynamics simu-
lations have been performed in numerical relativity for
predicting the gravitational waveforms. However, the
remnant massive neutron stars and a torus surrounding
them should be strongly magnetized because during the
merger process the Kelvin-Helmholtz instability inevitably
occurs and contributes to significantly enhancing the
magnetic-field strength in a time scale much shorter than

the dynamical one,≲1 ms [11,12]. In addition, the remnant
massive neutron stars are in general differentially rotating,
and hence the magnetic field may be further amplified
through magnetorotational instability [13]. As a result of
these instabilities, magnetohydrodynamics (MHD) turbu-
lence shall develop as shown by a number of high-
resolution MHD simulations for accretion disks (see,
e.g., Refs. [14–16]), and it is likely to determine the
evolution of the system in the following manner: (i) angular
momentum would be quickly redistributed; (ii) the degree
of the differential rotation would be quickly reduced; and
(iii) as a consequence of the evolution of the rotational
velocity profile, nonaxisymmetric deformation may be
modified. By these effects, the remnant massive neutron
stars may result in a weak emitter of high-frequency
gravitational waves.
For rigorously exploring these processes resulting from a

turbulence state, extremely-high-resolution MHD simula-
tion is necessary (see, e.g., Ref. [12] for an effort on this).
However, such simulations will not be practically feasible
at least in the next several years because of the limitation of
the computational resources. One phenomenological
approach for exploring the evolution of the system that
is subject to angular-momentum transport is to employ
viscous hydrodynamics in general relativity [17–19]. The
viscosity is likely to be induced effectively by the local
MHD turbulence [14–16], and thus relying on viscous
hydrodynamics implies that local MHD and turbulence
processes are coarse grained and effectively taken into
account. The merit in this approach is that we do not have to
perform an extremely-high-resolution simulation and we
can save the computational costs significantly.
In this paper, we perform a viscous hydrodynamics

simulation for a remnant massive neutron star of binary
neutron star merger. Following our previous work [19],
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we employ the Israel-Stewart-type formalism [20], in
which the resulting viscous hydrodynamics equations are
not parabolic type but telegraph type and, hence, the
causality is preserved [21], by contrast to the cases in
which Navier-Stokes-type equations [22] are employed.
In Ref. [19], we show that with our choice of the viscous
hydrodynamics formalism, it is feasible to perform long-
term stable simulations for strongly self-gravitating
systems.
This paper is organized as follows. In Sec. II, we briefly

review our formulation for shear-viscous hydrodynamics.
After we briefly describe our setting for numerical simu-
lations in Sec. III, we present the results of viscous
hydrodynamics evolution for the remnant of binary neutron
star merger in Sec. IV. Section V is devoted to a summary.
Throughout this paper, c denotes the speed of light.

II. FORMULATION FOR VISCOUS
HYDRODYNAMICS

A. Basic equations

We write the stress-energy tensor of a viscous fluid
as [19]

Tab ¼ ρhuaub þ Pgab − ρhc−2ντ0ab; ð2:1Þ

where ρ is the rest-mass density, h is the specific enthalpy,
ua is the 4-velocity, P is the pressure, gab is the spacetime
metric, ν is the viscous coefficient for the shear stress, and
τ0ab is the viscous tensor. Here, ρ obeys the continuity
equation∇aðρuaÞ ¼ 0. In terms of the specific energy ε and
pressure P, h is written as h ¼ c2 þ εþ P=ρ. τ0ab is the
symmetric tensor and satisfies τ0abu

a ¼ 0. We suppose that
ν is a function of ρ, ε, P, and angular velocity Ω and will
give the relation below.
Taking into account the prescription of Ref. [20], we

define that τ0ab obeys the evolution equation

Luτ
0
ab ¼ −ζðτ0ab − σabÞ; ð2:2Þ

where Lu denotes the Lie derivative with respect to ua and
we write σab as

σab ≔ hachbdð∇cud þ∇ducÞ ¼ Luhab; ð2:3Þ

with hab ¼ gab þ uaub and ∇a the covariant derivative
associated with gab. ζ is a constant of the ðtimeÞ−1
dimension, which has to be chosen in an appropriate
manner so that τ0ab approaches σab in a short time scale:
we typically choose it so that ζ−1 is shorter than the
dynamical time scale of given systems (but it should be
much longer than the time-step interval of numerical
simulations, Δt).

Equation (2.3) can be rewritten as

Luτab ¼ −ζτ0ab; ð2:4Þ

where τab ≔ τ0ab − ζhab. We employ this equation for τab
as one of the basic equations of viscous hydrodynamics,
and hence the stress-energy tensor is rewritten as follows:

Tab¼ρhð1−c−2νζÞuaubþðP−ρhc−2νζÞgab−ρhc−2ντab:

ð2:5Þ

Then, the viscous hydrodynamics equations are derived
from ∇aTa

b ¼ 0 (see Ref. [19] for details).

B. Setting viscous parameter

In the so-called α-viscous model, ν is written as (see,
e.g., Ref. [23])

ν ¼ αvc2sΩ−1; ð2:6Þ

where cs is the sound velocity and Ω denotes the typical
value of the angular velocity. αv is the so-called α-viscous
parameter, which is a dimensionless constant supposed to
be of the order 10−2 or more as suggested by latest high-
resolution MHD simulations for accretion disks [14–16].
In this paper, we consider viscous hydrodynamics

evolution of a weakly differentially rotating neutron star,
and hence we set

ν ¼ αvc2sΩ−1
f ; ð2:7Þ

where we set Ωf ¼ 2π=ð0.5 msÞ which is close to the
maximum value of the angular velocity for the initial state
of remnant massive neutron stars (see, e.g., Fig. 2). We note
that csΩ−1

f ≲ 15 km with this setting in our present model.
Since csΩ−1

f should not exceed the size of the neutron star,
this is a reasonable setting.
The viscous angular momentum transport time scale is

approximately defined by R2=ν and estimated to be

tvis ≈ 4.4 ms

�
αv
0.01

�
−1
�

cs
0.5c

�
−2
�

R
10 km

�
2

×

�
Ω

104 rad=s

�
; ð2:8Þ

where we assumed Eq. (2.6) for ν. We note that for the
central region of the merger remnant the sound velocity is
quite high, typically as cs ∼ 0.5c with maximum ∼0.6c
(and hence the velocity in most of the region of the merger
remnant is subsonic). In the vicinity of the rotation axis (for
a small value of R), the time scale may be even shorter.
Thus, within ∼5ðαv=0.01Þ−1 ms, the angular momentum is
expected to be redistributed in the merger remnant. In the
following, we will show that this is indeed the case.
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III. SETTING FOR NUMERICAL SIMULATIONS

A. Brief summary of simulation setting

For solving Einstein’s evolution equation, we employ the
original version of Baumgarte-Shapiro-Shibata-Nakamura
formulation with a puncture gauge [24]. The gravitational-
field equations are solved in the usual fourth-order finite
differencing scheme (e.g., Ref. [9] for a review).
The initial condition of the present simulations is

imported from a simulation result for binary neutron star
mergers. That is, we first performed a purely hydrody-
namics simulation for the merger up to ∼5 ms after the
onset of the merger. The merger simulation was performed
with a grid resolution, which is the same as in the high-
resolution viscous hydrodynamics simulation (see below).
Then, we extract the weighted rest-mass density,
ρ� ≔ ραutψ6; weighted spatial velocity field, ûi ≔ hui;
and specific energy, e ≔ hαut − P=ðραutÞ, where α is the
lapse function and ψ is the conformal factor for the three-
dimensional metric, ψ ¼ ½detðγijÞ�1=12, with γij the three-
dimensional metric. We prepare these quantities in a new
computational domain for viscous hydrodynamics and then
solve initial value equations (constraint equations) assum-
ing the conformal flatness of the system. If necessary, an
interpolation for data is performed (this is the case for
lower-resolution runs). The assumption of the conformal
flatness is acceptable because the magnitude for all the
components of ψ−4γij − δij is much smaller than unity (at
most 0.02) for the merger remnant employed in this paper.
For the initial condition, we set τ0ab ¼ 0 for simplicity.
In this study, we employ the so-called H4 equation of

state [25], approximating it by a piecewise polytropic
equation of state with four pieces [26]. During the numeri-
cal evolution, we employ a modified version of the piece-
wise polytropic equation of state in the form

P ¼ PpwpðρÞ þ ðΓ − 1Þρ½ε − εpwpðρÞ�; ð3:1Þ

where εpwpðρÞ denotes the specific internal energy asso-
ciated with Ppwp satisfying dεpwp ¼ −Ppwpdρ−1 and the
adiabatic constant Γ is set to be 1.8. Key quantities for the
initial data employed in this work are shown in Table I.

Numerical simulations are performed in Cartesian coor-
dinates ðx; y; zÞ with a nonuniform grid. Specifically, we
employ the grid structure (the same profile is chosen for y
and z)

Δx ¼
�Δx0 jxj ≤ xin;

Δxi ¼ fΔxi−1 jxj > xin;
ð3:2Þ

where Δx0 is the grid spacing in an inner region with
xin ≈ 22.5 km. Δxi ≔ xiþ1 − xi with xi the location of the
ith grid. At i ¼ in, Δxi ¼ Δx0. f determines the nonuni-
form degree of the grid spacing, and we set it to be 1.03. We
change Δx0 as 295 m (low resolution), 220 m (middle
resolution), and 148 m (high resolution) to confirm that the
dependence of the numerical results on the grid resolution
is weak (see Appendix A). The outer boundary is located at
≈� 2100 km along each axis for all the grid resolutions.
Unless otherwise stated, we will show the results in the
high-resolution runs in the following. We note that the
wavelength of gravitational waves emitted by remnants of
binary neutron star mergers is typically 120 km in our
present model. Thus, with this setting of the computational
domain, the outer boundary is located in a wave zone. To
suppress the growth of unstable modes associated with the
high-frequency numerical noises, we incorporate a six-
order Kreiss-Oliger-type dissipation term as in our previous
study [19].
The viscous coefficient is written in the form of Eq. (2.7).

Latest high-resolution MHD simulations for accretion disks
[14–16] have suggested that the α-viscous parameter would
be of the order 10−2 or more. Taking into account this
numerical-experimental fact, we choose αv ¼ 0.01 and
0.02. ζ is set to be ≈2Ωmax ≈ 6Ωa in this work.

IV. NUMERICAL RESULTS

Figures 1 and 2 display the evolution of the profiles for
the rest-mass density and angular velocity on the equatorial
plane, respectively. For calculating the angular velocity, we
first determine the center of mass ðx0; y0Þ of the massive
neutron star on the equatorial plane. Here, x0 and y0 are in
general slightly different from zero. Then, the angular
velocity is defined by Ω ¼ ½−ðy − y0Þvx þ ðx − x0Þvy�=R2

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
. For these figures, the

left, middle, and right columns show the results for αv ¼ 0,
0.01, and 0.02, respectively. The top, middle, and bottom
rows show the results for t ≈ 0, 3, and 21 ms, respectively.
As we have always observed in the merger simulations

[4–10], the remnants of binary neutron star mergers have a
nonaxisymmetric structure. In the absence of viscous
effects, this nonaxisymmetric structure is preserved for
the time scale of >10 ms (see the left column of Fig. 1)
because of the absence of efficient processes of angular
momentum transport, and thus the differential rotation is
preserved (see the left column of Fig. 2). Note that the

TABLE I. Key quantities for the initial condition employed in
the present viscous hydrodynamics simulations: baryon rest mass
M�, gravitational mass M, maximum rest-mass density ρmax,
angular velocity at R ¼ 0, Ωa, maximum angular velocity Ωmax,
and dimensionless angular momentum J=M2. The mass, density,
and angular velocity are shown in units ofM⊙, g=cm3, and rad/s,
respectively.

M� M ρmax Ωa Ωmax J=M2

2.94 2.62 1.0 × 1015 3.2 × 103 9.4 × 103 0.76
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torque exerted by the massive neutron star of nonaxisym-
metric structure to surrounding material transports angular
momentum outward, but its time scale is not as short as
10 ms.
By contrast, in the presence of viscosity with

αv ¼ Oð10−2Þ, the angular momentum transport process
works efficiently. The middle and right columns of Fig. 2
illustrate that the angular velocity profile is modified
approximately to a uniform profile for R < 15 km in the
time scale of less than 10 ms. As a result, the rest-mass
density profile is also modified quickly. The middle
and right columns of Fig. 1 illustrate that in a time scale
of ≪20 ms the nonaxisymmetric structure disappears
and the remnant becomes approximately axisymmetric.

The disappearance of the nonaxisymmetric structure is
reflected in the fact that spiral arms in the envelope
disappear for αv ¼ 0.01 and 0.02 (by contrast, for
αv ¼ 0, the spiral arms are continuously observed). This
results from the viscous effect by which torque exerted by
the remnant massive neutron star is significantly weakened
due to the reduced degree of the nonaxisymmetry. It is also
found from Fig. 1 that in the presence of nonzero viscosity
the matter expands outward: for αv ¼ 0, the region with
ρ ≥ 1012 g=cm3 is extended only to R ∼ 20 km, but for
αv ¼ 0.01 and 0.02, it is extended to R ∼ 30 km.
Figure 3 shows the evolution of the averaged angular

velocity along the cylindrical radius R. The averaged
angular velocity is obtained by averaging Ω along the
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FIG. 1. Evolution of rest-mass density profiles on the equatorial plane with αv ¼ 0 (left column), 0.01 (middle column), and 0.02
(right column). Each column shows three snapshots of different time: the top, middle, and bottom rows show the results for t ≈ 0, 3, and
21 ms, respectively.
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FIG. 2. The same as Fig. 1 but for the angular velocity. The angular velocity is determined by ½−ðy − y0Þvx þ ðx − x0Þvy�=
½ðx − x0Þ2 þ ðy − y0Þ2� where ðx0; y0Þ is a mass center appropriately determined: x0 and y0 are slightly different from zero. Note that for
the white region [near ðx0; y0Þ] we cannot accurately determine the angular velocity.
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azimuthal angle φ ¼ tan−1½ðy − y0Þ=ðx − x0Þ� for fixed
values of R and z as

Ω̄ðR; zÞ ¼ 1

2π

Z
2π

0

ΩðR; z;φÞdφ: ð4:1Þ

As is often observed in numerical-relativity simulations
(e.g., Ref. [3]), the merger remnants are initially differ-
entially rotating, and the maximum of the angular velocity
Ω is located in the vicinity of the stellar surface of the
remnant massive neutron stars. Such profiles are formed
during the merger process, because at the onset of the
merger, two neutron stars with opposite velocity vectors
collide with each other, and kinetic energy is dissipated at
their contact surfaces. In the absence of the viscous effects,
this profile is preserved for a time scale longer than 20 ms.
By contrast, in the presence of the viscous effects, this
differential rotation disappears in the viscous time scale tvis
because of the efficient viscous angular momentum trans-
port. Because the peak of Ω is initially located near the
stellar surface, the angular velocity near the rotation axis is
increased. That is, the angular momentum is transported
inward inside the massive neutron star. In this example, the
rotation period of the resulting massive neutron star, 2π=Ω,
is relaxed uniformly to be ≈1 ms.
Associated with the viscous angular momentum trans-

port, a massive torus surrounding the central massive
neutron star develops in the presence of viscosity. The
rest mass of the torus, measured for the matter with R ≥ 10
and 15 km at t ¼ 20 ms, is ≈0.41 and 0.19 M⊙ for αv ¼
0.02 and≈0.38 and 0.17 M⊙ for αv ¼ 0.01. The torus mass
for αv ¼ 0 at t ¼ 20 ms is ≈0.26 and 0.15 M⊙ for R ≥ 10
and 15 km, and hence the viscous angular momentum
transport enhances the massive torus formation.
As shown in Fig. 3, the torus is preserved to be

differentially rotating around the central massive neutron

star, and hence it is still subject to viscous heating and
viscous angular momentum transport. As indicated in our
previous study [19], the inner part of the torus will be
heated up significantly due to the long-term viscous
heating, and eventually an outflow could be driven with
a substantial amount of mass ejection. Exploring the
generation processes of the outflow and mass ejection
by a long-term numerical-relativity simulation is one of our
future issues.
These viscous effects are reflected intensely in gravi-

tational waves emitted by the remnant massive neutron
star. Figure 4 shows the gravitational waveforms for
αv ¼ 0, 0.01, and 0.02 altogether. Here, we plot the real
part of the outgoing components of the complex
Weyl scalar (the so-called Ψ4) for the l ¼ m ¼ 2 spin-
weighted spherical-harmonics component. For αv ¼ 0,
quasiperiodic gravitational waves are emitted for a
time scale much longer than 10 ms, reflecting the fact
that the nonaxisymmetric structure of the massive neutron
star is preserved (this waveform is essentially the same as
what we found in our merger simulation [6]). The right
panel of Fig. 4 clearly shows that the amplitude of
gravitational waves is nearly constant for this case. By
contrast, the gravitational-wave amplitude decreases expo-
nentially in time in the viscous time scale for αv ≠ 0. This
reflects the fact that the nonaxisymmetric structure of the
massive neutron star disappears in the viscous time scale.
This suggests that in the presence of MHD turbulence
which would induce turbulence viscosity the merger
remnant of binary neutron stars may not emit high-
amplitude gravitational waves for a time scale longer
than ∼10 ms.
The right panel of Fig. 4 shows that the amplitude

of gravitational waves damps in an exponential manner
∝ expð−t=τÞ where τ is the e-folding damping time scale.
In the present results, τ is approximately written as
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FIG. 4. Left: gravitational waveforms for αv ¼ 0, 0.01, and 0.02. Here, we plot the real part of Ψ4 for the l ¼ m ¼ 2 spin-weighted
spherical-harmonics component. D and m0ð¼ 2.7 M⊙Þ are the distance from the source to the observer and initial gravitational mass of
the binary system. We assume that the observer of gravitational waves is located along the rotation axis of the massive neutron star.
Right: evolution of the absolute value of Ψ4. To clarify the exponential damping of the curves, for plotting the right panel, we apply a
filter to jΨ4j in order to erase high-frequency noises.
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τ ≈ 3.6 ms

�
αv
0.01

�
−1
: ð4:2Þ

This time scale agrees approximately with the time scale for
the change of the angular velocity profiles found in Fig. 3.
We note that the author of Ref. [18] recently performed a

viscous hydrodynamics simulation for the merger of binary
neutron stars. He also showed that the luminosity of
gravitational waves decreases with the increase of the
viscous coefficient, although he focused only on the case
with a small viscous parameter [in the terminology of alpha
viscosity, he focuses only on the cases of αv ¼ Oð10−3Þ
or less].
Figure 5 plots the spectrum of gravitational waveforms

defined by heff ≔ jf ~hðfÞj where ~hðfÞ is the Fourier trans-
formation of gravitational waves defined by

~hðfÞ ≔
Z

T

0

hðtÞe−2πiftdt: ð4:3Þ

Here, T corresponds to the final time of the simulation, and
hðtÞ ¼ hþ − ih× with hþ and h× denoting the plus and
cross modes of gravitational waves. In numerical
simulation, we obtain ḧðtÞð¼ Ψ4Þ, and hence we calculate
~hðfÞ by

~hðfÞ ¼ −
Z

T

0

Ψ4ðtÞ
ð2πfÞ2 e

−2πiftdt: ð4:4Þ

Figure 5 shows that the peak amplitude decreases
monotonically with the increase of αv, while the peak

frequency depends only weakly on the value of αv. We note
that we stopped our simulations at t ≈ 25 ms, and hence for
αv ¼ 0 for which gravitational waves are emitted for a time
scale longer than 25 ms, the peak amplitude of ~hðfÞ would
be underestimated.
To qualitatively understand the behavior on the decrease

of the peak amplitude for the spectrum, we consider a
simple model in which the gravitational waveforms
denoted by h ≔ hþ − ih× are written as a monochromatic
form A expð2πifpt − t=τvÞ where A is the amplitude of h,
fp is the monochromatic frequency of gravitational waves,
and τv denotes the damping time of the gravitational-wave
amplitude [which should be proportional to α−1v and
approximately equal to τ in Eq. (4.2)]. Then, at the peak
of the Fourier spectrum, f ¼ fp, we obtain

j ~hðfpÞj ¼ ½1 − expð−T=τvÞ�Aτv: ð4:5Þ

Thus, for T=τv ≫ 1, j ~hðfpÞj ¼ Aτv. Since j ~hðfpÞj ¼ AT
for τv → 0, the peak amplitude is by a factor of τv=T (i.e.,
by a factor of several) smaller than that in the nonviscous
case. The numerical results agree qualitatively with this
rule.

V. SUMMARY

Employing a simplified formalism for general-relativistic
viscous hydrodynamics that can minimally capture the
effects of the shear-viscous stress, we performed numerical-
relativity simulations for the evolution of a remnant of binary
neutron star merger, paying particular attention to gravita-
tional waves emitted by the merger remnant. As often found
in the purely hydrodynamical simulations [3–10], in the
absence of viscous effects, the merger remnant emits qua-
siperiodic gravitational waves for a time scale longer than
10 ms, keeping their amplitude high and their frequency
approximately constant. However, in the presence of viscous
effects, the amplitude of gravitational waves damps in
an exponential manner in time. The time scale of the
exponential damping agrees approximately with the viscous
time scale, which is≲5 ms for a plausible viscous coefficient
with αv ≳ 0.01. This suggests that the merger remnant of
binary neutron stars may not be a strong emitter of gravi-
tational waves.
In reality, the viscous effects would be induced by

MHD turbulence. Since we do not know whether the
MHD turbulence is equivalent to the shear viscous-
hydrodynamical turbulence, our present result is still specu-
lative. To obtain the true answer in this problem, we have to
perform an extremely-high-resolution MHD simulation in
the future. However, it will not be an easy task to perform
such simulations in the near future because of the limitation
of computational resources. Thus, the best attitude we can
currently take is to keep in mind that there would be a
variety of the possibilities for the evolution of the merger
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FIG. 5. The spectrum of gravitational waves for αv ¼ 0, 0.01,
and 0.02 with D ¼ 100 Mpc. We assume that the observer is
located along the most optimistic direction (i.e., along the rotation
axis). The spectrum, heff , is defined by j ~hðfÞfj where ~hðfÞ is the
Fourier spectrum of gravitational waves. The dashed curve
referred to as aLIGO denotes ½SnðfÞf�1=2, where Sn is the
one-sided noise spectrum density for the “Zero Detuning High
Power” configuration of advanced LIGO [27].
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remnants of binary neutron stars because we have not yet
fully understood the physics for the merger remnant. Thus,
even if gravitational waves of a significant amplitude are not
observed for the postmerger phase of binary neutron star
mergers in the near-future gravitational-wave observation,
we should not consider that such observation implies that a
massive neutron star is not formed after the merger. On the
other hand, if gravitational waves of a significant amplitude
are observed for the postmerger phase of binary neutron star
merger, we will be able to conclude that a massive neutron
star is formed as a remnant and viscous effects do not play an
important role for the merger remnant.
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APPENDIX: CONVERGENCE AND ACCURACY

The results shown in this paper depend only weakly on
the grid resolution. To demonstrate this fact, we plot the
averaged angular velocity profile and gravitational wave-
forms in Fig. 6. This shows that the numerical results
indeed depend very weakly on the grid resolutions. The
plots of Fig. 6 show that our numerical results are reliable.
This result illustrates a merit of employing viscous hydro-
dynamics, that we do not have to perform simulations with
extremely high resolution in this framework, in contrast to
the cases of MHD simulations.
To check the accuracy of our simulations, we also

monitored the violation of the Hamiltonian constraint,
denoted by H ¼ 0. Following our previous paper [19],
we focus on the following rest mass-averaged quantity,

ERR ¼ 1

M�

Z
ρ�

jHjP
kjHkj

d3x; ðA1Þ

where H ¼ P
kHk and Hk denotes individual components

in H composed of the energy density, the square terms of
the extrinsic curvature, and the three-dimensional Ricci
scalar. M� denotes the total rest mass of the system. ERR
shows an averaged degree for the violation of the
Hamiltonian constraint (for ERR ¼ 0, the constraint is
satisfied, while for ERR ¼ 1, the Hamiltonian constraint
is violated by 100%). Figure 7 plots the evolution of ERR
for αv ¼ 0 and 0.02 and for the three grid resolutions. As
we showed in Ref. [19], the convergence with respect to the
grid resolution is lost because the spatial derivative of the
velocity, which presents in the equations of τij, introduces a
nonconvergent error. However, the degree of the violation
is kept reasonably small, i.e., ERR≲ 0.015, in our simu-
lation time, irrespective of the values of αv. This approx-
imately indicates that the Hamiltonian constraint is satisfied
within a 1.5% error. Therefore, we conclude that the results
obtained in this paper are reliable at least in our present
simulation time.
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