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Supermassive stars (SMSs) of mass ≳105 M⊙ are candidates for seeds of supermassive black holes
found in the center of many massive galaxies. We simulate the gravitational collapse of a rigidly rotating
SMS core including nuclear burning effects in axisymmetric numerical relativity. We consider SMS cores
composed of primordial metallicity and of helium in this paper. We find that for our chosen initial
conditions, the nuclear burning does not play an important role. After the collapse, a torus surrounding a
rotating black hole is formed and a fraction of the torus material is ejected by a hydrodynamical effect. We
quantitatively study the relation between the properties of these objects and rotation. We find that if a SMS
core is sufficiently rapidly rotating, the rest mass of the torus and outflow are approximately 6% and 1% of
the initial rest mass, respectively. The typical average velocity and the total kinetic energy of the outflow are
0.2c and 1054−56 erg where c is the speed of light. Finally, we briefly discuss the possibility for observing
the outflow, ringdown gravitational waves associated with the formation of black holes, and gravitational
waves from the torus.
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I. INTRODUCTION

Recent observations have discovered strong evidence
that many galaxies harbor a supermassive black hole
(SMBH) in their center. However, the formation process
of SMBHs still remains unsolved. One possible scenario is
the so-called direct-collapse scenario [1]. In this scenario,
one supposes that a supermassive star (SMS) with mass
≳105 M⊙ is formed in a very hot primordial gas cloud with
its virial temperature ≳104 K, and it subsequently forms a
high-mass seed black hole through gravitational collapse.
Recently, a luminous metal-free galaxy is detected at
z ¼ 6.6 and it is suspected to have a direct collapse black
hole [2,3]. We note that for such high-temperature environ-
ment, a mass-accretion rate to the growing SMS with
> 0.1 M⊙=yrs is possible [4].
During the gas accretion, the temporalmass accretion rate,

_MBH, is naively bounded by the Eddington rate such that

_MBH ¼ 1 − ξ

ξ

4πGmp

cσT
MBH; ð1:1Þ

where G; c; ξ; mp; σT , and MBH are the gravitational con-
stant, the speed of light, the energy conversion rate by
accretion (< 1), the mass of proton, the Thomson scattering
cross section, and the temporal mass of the black hole,
respectively. Then we can estimate the growth time by
solving Eq. (1.1) and get

tgrowth ≈ 0.12 × log10

�
MBH

Mseed

�
Gyr; ð1:2Þ

where Mseed is the mass of the seed black hole and we take
ξ ¼ 0.1. For a SMBH with mass 107 M⊙, which is the
typical mass of SMBHs in local spiral galaxies [5], and for
Mseed ¼ 100 M⊙, which is a typical value of first stars [6],
we get tgrowth ¼ 0.58 Gyr. On the other hand, in the direct-
collapse scenario, inserting Mseed ¼ 105 M⊙ and MBH ¼
107 M⊙ to Eq. (1.2), we get tgrowth ¼ 0.23 Gyr. Thus the
condition for the mass accretion rate to form SMBHs is
relaxed. This scenario is also thought to be one possible
scenario that could form SMBHs in the early universe at
redshift z > 6 (e.g., Refs. [7,8]).We note that there is another
possible scenario that supercritical accretion (the mass
accretion which rate is larger than the Eddington rate) could
help the stellar mass BHs to grow up rapidly to the SMBHs
[9–11].
Recent researches for SMS formation in spherical sym-

metry (e.g., Refs. [12–15]) have proposed that a SMS with
mass ≳2 × 105 M⊙ could be formed if the mass-accretion
rate reaches0.1 M⊙=yrs (i.e., the temperature of a primordial
gas cloud becomes ≳104 K) and lasts for more than the
period of nuclear-burning phases (≈ 2 × 106 yrs [16]). To
achieve such high virial temperature, there should not exist
molecular hydrogen (H2) in a primordial gas cloud. In the
absence of H2, the gas cloud could reach this virial
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temperature because atomic hydrogen cooling could achieve
only about 104 K [17]. There are several routes to destroyH2

molecules such as photodissociation by Lyman-Werner
radiation from nearby local star formation regions [17–19]
or collisional dissociation in the cold accretion flows in the
forming first galaxies [20].
Latest numerical simulations suggest that SMSs are

rotating because the environments surrounding each
protostar of SMSs are not spherically symmetric (e.g.,
Refs. [21–24]). Also SMS cores seem to be rigidly rotating
because convection is strongly enhanced if they are in
nuclear-burning phases [13,16,21].
If SMSs have sufficiently large mass, they may collapse

due to the so-called general-relativistic radial instability
(e.g., Ref. [25]). If a SMS core is rotating, the condition for
a SMS core to become unstable to the gravitational collapse
is greatly different from the nonrotation case because rota-
tion strongly stabilizes a SMS core (e.g., Refs. [26–30]).
Our previous result suggests that SMS cores can be stable
unless their mass exceeds about 6.3 × 105 M⊙ in the
hydrogen-burning phase and 2.3 × 105 M⊙ in the
helium-burning phase if they are rotating at mass-shedding
limit [30]. These critical values are about 5 times larger than
those for nonrotating SMSs.
SMSs have not been directly observed yet. However, in

its presence, the gravitational collapse of SMS cores could
be observed. Our previous study [31] proposed that if a
SMS core is rotating, gravitational waves associated with
the quasi-normal mode ringdown are emitted during the
black-hole formation and if it occurs at the cosmological
redshift less than ≈3, the signal will be detectable by space
laser interferometric detectors like Laser Interfermometer
Space Antenna (LISA) [32]. If a supermassive star is
rapidly and extremely differentially rotating, it would form
two supermassive black holes during the collapse, and their
inspiral and merger emit strong gravitational waves which
are detectable at redshift z≳ 10 by the DECIGO or the Big
Bang Observer [33]. Other studies show that a collapsing
SMS may be detectable as a gamma-ray burst or an
ultraluminous supernova if the formed black hole launches
a relativistic jet during the collapse [34,35].
The primary purpose of this paper is to explore the

effects of nuclear burning in the collapse of SMSs and for
the remnants of the SMS collapse. For the effect of nuclear
burning, there are several pioneering studies that indicate
that its effect may change the SMS collapse into an
explosion like pair instability supernovae [36–38].
However, they focused only on a restricted class of the
gravitational collapse of SMS cores. In Refs. [36,37], the
authors considered SMS cores of primordial composition
as well as varying initial metallicities (just the abundance of
CNO) with the inclusion of nuclear reactions and discov-
ered that a SMS core would explode by the ignition of the
hydrogen during the collapse phase if its initial metallicity
is larger than Oð10−3Þ. In Ref. [38], they considered

nonrotating SMSs and concluded that a SMS with mass
close to≈55500 M⊙ would explode due to helium burning.
In reality, the typical metallicity of the SMS core at
hydrogen burning phase will be Oð10−9Þ because a super-
massive protostar’s initial contraction will continue until
triple-alpha reaction produces such a small fraction of CNO
for hydrogen-burning through the CNO cycle by which the
protostar will reach a hydrostatic equilibrium [16]. It is also
natural to consider that SMSs would be rapidly rotating
[24]. Moreover, no study has paid special attention to the
evolution of the remnant formed after the SMS core
collapse.
In this paper, we perform general-relativistic simulations

of the gravitational collapse of rotating SMS cores from
plausibly realistic initial conditions including the effects of
nuclear burning and rotation. We will show that for the
initial conditions we employ, a black hole is formed
irrespective of the presence of the nuclear burning effect.
In addition, a torus surrounding the black hole is formed.
We will also show that for the evolution of the torus, the
nuclear burning effect does not play an important role.
After the black-hole formation, a fraction of the torus

material is ejected as an outflow due to purely hydrody-
namical effect. We will describe the formation process of
the outflow (see Ref. [39] as a pioneering study). We will
show that if the initial SMS core is sufficiently rapidly
rotating, the typical total kinetic energy and speed of the
outflow are 1054−56 erg and 0.2c, respectively.
The paper is organized as follows. In Sec. II, we describe

the setup of our numerical simulation. In Sec. III, we
describe the overview of the collapse showing our results of
numerical simulations and discuss the effects of nuclear
burning. We also study the dependence of the mass of the
torus surrounding a black hole formed after the collapse on
the rotation and adiabatic constant. In Sec. IV, we describe
the formation process of the outflow and explore its pro-
perties. In Sec. V, we discuss the possibility for observing
the outflow and gravitational waves. Section VI is devoted
to the conclusion.

II. NUMERICAL SETUP

A. Calculation of gravitational field

For solving Einstein’s evolution equations, we use the
same method as in Ref. [31]. We employ the original
version of BSSN (Baumgarte-Shapiro-Shibata-Nakamura)
formalism with a puncture gauge [40–43]. In the 3þ 1
formulation, the metric is defined by the form

ds2 ¼ −α2c2dt2 þ γijðdxi þ βicdtÞðdxj þ βjcdtÞ; ð2:1Þ

where α; βi, and γij are the lapse function, the shift vector,
and the induced metric on three-dimensional (3D) spatial
hypersurfaces, respectively. We also define the extrinsic
curvature by
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Kij ≡ −γαi γ
β
j∇αnβ; ð2:2Þ

where nμ is a timelike unit-normal vector orthogonal
to three-dimensional (3D) hypersurfaces. In the BSSN
formalism, we evolve ρg ≡ ðdet γijÞ−1=6, ~γij ≡ ρ2gγij, ~Aij ≡
ρ2gðKij − γijKk

k=3Þ, Kk
k, and Fi ≡ δjk∂j ~γik. We use the

standard 4th-order finite differencing scheme to solve the
gravitational-field equations (see chapter 3 of [44] for a
review).
A previous work indicates that if a SMS core is rigidly

rotating, there would be essentially no nonaxisymmetric
deformation during the collapse [45]. Hence we assume the
axial symmetry and use a 4th-order cartoon method to
impose this condition to the gravitational field [46,47]. We
neglect viscosity because the time scale of the gravitational
collapse is much shorter than the viscous time scale. We
only consider the collapse of SMS cores because the
density of their envelope is very low, and hence, they
are unlikely to affect the collapse dynamics and subsequent
formation process of a black hole surrounded by a dense
torus formed in the vicinity of the central region.
We perform numerical simulations in cylindrical coor-

dinates ðX; ZÞ, and a nonuniform grid is used for X
and Z in the following manner. We define the grid spacing
at the center by ΔX0 ≡ X1 − X0. Here X0 ¼ 0 and Xi
is the location of ith grid. We use different manners
of grid spacing inside and outside a grid Xin. For
Xi < Xin, ΔXi≡Xi−Xi−1¼ΔX0ðconstÞ, and for X ≥ Xin,
ΔXi ¼ ηΔXi−1, where η is a constant. η determines the
nonuniform degree of the grid spacing. We set Xin ∼ RM
where RM is the gravitational radius defined by

RM ≡GM0

c2
; ð2:3Þ

and M0 is the initial gravitational mass of the SMS core.
We set outer boundaries of the computational domain at

≈600RM along each axis. To calculate the propagation of
the outflow, we expand the computational domain to
≈4800RM along each axis after the formation of the central
black hole. We set ΔX0 ≈ 0.037RM; η ¼ 1.018 for the
low-resolution case, ΔX0 ≈ 0.027RM; η ¼ 1.017 for the
middle-resolution case, and ΔX0 ≈ 0.023RM; η ¼ 1.014
for the high-resolution case. We show that the numerical
results have a good convergence property for our models in
Sec. III.

B. Equations of the fluid

To self-consistently calculate the effect of nuclear
burning, we follow the method employed in Ref. [48].
We introduce two categories of density, i.e., the rest-
mass density, ρ0, and the baryon density, ρ, defined
respectively by

ρ0 ¼
X
i

miniði ¼ p; α;C; eÞ; ð2:4Þ

ρ ¼ muðnp þ 4nα þ 12nCÞ ¼ munB; ð2:5Þ

where mu and nB are the atomic mass unit and the baryon
number density. We use mi and ni for the rest mass and
number density of the ith species. Subscripts p, α, C, and e
denote H, 4He, 12C, and electron, respectively. We also
define the density of each nucleus by

ρi ≡muAiniði ¼ p; α;CÞ; ð2:6Þ

where Ai is the mass number for each nucleus. According to
the electrical charge neutrality, ne can be written as

ne ¼ np þ 2nα þ 6nC: ð2:7Þ

Note that ρ is proportional to the baryon number density,
and thus, it does not change by nuclear burning. Hence it is
convenient to define thermodynamic quantities in terms
of ρ.
We assume a perfect fluid, and thus, the energy

momentum tensor is written as

Tμν ¼ ρhuμuν þ Pgμν; ð2:8Þ

where

h≡ ρ0
ρ
c2 þ ϵþ P

ρ
; ð2:9Þ

and ϵ, h, P, and uμ are the internal energy per baryon, the
enthalpy per baryon, pressure, and four velocity, respec-
tively. We should be careful that ϵ and h are not equivalent
to the specific internal energy and specific enthalpy,
respectively. For evolving the four velocity and energy
density, we solve the conservation equations for the energy
momentum tensor,

∇μTμν ¼ 0: ð2:10Þ

We note that we do not add any term in the right-hand side
of Eq. (2.10).
In addition, we have to evolve ρi (not ∇μðρuμÞ ¼ 0) by

solving the continuity equations. Before describing the
equations for them, we shall mention the reason that we
introduce ρ and ρ0 independently. The difference between ρ
and ρ0 is defined by

δ≡ ρ0
ρ
− 1 ¼ ΔpYp þ ΔαYα þ ΔCYC; ð2:11Þ

where
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Δp ¼
1

mu
ðmp þme −muÞ; ð2:12Þ

Δα ¼
4

mu

�
mα

4
þme

2
−mu

�
; ð2:13Þ

ΔC ¼ 12

mu

�
mC

12
þme

2
−mu

�
; ð2:14Þ

and Y i ≡ ni=nB ¼ ρi=ðρAiÞ.
Now, we demonstrate how the rest-mass energy is

converted to the internal energy via nuclear burning. For
simplicity, we shall use the fluid rest frame in the following
analysis. Then, the rest-mass energy density released via
the nuclear burning can be written as

dE ¼ −dρ0c2; ð2:15Þ

where d denotes the difference between before and after the
nuclear burning. Using Eq. (2.11) and dρ ¼ mudnB ¼ 0,
Eq. (2.15) can be rewritten as

dE ¼ −ρc2dδ: ð2:16Þ

This equation denotes that the released rest-mass energy is
proportional to the variation of δ. The total energy density
should be conserved, and hence,

dðρ0c2 þ ρϵÞ ¼ 0: ð2:17Þ

Inserting Eqs. (2.15) and (2.16) to Eq. (2.17), we get

dðρϵÞ ¼ dE ¼ −ρc2dδ: ð2:18Þ

Therefore the released rest-mass energy is autonomically
converted to the increase of the internal energy via the
decrease of δ. Actually, some fraction of the released rest-
mass energy is emitted by neutrinos, and thus, this
formalism slightly overestimates the increase of the internal
energy.
If we consider the effect of nuclear burning, the con-

tinuity equations for each nucleus should be written as

∇μðρiuμÞ ¼ Siði ¼ p; α;CÞ; ð2:19Þ

where Si is the source term due to the nuclear burning for
each nucleus. The baryon number density should be
conserved (i.e., ∇μðρuμÞ ¼ 0), and hence, Si should satisfy
the equation

Sp þ Sα þ SC ¼ 0: ð2:20Þ

Our method for numerically solving Eq. (2.19) will be
described in Sec. II D.

C. Equation of state

We assume that the equation of state (EOS) during the
collapse can be written as a sum of the ideal gas and
radiation, i.e.,

P ¼ 1

3
aT4 þ YTkB

mu
ρT; ð2:21Þ

ϵ ¼ aT4

ρ
þ 3

2

YTkB
mu

T; ð2:22Þ

where a; kB, and T are the radiation constant, Boltzmann
constant, and temperature, respectively. YT is defined by

YT ¼ Yp þ Yα þ YC þ Ye: ð2:23Þ

We write the mass fraction of each nucleus as Xα ¼ 4Yα

and ZC ¼ 12YC. If a SMS core is in the ZAMS phase,
their typical values are approximately ðYp; Xα; ZCÞ≈
ð0.75; 0.25; 0Þ, leading to YT ≈ 1.69 and if a SMS core
is just at the onset of the helium burning phase,
ðYp; Xα; ZCÞ ≈ ð0; 1; 0Þ, and thus, YT ≈ 0.75.
This EOS is valid unless electrons become relativistic,

degenerate, or the effects of pair creation of electron-
positron pairs cannot be neglected. That is, this approxi-
mation is valid within the range of ρ < 106 g=cm3 and
T < 109 K. Actually, just before black hole is formed, the
central region of the collapsing SMS core would be out of
this range but our simulations show that this region
immediately falls into the black hole. Hence it will be
safe to consider that the EOS composed of Eqs. (2.21) and
(2.22) is appropriate for our present study.

D. Nuclear burning

By using the baryon number conservation equation (i.e.,
∇μðρuμÞ ¼ 0), Eq. (2.19) can be rewritten as

∂Y i

∂t þ vj
∂Y i

∂xj ¼
Si
ρut

; ð2:24Þ

where vj ¼ uj=ut. It is not an easy task to simultaneously
solve the advection and the nuclear burning network. Thus
we divide Eq. (2.24) into two parts (i.e., operator splitting
approach is employed). First, we solve the advection
equations without nuclear burning, that is,

∂Y i

∂t þ vj
∂Y i

∂xj ¼ 0: ð2:25Þ

This is equivalent to solving

∇μðρiuμÞ ¼ 0ði ¼ p;α;CÞ: ð2:26Þ

Second, we solve equations of nuclear burning reactions
such as
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∂Yp

∂t ¼ Sp
ρut

¼ mu

ut

�
−

_qCNO
QCNO

�
; ð2:27Þ

∂Yα

∂t ¼ Sα
ρut

¼ mu

4ut

�
_qCNO
QCNO

−
_q3α
Q3α

�
; ð2:28Þ

∂YC

∂t ¼ SC
ρut

¼ mu

12ut

�
_q3α
Q3α

�
; ð2:29Þ

where _qJ and QJðJ ¼ CNO; 3αÞ are the energy generation
rate and the energy liberated per baryon of CNO cycle and
triple-alpha reaction, respectively. _qJ has units of erg/g/s. In
this paper, we only consider cold CNO cycle, hot CNO
cycle, and triple-alpha reactions. For _qJ, we employ the
same formulas as those of Ref. [37] [see Eqs. (25)–(27) for
this reference]. We also simulated the gravitational collapse
including the effect of the rp-process using the same
formalism as Ref. [37] as test calculations and found that
the rp-process affects only weakly the gravitational collapse
for models A1 and A3 (see Sec. III A) because this process
becomes efficient only in the very dense and hot region.
The previous studies also show that the rp-process is
inefficient for the gravitational collapse of SMSs [36,37].
Thus, for the product runs, we neglect the rp-process.
We find that when we employ an initial condition with

large metallicity (ZCNO ≳ 10−3), the results of simulations
between our formalism and the formalism employed in
Ref. [37] do not agree with each other. We briefly illustrate
the validity of our calculation of nuclear burning in
Appendix A.
We also compute the neutrino generation rate using the

formulation of Ref. [49] [see Eqs. (2.1), (3.2), and (4.1) for
this reference], but we do not include the effect of neutrino
cooling in our simulations because it is much weaker than
the effect of nuclear burning outside the formed black hole
except just before the black-hole formation (see Sec. III B).
At the black-hole formation, the neutrino cooling rate
would become larger than the nuclear burning heating
rate. However at this time, most of the generated neutrinos
would be absorbed by the black hole. Thus, we assume that
the neutrino cooling would be negligible throughout the
collapse.

E. Initial conditions

Following our previous paper [30], we first prepare
equilibrium states of SMS cores which are marginally
stable to the general-relativistic quasiradial instability. We
briefly review the method as follows.
In the stationary and axisymmetric spacetime, the

spacetime line element can be written by

ds2 ¼ −eγsþρsc2dt2 þ e2αsðdr2 þ r2dθ2Þ
þ eγs−ρsr2sin2θðdφ − ωsdtÞ2; ð2:30Þ

where ρs; γs;αs, and ωs are functions of r and θ.
The EOS employed is the same as Eqs. (2.21) and (2.22).

Using the first law of thermodynamics, the adiabatic
constant Γ is calculated as [16]

Γ ¼
� ∂ lnP
∂ ln nB

�
s
¼ 4

3
þ 4σ þ 1

3ðσ þ 1Þð8σ þ 1Þ ; ð2:31Þ

where σ is the ratio of the radiation pressure to the gas
pressure defined by

σ ≡ aT3

3YTnBkB
¼ sγ

4YTkB
: ð2:32Þ

Here sγ and s ¼ sγ þ sg are the photon entropy per
baryon and the total (photon and gas) entropy per baryon,
respectively. If SMS cores are in nuclear-burning phases,
they should be fully convective (e.g., Refs. [13,16]). Hence,
it is natural to assume that SMS cores are isentropic
(s ¼ constant), its chemical composition is uniform
(YI ¼ constant), and they are rigidly rotating. Furthermore
in SMS cores, sγ ≫ sg are realized [16,50] so that sγ is also
nearly constant. Then σ can be assumed to be constant. As a
result, Eq. (2.31) can be easily integrated by nB, and we get
the polytropics EOS

P ¼ KρΓ0 ; Γ ¼ 1þ 1

N
; ð2:33Þ

whereK andN are the polytropic constant and the polytropic
index, respectively. K is written as

K ≈
�
YTkBσ
mu

�4
3

�
3

a

�1
3ð1þ σ−1Þρ−1=ð6σÞ0 : ð2:34Þ

Here, the density dependence ofK can be neglected because
σ ≫ 1 for typical SMS cores. We use this polytropic EOS in
computing equilibrium states and assume that the energy
momentum tensor has the same form as Eq. (2.8).
For SMS cores, their density profile is approximately

described by the Lane-Emden solution of N ¼ 3 even if
they are rotating at mass-shedding limit (e.g., Ref. [51]).
Then by using this solution, the mass of the SMS core, M,
can be approximately written as

M ≈ 4.555G−2
3K

3
2: ð2:35Þ

(This is equivalent to approximatingCnp ¼ C3 of Ref. [30].)
Using Eqs. (2.31), (2.33), (2.34), and (2.35), Γ can be

approximately rewritten as
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Γ −
4

3
≈

1

6σ
≈ 3.8 × 10−3

�
M

105 M⊙

�
−1
2

�
YT

1.69

�
; ð2:36Þ

where we used σ ≫ 1. Inserting Eqs. (2.32)–(2.36), the
relation among the central density, the central temperature,
and the mass of the SMS core can be approximately
written as

Pc

ρ0cc2
∼ 1.1 × 10−3

�
Tc

108.2K

��
M

105 M⊙

�1
2

; ð2:37Þ

where the index c denotes the central value of the SMS
core.
We define two dimensionless parameters, y and β, by

y≡ 2.6324
Pc

ρ0cc2
; ð2:38Þ

and

β≡ Trot

jWj : ð2:39Þ

Here Trot andW denote the rotational kinetic energy and the
gravitational potential energy defined by

Trot ≡ 1

2
JKΩ; ð2:40Þ

W ≡MKc2 −Mpc2 − Trot; ð2:41Þ

where Ω, JK, MK, and Mp are the angular velocity, Komar
angular momentum, Komar mass (gravitational mass), and
the proper mass defined by

JK ≡ 2π

Z
ρ0hutuφe2αsþγsr2drd cos θ; ð2:42Þ

MK ≡ 2π

c2

Z
ð−2Tt

t þ Tμ
μÞe2αsþγsr2drd cos θ; ð2:43Þ

and

Mp ≡ 2π

c

Z
ρ0utðc2 þ ϵÞe2αsþγsr2drd cos θ; ð2:44Þ

respectively.
According to our previous result [30], the condition for

SMS cores to be marginally stable to gravitational collapse
can be written as

Γ −
4

3
¼ y − y2 −

�
10

3
− 2Γ − y − β

�
β: ð2:45Þ

If the value of the left-hand side of Eq. (2.45) is smaller
than the right-hand side, the SMS core is unstable. Using

Eqs. (2.36)–(2.45), the mass of the SMS core which is
marginally stable can be approximately written as

M
1
2

5 ¼
β−3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−3 þ 99T8.2YT1.69

p
8.7T8.2

; ð2:46Þ

where

M5 ≡
�

M
105 M⊙

�
; T8.2 ≡

�
Tc

108.2 K

�
;

YT1.69 ≡
�

YT

1.69

�
; β−3 ≡

�
β

10−3

�
: ð2:47Þ

If a SMS core is in nuclear burning phases, its surface
luminosity, L, and its energy generation rate of nuclear
burning, _Q should agree with each other. Here, L and _Q are
defined by

L≡ −
4ac
3κ

Z
S

1

ρ0
∇iðT4ÞdSi; ð2:48Þ

_Q≡
Z
VS

ρ0 _qdV; ð2:49Þ

where κ, S, and VS denote the opacity, the surface and the
volume of the SMS core, respectively. We assume that the
opacity is dominated by Thomson scattering of free
electrons, i.e., κ ¼ 0.4Ye cm2=g.
We use an iteration method to derive the equilibrium

state of marginally stable SMS cores using Eqs. (2.32),
(2.45), (2.48), and (2.49) as follows. The input parameters
are the chemical composition YIðI ¼ p;α;CÞ and the
rotation parameter β.
(1) Provide input parameters YIðI ¼ p; α;CÞ and β.
(2) Provide a temporal value of y.
(3) Calculate the adiabatic constant Γ by using

Eq. (2.45). Then by using Eqs. (2.31), (2.32) and
(2.34), we determine the polytropic constant K.

(4) Numerically compute ρs; γs; αs;ωs, and the density
profile of the SMS core by solving the set of
equations for stationary axisymmetric rotating equi-
librium in general relativity by using the method
of Ref. [50].

(5) Calculate the temperature profile from Eq. (2.32).
(6) Calculate _Q and L. If _Q > L, we decrease y, and

otherwise, we increase y, and return to step 3.
We iteratively perform the procedures 1–6 until j _Q − Lj
becomes sufficiently small.
In numerical simulations, we initially reduce the temper-

ature uniformly as the initial perturbation. We define a
perturbation parameter DT such that the perturbed temper-
ature can be written as
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T ¼
�
1 −

DT

100

�
T0; ð2:50Þ

where T0 is the unperturbed temperature. We perform
simulations for DT ¼ 0.5, 0.25, 0.125, and 0.0625, respec-
tively (this is approximately the same as uniformly reducing
the pressure by 2%; 1%; 0.5%, and 0.25%, respectively).
After adding the perturbation, the configuration does not

satisfy the constraint equations, and hence, we once more
solve the constraint equations.

III. RESULT

A. Overview of the collapse

We performed numerical relativity simulations for four
initial states of SMS cores listed in Table I. Basically, the
simulations are performed for the middle grid resolution
with DT ¼ 0.5. For selected models, the simulations are
performed for different grid resolutions and for different
values of DT (see, e.g., Figs. 2 and 3). Models A1 and A3
are assumed to be in the ZAMS phase, and A2 and A4 are
just at the onset of the helium-burning phase. For models
A1 and A3, we set that the initial metallicity is of order
10−9 because a supermassive protostar will continue to
contract until triple-alpha burning produces CNO of
ZCNO ≈ 10−9 for hydrogen-burning through the CNO cycle
which allows the protostar to reach a hydrostatic equilib-
rium [16].
Figure 1 displays snapshots of the rest-mass density

profiles for the collapse of a SMS core to a black hole and a
torus surrounding it for model A4. The lower panels are the
snapshots at the same time as the middle panels but they
only depict unbound fluid elements. The black hole is
formed at t ≈ 9400 s (near the time of the 3rd panel). After
the collapse, a torus surrounding the black hole is formed
and a part of the mass becomes unbound and ejected.
Qualitatively, the collapse dynamics for the other models is
similar to model A4.
Figure 2 shows the evolution of the total mass outside the

central black hole, MtotalðtÞ, defined by

MtotalðtÞ≡
Z
V 0
ρ0�dV; ð3:1Þ

as a function of t − tBH where tBH is the time of the black-
hole formation. In Eq. (3.1), V 0 ≡ V − VBH. V and VBH are
the 3D spatial volume of t ¼ const and the region inside the
black hole, respectively. Before the black-hole formation,
V 0 ¼ V. ρ0� ≡ ρ0

ffiffiffiffiffiffi−gp
cut and dV ≡ 2πdXdZ are the

weighted rest-mass density and the volume element,
respectively. We note that tBH for models A1, A2, A3,
and A4 with DT ¼ 0.5 are 2.9 × 104 s, 7.3 × 103 s,
3.8 × 104 s, and 9.4 × 103 s, respectively. The black-hole
formation time, tBH, for model A4 with DT ¼ 0.0625 is
1.1 × 105 s, and hence, tBH depends strongly on the initial
perturbation. (However, the final outcomes of the collapse
depend only weakly on the initial perturbation: see below.)
After the black-hole formation, the mass accretion onto

the black hole continues subsequently for ≈ 100–1000 s,
and the accretion terminates at t − tBH ≈ 300 s,70 s, 800 s,
and 150 s for models A1–A4, respectively. To specify the
mass which is not absorbed by the black hole, we define
Mter as the value ofMtotal at the time at which the accretion
to the black hole terminates. We list Mter together with the
mass (MBH) and dimensionless spin parameter (aBH) of the
final state of the black holes in Table II. Approximately
0.5% of the initial mass is located outside the black hole at
the final state for models A1 and A2. On the other hand,
these values are 5% for rapidly rotating models A3 and A4,
respectively. The values of the dimensionless spin param-
eter, aBH, are ≈0.5 for models A1 and A2 and ≈0.7 for
rapidly rotating models A3 and A4, respectively.
We find that the accretion for hydrogen-burning models

A1 and A3 occurs more slowly than helium-burning
models A2 and A4. This is caused by the fact that the
SMS core density (and spacetime curvature) for models A1
and A3 are lower than for models A2 and A4. The curves
for model A4 with DT ¼ 0.5 and 0.0625 show that the
property of the accretion of the mass to the formed black
hole depends only weakly onDT. This is due to the fact that
after the formation of the black hole, the accreting matter is
approximately in free fall, and thus, the property of the
accretion of the mass does not depend strongly on the initial
perturbation. The mass of the torus depends strongly on the
initial specific angular momentum distribution of the SMS
core (see Sec. III D).
Figure 3 shows the time evolution of the mass

ejected from the domain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
< D, MejeðD; tÞ,

defined by Eq. (B12). We set D ¼ 600RM and define

TABLE I. Key quantities for SMS cores employed in this paper. M5 ≡M0=105 M⊙. “Shedd” means that the SMS core is at mass-
shedding limit (Trot=jWj ≈ 0.009). ZC9 is defined by ZC=10−9. Γ is the initial polytropic index defined by Eq. (2.33). ρc and Tc are the
initial central density and temperature, respectively.

Model M5 Trot=jWj Yp Xα ZC9 Γ phase ρc[g=cm3] Tc[108K]

A1 1.99 0.002 0.75 0.25 5 1.3360 ZAMS 1.1 1.5
A2 0.47 0.002 0 1.0 0 1.3358 He-burning 17 3.0
A3 6.56 Shedd 0.75 0.25 5 1.3348 ZAMS 0.64 1.6
A4 1.57 Shedd 0 1.0 0 1.3347 He-burning 11 3.2
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MejeðDÞ≡MejeðD; t ¼ t�Þ where t� is the time at which all
of the fluid elements of the outflow finish escaping from the
domain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
< D. We find that MejeðDÞ depends

only weakly on D as long as D ≥ 600RM, and thus, we
omit the argument D in Meje in the following. It is found
thatMeje=M0 is approximately 0.2% for models A1 and A2
and 1% for rapidly rotating models A3 and A4, respec-
tively. The outflow is driven by a purely hydrodynamical
effect (see Sec. IVA). Thus Meje is approximately 1=5
times smaller than Mter.
Unlike Mter, the total mass of the outflow for model A4

with DT ¼ 0.0625 is approximately 70% of that for model
with DT ¼ 0.5. We will discuss the reason for this as well
as the property of the outflow in detail in Sec. IV (see also
Appendix C for a method to take DT ¼ 0 limit for the
outflow).

We also explored the gravitational collapse of non-
rotating SMSs with the same initial chemical composition
as for models A1 and A2, and found that for both of them a
BH with no surrounding torus is formed. Outflow was not
also found. These result are consistent with previous
studies [36–38]. In Ref. [37], they found that when a
nonrotating SMS of special mass becomes gravitationally
unstable in the helium-burning phase, it would explode due
to helium-burning. However, the mass range for which a
SMS could explode is very narrow (core mass ≈30500 M⊙
and total mass ≈55500 M⊙), and our initial condition is out
of this range (core mass ≈31300 M⊙). Thus, our result
does not contradict with that in Ref. [37].
Before closing this subsection, we remark the conver-

gence property of the numerical results. Figures 2 and 3
show a good convergence of the numerical result for model
A4 among the low, middle, and high resolution results. We
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FIG. 1. Snapshots of density profiles during the SMS core collapse for model A4. The 7th–9th panels show only unbound material.
The red arrows denote the velocity profile, ui=utði ¼ X; ZÞ, which are normalized as indicated in the upper right-hand corner of each
snapshot.
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check that for models A1 and A4, the values of Mtotal
at t − tBH ¼ 2000 s and Meje agree with each other among
the low, middle, and high-resolution cases within 1.5%
disagreement.

B. Nuclear and neutrino interaction rate

Figures 4 and 5 display the time evolution of the averaged
mass fraction of 12C defined by hZCi ¼ MC=Mtotal for
hydrogen-burning models A1 and A3 (Fig. 4) and helium-
burning models A2 and A4 (Fig. 5), respectively. Here,
MCðtÞdenotes the total carbonmass locatedoutside theblack
hole defined by

MCðtÞ≡
Z
V 0
ρ0�ZCdV: ð3:2Þ

Figure 4 shows that hZCi increases exponentially with time
just before the formation of a black hole, butmost of them are
absorbed into the formed black hole. For both models A1

and A3, the value of hZCi at t − tBH ¼ 2000 s is at most
several tens of times larger than the initial values and mass
fractions of protons and heliums are approximately constant
throughout the collapse. Figure 5 shows that several tens
percent of heliums are burned into carbons just before the
black-hole formation, but again almost all of them are
absorbed into the formed black hole and the torus is
composed primarily of heliums.
Figures 4 and 5 show that the nuclear burning more

strongly occurs for slowly rotating models A1 and A2 than
for rapidly rotating models A3 and A4. This fact can be
understood in the following manner. First, if a SMS core is
rapidly rotating, the mass for the SMS core to become
unstable to the gravitational collapse is heavier than the
slowly rotating models because rotation strongly stabilizes
the SMS core against gravitational collapse. We note that
the density of the collapsing core just before the black hole
formation is smaller for the larger mass model because
the length scale of the system is proportional to the mass of
the black hole, MBH. Since the gravitational collapse
proceeds approximately adiabatically, the temperature is
also an increasing function of density. Hence for the lighter
SMS core, the density and temperature at the moment of the
black-hole formation are higher than for the heavier SMS
core, and hence, the lighter SMS core induces stronger
nuclear burning.
Figure 6 displays the time evolution of the total energy

generation rate of the nuclear burning, _Enuc, defined by

_EnucðtÞ≡
Z
V 0
ρ0�ð _qCNO þ _q3αÞdV: ð3:3Þ

This rate exponentially increases just before the black-hole
formation. We also find that for models A1 and A3, _Enuc is
dominated by CNO cycle both before and after the
collapse, and only just before the collapse, the energy
generation rate by CNO cycle and triple-alpha reactions are
comparable.
Figure 7 displays the time evolution of the total energy

loss rate by neutrino, _Eν, defined by
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A4(Low resolution)
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A4(DT=0.0625)

FIG. 2. Time evolution of the total mass located outside the
formed black hole. The purple-solid, green-dotted, light-blue-
dashed, and orange-dashed-dotted curves denote the results for
models A1–A4 with DT ¼ 0.5, respectively. The yellow-long-
dashed and blue-long-dashed-dotted curves are for model A4
with low and high grid resolutions, respectively. The red-dashed-
dotted-dotted curve is for model A4 withDT ¼ 0.0625. tBH is the
time of the black-hole formation.

TABLE II. Quantities for the gravitational collapse of SMS cores.M05: initial mass of SMS cores in units of 105 M⊙.MBH5 and aBH:
mass in units of 105 M⊙ and spin of the remnant black hole.Mter3: The total mass located outside the black hole after the termination of
the mass accretion to the black hole in units of 103 M⊙. Etor: internal energy of the torus. _Enuc and _Eν: nuclear energy generation rate and
neutrino generation rate of the torus. Tmax and ρmax: the maximum temperature and density of the torus. τnuc and τdyn: heating time scales
by nuclear burning and dynamical time (rotation period at the density maximum of the torus). These values are calculated at
t − tBH ¼ 2000 s.

Model M05 MBH5 aBH=MBH Mter3 Etor[erg] _Enuc[erg/s] _Eν[erg/s] Tmax½108K� ρmax½g=cm3� τnuc[s] τdyn[s]

A1 1.99 1.98 0.50 1.0 1 × 1055 1 × 1045 1 × 1037 4.2 20 1 × 1010 110
A2 0.470 0.467 0.51 0.29 4 × 1054 4 × 1046 3 × 1043 9.3 400 9 × 107 25
A3 6.56 6.23 0.69 33 7 × 1056 1 × 1046 1 × 1043 5.2 22 7 × 1010 190
A4 1.57 1.49 0.69 8.2 2 × 1056 1 × 1048 3 × 1047 10 400 2 × 108 46
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_EνðtÞ≡
Z
V
ρ0�ð _qphoto þ _qpair þ _qplasmaÞdV; ð3:4Þ

where _qphoto; _qpair, and _qplasma are the neutrino generation
rates resulting from the photo-neutrino process, pair-
neutrino process, and plasma-neutrino process, respec-
tively. We note again that the effect of neutrino cooling
is not included in our simulations.
In the early phase of the collapse, _Eν is dominated by the

photo-neutrino emission for all the models. Just before the
black-hole formation, _Eν is dominated by the pair-neutrino
emission for all the models. After the collapse, _Eν is
dominated by the photo-neutrino emission for model A1
and by the pair-neutrino emission for models A2–A4.

_Enuc and _Eν in Table II show the values for models A1–
A4 at t − tBH ¼ 2000 s. These values approximately
denote the nuclear burning and neutrino cooling rates of
the torus. We find that for both _Enuc and _Eν, rapidly rotating
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FIG. 3. Time evolution ofMejeðD; tÞ, the unbound mass ejected
from the domain of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
< D defined by Eq. (B12). We set

D ¼ 600RM. The purple-solid, green-dotted, light-blue-dashed,
and orange-dashed-dotted curves denote the results for models
A1–A4 withDT ¼ 0.5, respectively. The yellow-long-dashed and
blue-long-dashed-dotted curves are for model A4 with low and
high grid resolutions, respectively. The red-dashed-dotted-dotted
curve is for model A4 with DT ¼ 0.0625. tBH is the time of the
black-hole formation.

-8

-7

-6

-5

-4

-3

-2

-3000 -2500 -2000 -1500 -1000 -500  0  500  1000  1500

log10〈ZC〉

t-tBH[sec]

A1
A3

FIG. 4. Time evolution of the averaged mass fraction of carbon
for the matter located outside the black hole for hydrogen-
burning models A1 (purple-solid) and A3 (light-blue-dashed).

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-300 -200 -100  0  100  200

〈ZC〉

t-tBH[sec]

A2
A4

FIG. 5. Time evolution of the averaged mass fraction of carbon
for the matter located outside the black hole for helium-burning
models A2 (green-solid) and A4 (orange-dashed).

44

46

48

50

52

54

56

-1500 -1000 -500  0  500  1000  1500

log10E
.

nuc[erg/s]

t-tBH[sec]

A1
A2
A3
A4

FIG. 6. Time evolution of the total energy generation rate of
nuclear burning for the matter located outside the black hole for
models A1 (purple-solid), A2 (green-dotted), A3 (light-blue-
dashed), and A4 (orange-dashed-dotted), respectively.

40

42

44

46

48

50

52

54

56

-1500 -1000 -500  0  500  1000  1500

log10E
.

ν[erg/s]

t-tBH[sec]

A1
A2
A3
A4

FIG. 7. Time evolution of the neutrino generation rate for the
matter located outside the black hole for models A1 (purple-
solid), A2 (green-dotted), A3 (light-blue-dashed), and A4
(orange-dashed-dotted), respectively.

HARUKI UCHIDA et al. PHYSICAL REVIEW D 96, 083016 (2017)

083016-10



models A3 and A4 have larger values than the slowly
rotating models A1 and A2, respectively. In addition,
helium-burning models A2 and A4 have larger rates than
hydrogen-burning models A1 and A3: The former is due to
the fact that for the rapidly rotating models, their tori are
more massive than the slowly rotating models as discussed
above. The latter is due to the fact that for the helium-
buring models, their density and temperature are higher
than for the hydrogen-burning models. We list the maxi-
mum density, ρmax, and maximum temperature, Tmax, of the
torus at t − tBH ¼ 2000 s for models A1–A4 in Table II.
The maximum temperature and density for helium-burning
models A2 and A4 are approximately 2 and 20 times larger
than for hydrogen burning models A1 and A3, respectively.
In Table II, we also list the internal energy of the torus,

Etor, heating time scale of the torus by nuclear burning, τnuc,
and rotation period at the density maximum of the torus,
τdyn at t − tBH ¼ 2000 s for models A1–A4, respectively.
Here, Etor is defined by

EtorðtÞ≡
Z
V 0
ρ�ϵdV; ð3:5Þ

where ρ� ≡ ρ
ffiffiffiffiffiffi−gp

cut. We calculate τnuc by τnuc¼Etor=
_Enuc. τnuc for models A1–A4 is approximately 1 × 1010 s,
9 × 107 s, 7 × 1010 s, and 2 × 108 s, respectively. Hence,
the nuclear reaction time scales is much longer than the
dynamical time scale of the torus.
Before closing this section, we consider the possible

effect of viscosity, which is not taken into account in our
present study but it could play an important role for the
evolution of the torus surrounding the black hole in reality.
In the α-viscous model [52], the viscous heating timescale
is written approximately as

τvis ∼ α−1τdyn: ð3:6Þ

With the values of τdyn listed in Table II, τvis is 110α−1 s,
25α−1 s, 190α−1 s, and 46α−1 s for models A1–A4,
respectively. This suggests that the viscous heating time
scale would be much shorter than the nuclear heating
timescale unless α < 10−6 for all the models. We also note
that the accretion time scale of the torus is the same order as
the viscous heating time scale. Thus if we want to predict
the long-term evolution of the torus, the viscous effect has
to be taken into account.

C. Effects of nuclear burning

The SMS cores do not explode for all the models. For
comparison, we also perform simulations for the same
initial conditions as models A1–A4 but putting out nuclear
burning. We find that the difference of the values of
MBH; aBH; Etor; Tmax, and ρmax between these models and
models A1–A4 are less than 1%. In this section, we clarify

the reason why the nuclear burning does not play an
important role during the collapse for our models.
First, we pay attention to the evolution of various

energies in the gravitational collapse. Figure 8 plots the
evolution of the total kinetic energy, T tot, the rotational
kinetic energy, Trot, the total internal energy, U, the total
gravitational energy, W, the total rest-mass energy which
could be released by nuclear burning, En, and the total
released rest-mass energy by nuclear burning, Er, for model
A1, respectively. Here, T tot, Trot, U, and W are defined by

T totðtÞ≡
Z
V

1

2
ρ0�c2ð1 − ðαcutÞ2ÞdV; ð3:7Þ

TrotðtÞ≡
Z
V

1

2c
ρ0�h0vφuφdV; ð3:8Þ

UðtÞ≡
Z
V
ρ�ϵdV; ð3:9Þ

WðtÞ≡MADMðtÞc2 −MtotalðtÞc2 − T totðtÞ − UðtÞ; ð3:10Þ

and MADM is the ADM mass (gravitational mass)
defined by

MADMðtÞ≡ c2

16πG

Z
V

�
− ~Rþ 16πG

c4
ρhψ

5

þ ψ−7ĀijĀij −
2

3
ψ5K2

�
dV: ð3:11Þ

Here, ψ ¼ ρ−1=2g , Āi
j ≡ ψ6 ~Ai

j, ρh ≡ ρhðαcutÞ2 − P, and ~R is
the Ricci scalar with respect to ~γij, respectively. The
definition of Trot is equivalent to Eq. (2.40). T tot − Trot
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FIG. 8. Time evolution of several key energies for model A1.
T tot; Trot; U;W; En, and Er denote the total kinetic energy, the
rotational kinetic energy, the total internal energy, the total
gravitational energy, the total rest-mass energy which could be
released by nuclear burning, and the total released rest-mass
energy by nuclear burning, respectively. We plot T tot − Trot (red-
solid), jT tot þU þWj (blue-dotted), En (black-dashed), and Er
(green-dashed-dotted), respectively.
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approximately denotes the kinetic energy associated with
the infalling motion. En and Er are defined by

EnðtÞ≡
�
mC

12
−mp −

me

2

�
MtotalðtÞc2

mp
YpðtÞ

þ
�
mC

3
−mα

�
MtotalðtÞc2

mα
XαðtÞ; ð3:12Þ

ErðtÞ≡ Enð0Þ − EnðtÞ; ð3:13Þ

respectively. We find that until the black-hole formation,
T tot − Trot ≫ Er is satisfied. This fact implies that the
nuclear burning cannot halt the collapse of the infalling
matter. It is also found that T tot − Trot > En is satisfied at
t − tBH ≈ 0 s. This fact indicates that after this time, nuclear
reactions cannot induce explosion. We note that for models
A2A4, the relations T tot − Trot ≫ Er and T tot − Trot > En
for t − tBH ≈ 0 s are satisfied. Thus, for any models
employed in this paper, the collapse to black holes cannot
be halted by the nuclear burning.
Next, we consider the property of the torus. As described

in Sec. III B, the nuclear heating time scale is≳108 s for all
the models employed in this paper. By contrast, we find that
the time scale of the formation of the torus is ≲104 s for
all the models. This is much shorter than the nuclear
heating time scale. Hence the nuclear burning does not
modify the property of the torus during the gravitational
collapse.
Finally, we note that the nuclear burning does not play a

role for the outflow. The outflow is initially driven as a
result of the shock heating on the surface of the torus. Here,
the density and temperature in the shock are not high
enough to significantly enhance nuclear burning even at its
formation. Hence the nuclear burning does not affect the
outflow. We describe the formation process of the outflow
in detail in Sec. IV.

D. Torus mass

As we found in the previous section, the effect of nuclear
burning only weakly affects the collapse dynamics and the
properties of the torus and outflow. Then we search for the
relation between Mter and Trot=jWj for given adiabatic
constants neglecting nuclear burning. For this purpose, we
performed simulations for additional initial conditions
(hereafter referred to as N models). The initial conditions
are chosen taking into account the following facts: The red
and blue crosses in Fig. 9 show that the values of Γ
and Trot=jWj for models A1–A4 have the relation of
Γ ¼ 1.334–1.336 for Trot=jWj ¼ 0.002–0.009. Then we
uniformly select 15 initial conditions including 3 different
adiabatic constants Γ ¼ 1.334, 1.335, and 1.336 and 5
different rotation parameters Trot=jWj ¼ 0.002, 0.004,
0.006, 0.008, and ≈0.009 with the same EOS as
Eq. (2.21). The open circles in Fig. 9 denote these models.

The simulation is performed with DT ¼ 0.5. As we
already found, the properties of the formed black hole and
the mass of the torus depend only weakly on the value
of DT.
We define the mass of the final state of the torus by

Mtor ≡Mter −Meje: ð3:14Þ

As we found in Sec. III A, Meje is much smaller than Mter,
and then, Mtor can be approximated by Mter. Figures 10
and 11 depict the dimensionless spin parameter of the
remnant black holes and Mter, respectively. The filled
circles, squares, and triangles are the results of the
numerical simulation and the solid, dashed, and dotted
curves denote the relations obtained by the analytical
predictions of Ref. [30] for Γ ¼ 1.334, 1.335, and 1.336,
respectively.
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FIG. 9. Initial values of Γ and Trot=jWj for the hydrogen-
burning models (red crosses), the helium-burning models (blue
crosses), and the N models (open circles). The crosses correspond
to models A1–A4.
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FIG. 10. The dimensionless spin parameter of the remnant
black hole as a function of the rotation parameter Trot=jWj for
three values of the adiabatic constant Γ. The filled circles,
squares, and triangles are the results of the numerical simulation
and the solid, dashed, and dotted curves are the analytical
predictions of Ref. [30] for Γ ¼ 1.334, 1.335, and 1.336,
respectively.
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In Ref. [30], we inferred the mass and spin of the
remnant black holes only from the initial conditions in the
following manner. First, we employed three assumptions
that (i) the collapse proceeds in an axisymmetric manner,
(ii) the angular momentum transport due to the viscosity is
negligible, and (iii) nuclear burning does not halt the
collapse. The first and second assumptions are the same
as those we employed in the simulations. The third
assumption is shown to be appropriate in Sec. III C.
We also assumed that the gravitational collapse proceeds

in the following manner. First, a seed black hole is formed
at the center of the collapsing SMS core and it dynamically
grows while sequentially absorbing fluid elements from
lower values of specific angular momentum, j, defined by

j≡ h0uφ: ð3:15Þ

We then calculated the mass and angular momentum of the
hypothetically growing black hole at each moment by
calculating Eqs. (37) and (38) of Ref. [30] and subsequently
got the dimensionless spin parameter of the black hole.
Then, assuming that the black hole is Kerr black hole, we

can calculate jISCO by using Eq. (2.21) of Ref. [53]. Here
jISCO is the specific angular momentum, which is needed
for a test particle to rotate at an innermost stable circular
orbit (ISCO) in the equatorial plane around the black hole.
We assumed that the growth of the black hole would
terminate at the moment at which j becomes larger than
jISCO. In this assumption, we neglect the pressure and
geometry of the torus because jISCO is determined by
calculating the geodesic equation of test particles moving in
the equatorial plane.
Figure 10 shows that the dimensionless spin parameter

matches well with the prediction, but Fig. 11 shows that
Mter is slightly overestimated in the analytic prediction.
This is likely due to the fact that each fluid element of the

SMS core falls toward the black hole with an elliptical
orbit, and then, some fluid elements fall into the black hole
even when their specific angular momentum is larger than
jISCO. [Even though each fluid element has an elliptical
orbit, the axial symmetry is totally satisfied (see Fig. 12).]
The pressure and geometry of the torus may also affect the
result. Nevertheless, the analytic calculation predicts the
mass of the torus within 30% error.
We conclude that if a SMS core is rotating with

Trot=jWj ≳ 0.002, (i) a few percent of the initial mass
forms a torus surrounding the central black hole irrespec-
tive of the nuclear burning phases of SMS cores, and (ii) the
dimensionless spin of the remnant black hole is in the range
between ≈0.5 and 0.7.
We should clarify the reason why the dimensionless spin

parameter of the formed black hole does not depend
strongly on the value of Trot=jWj. The direct reason for
this is that the dimensionless spin parameter of marginally
stable SMS depends weakly on the value of Trot=jWj. Thus,
we describe the reason for this in the following.
As we showed in Ref. [30], the compactness of margin-

ally stable SMS increases (approximately) linearly with the
increase of Trot=jWj [see Eq. (2.45)]. Here, for rigidly
rotating SMS, Trot ¼ IΩ2=2 ¼ J2K=2I and jWj ≈ 3M2

0=2R
where I denotes the moment of inertia and R denotes the
equatorial stellar radius. Thus, we have

Trot

jWj ≈
�
RM2

0

3I

��
JK
M2

0

�
2

: ð3:16Þ

Because I is proportional to M0R2, RM2
0=I ∝ M0=R, and

thus, JK=M2
0 ∝ ðTrot=jWjÞ1=2ðR=M0Þ1=2. As we already

mentioned above, M0=R increases approximately linearly
with the increase of Trot=jWj for marginally stable SMS.
Specifically, Eq. (2.45) gives the following approximate
relation
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FIG. 11. Mter as a function of Trot=jWj for three values of
adiabatic constant Γ. The filled circles, squares, and triangles are
the results of the numerical simulation and the solid, dashed, and
dotted curves are the analytical predictions of Ref. [30] for
Γ ¼ 1.334, 1.335, and 1.336, respectively.

FIG. 12. The sketch of the falling fluid elements (yellow
squares) to the formed black hole in the equatorial plane. Even
though each fluid element has an elliptical orbit, the axial
symmetry is totally satisfied.
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M0

R
∝ Γ − 4=3þ 2

3

Trot

jWj : ð3:17Þ

Therefore, for Trot=jWj≳ 3ðΓ − 4=3Þ=2, the dimensionless
spin parameter of marginally stable SMS depends weakly
on Trot=jWj.

IV. OUTFLOW

As found in Sec. III, a fraction of the mass of the SMS
core is ejected soon after a rotating black hole is formed. In
this section, we describe the properties of the outflow in
detail. For this analysis, we define several quantities of the
outflow in Appendix B.

A. Formation process of the outflow

First, we describe the mechanism to drive the outflow.
Figures 13 and 14 display the snapshots of the density and
specific entropy profiles at the formation of the torus for the
N model with Γ ¼ 1.336 and Trot=jWj ≈ 0.009. For this
model, the chemical composition is set to be the same as the
hydrogen-burning models and initial value of the specific
entropy is s=kB ≈ 400.
The 1st panel shows the density and specific entropy

profiles at the launch time of the outflow. The fluid
elements conserve their specific angular momentum, and
hence, if their initial specific angular momentum is slightly
larger than jISCO for the formed black hole, they escape
falling into the black hole due to the centrifugal force, and

accrete to the vicinity of ISCO of the black hole. These
process are approximately adiabatic, and thus, the torus
conserves its specific entropy. At the same time, a fraction of
the fluid elements in the torus is pushed inward by the inertia
of the entire torus matter which has small infall velocity.
Then, the material falling from a high latitude toward the
inner edge of the torus hits the inner part of the torus, and, due
to the strong encounter among the fluid elements, shocks are
formed. As a result, a dense bubble (of a torus shape) is
formed by the shock heating at the very central region, i.e.,
X < 1 × 1011 cm (2nd panel). At this time, the bubble has
larger specific entropy due to the shock heating.
The formed bubble immediately expands vertically

because the density above the torus is very small (3rd panel).
The matter in this bubble is rotating around the z-axis, and
thus, feels strong centrifugal force. Hence, it moves toward
the surface of the torus. Thenmost of the fluid components in
the bubble is reabsorbed by the main body of the torus.
However, a fraction of them which expands vertically can
avoid colliding with the torus, and then, it spreads outward
(4th–6th panels). This situation is similar to the hot bubble
formation in a collapsarmodel [54]. The formationprocess of
the outflow is also discussed in Ref. [39].

B. Properties of the outflow

Next, we summarize the property of the outflow.
Figure 15 shows the time evolution of the total mass
Moflw (red-solid),the total kinetic energy Toflw (blue-dashed),
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FIG. 13. The density profiles near the formation time of the torus surrounding the black hole. They show zoom-in views of the central
region. The red arrows denote the velocity vectors and their length scale is normalized as indicated in the upper left-hand corner of each
snapshot. Just after the torus formation, a strong shock and a resulting bubble are formed and a fraction of the torus matter is ejected.
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the radial component of the total kinetic energy Tr
oflw (light

blue-long-dashed), the total internal energy Uoflw (orange-
dashed-dotted), the total gravitational potential energy
jWoflwj (green-dotted), and the total energy Eoflw (black-
long-dashed-dotted) for hydrogen-burning model A3 with
DT ¼ 0.5, respectively. They are defined by Eqs. (B14),
(B15), (B16), (B17), and (B18), Here, tg is the light crossing
time defined by

tg ≡GM0

c3
; ð4:1Þ

where M0 is the initial gravitational mass of the SMS core.
Here, DT is the initial temperature perturbation param-

eter defined by Eq. (2.50). We found that the quantities of
the outflow depend on the value of DT. However, we are
here interested in the semiquantitative properties of the
outflow, and hence, we overlook the quantitative depend-
ence of the outflow properties on the value of DT. The
dependence of the quantities of the outflow on DT is
discussed in Appendix C.
For t − tBH ≲ 1000tg, the mass and total energy are

increasing because the outflow propagates while sweeping
the mass in the outer layer of the SMS core. At
t − tBH ≈ 1000tg, most of the outflow matter reaches the
surface of the SMS core, and hence, the increase of the
mass and total energy becomes slower. The final value of
the outflow mass is ≈5700 M⊙ in this model.
For t − tBH ≳ 1000tg, the total kinetic energy starts

decreasing slightly. We speculate that this degrease is
due to the following reasons: (i) the fluid elements move
in the gravitational potential of the central object, (ii) the
shock occurred in the outflow dissipates the kinetic energy
of the outflow, and thus, a fraction of the outflow becomes
bound again, and (iii) a numerical error induces the
decrease of the total energy. The total energy at t − tBH ¼
5000tg is approximately 1.8 × 1056 erg. The possible error
size to this would be of order 1054 erg as discussed above.
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FIG. 14. The total specific entropy profiles near the formation time of the torus surrounding the black hole. They show zoom-in views of
the central region. The specific entropy of the SMS core before the onset of the collapse for this model is s=kB ≈ 400. Just after the torus
formation, a strong shock and a resulting bubble are formed, and thus, the bubble has much larger specific entropy than its initial value.
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FIG. 15. The time evolution of several key quantities of the
outflow for model A3. We plot the total mass of the outflow
(red-solid), together with the total kinetic energy (blue-dashed),
the radial component of the total kinetic energy (light blue-long-
dashed), the total internal energy (orange-dashed-dotted), the
total gravitational potential energy (green-dotted), and the total
energy (black-long-dashed-dotted), respectively.
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The total kinetic energy is approximately 10 times larger
than the rotational kinetic energy, internal energy, and
gravitational potential energy. This implies that the radial
component accounts for most of the total energy. Hence the
outflow would propagate through the envelope of the SMS
approximately radially. We find that these properties are
satisfied for all the models.
The reason why the properties of the outflow do not

depend on the chemical composition of the SMS core can
be understood in the following manner. As described in
Sec. III C, the effect of nuclear burning can be neglected
throughout the collapse. If we neglect the effect of nuclear
burning, the gravitational collapse proceeds approximately
adiabatically before the formation of the shocks. Then, the
EOS of the SMS core can be approximated by the
polytropic EOS with Γ ≈ 4=3 because the SMS core is
radiation pressure dominated. Thus if the same rotation
parameter is taken, the dynamics of the gravitational
collapse is qualitatively the same irrespective of the
chemical composition. After the shock formation, the
system becomes no longer adiabatic. However, qualita-
tively the same collapse may induce qualitatively the same
outflow.
Figures 16 and 17 show the time evolution of the total

mass and energy of the outflow for models A1–A4. We also
list the total mass and energy of the outflow for models A1–
A4 at t − tBH ¼ 5000tg in Table III. For rapidly rotating
models A3 and A4, the total mass and energy of the outflow
is larger than for slowly rotating models A1 and A2,
respectively. This is due to the following reasons: (i) the
initial mass of the SMS core for the rapidly rotating models
are heavier than for the slowly rotating models, (ii) for the
rapidly rotating models, each fluid element of the SMS core
has larger specific angular momentum than for the slowly
rotating models, and thus, more fraction of the mass
escapes being swallowed by the black hole, and hence,
can be ejected by the system due to centrifugal force barrier
at the formation of the outflow as described in Sec. IVA.

Figures 18 and 19 display the dependence of the mass
and energy of the outflow on Trot=jWj at t − tBH ¼ 5000tg
for N models. Here, we again choose DT ¼ 0.5. Both the
mass and energy of the outflow increase as Trot=jWj
increases while the dependence is weaker for the ejecta
energy. For example, for Trot=jWj≳ 0.004, the energy of
the outflow is between 0.01% and 0.018% of the initial rest-
mass energy. Thus the outflow energy for the SMS core
collapse would be typically ≈ 1055ðM0=105 M⊙Þ erg for
rapidly rotating models with Trot=jWj≳ 0.004.
Figure 20 denotes the time evolution of the average

velocity of the outflow at infinity, hvinfi, defined by

hvinfðtÞi≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðToflw þWoflwÞ

Moflw

s
; ð4:2Þ

for models A1–A4. At t − tBH ≳ 3000tg, hvinfi converges
to ≈0.2c for all the models. We also find that hvinfi is ≈0.2c
for all N models. Thus the outflow is escaped from the
system with a subrelativistic velocity. In reality this outflow
is likely to collide with the envelope of SMS surrounding
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FIG. 16. The time evolution of the total mass of the outflow,
Moflw, for models A1 (purple-solid), A2 (green-dotted), A3
(light-blue-dashed), A4 (orange-dashed-dotted), respectively.
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FIG. 17. The time evolution of the outflow energy, Eoflw, for
models A1 (purple-solid), A2 (green-dotted), A3 (light-blue-
dashed), A4 (orange-dashed-dotted), respectively. We note that
Eoflw would have an error of order 1054 erg as discussed in
Sec. IV B.

TABLE III. Total mass and energy of the outflow for models
A1–A4 with DT ¼ 0.5.Moflw and Eoflw denote the total mass and
energy defined by Eq. (B13) at t − tBH ¼ 5000tg, respectively.
We note that Eoflw would have an error of order 1054 erg as
discussed in Sec. IV B. EoflwðDT ¼ 0Þ is the value of
Eoflw at t − tBH ¼ 5000tg with DT ¼ 0 for models A2 and A4
estimated in Appendix C.

Model MoflwðM⊙Þ EoflwðergÞ EoflwðDT ¼ 0ÞðergÞ
A1 320 1.0 × 1055

A2 90 2.8 × 1054 2.8 × 1054

A3 5700 1.8 × 1056

A4 1400 4.7 × 1055 3.1 × 1055

HARUKI UCHIDA et al. PHYSICAL REVIEW D 96, 083016 (2017)

083016-16



its core region. It will be interesting to explore the
phenomena associated with this collision in a future work.
Finally, we briefly mention the angular dependence of

the outflow. The outflow is ejected approximately isotropi-
cally. However, the amount of the total mass and energy of
the outflow are small near the rotational axis and the
equatorial plane. This is due to the fact that the centrifugal
force barrier and the torus prevent the outflow from
propagating to the rotational axis and the equatorial plane,
respectively.
We conclude that the total energy of the outflow is

1054−56 erg and approximately dominated by the radial
component of the total kinetic energy, with the average
velocity of the outflow ≈0.2c irrespective of the initial
chemical composition and rotation of the SMS core.

V. DISCUSSION
A. Estimation for the luminosity of the outflow

After its ejection, the outflow would collide with the
envelope of the SMS. In this section, we estimate the
luminosity after the gravitational collapse following
the derivation of the one-zone analytical light curves of
cocoon emission discussed in Ref. [35].
When the outflow collides with the envelope, the

envelope would get the kinetic energy and start expanding.
The average velocity of the envelope could be estimated by

vexp ≈

ffiffiffiffiffiffiffiffiffiffiffi
2Eexp

Menv

s

≈ 3.2 × 108 cm=s

�
Eexp

1055 erg

�1
2

�
Menv

105 M⊙

�
−1
2

; ð5:1Þ

where Eexp andMenv are the total energy of the outflow and
the mass of the envelope of the SMS, respectively.
By using the first law of thermodynamics, the thermal

evolution of the envelope could be described by

dEint

dt
¼ −P

dV
dt

− L; ð5:2Þ

where Eint, L, P, and V are the total internal energy, the
luminosity, the pressure, and the volume of the envelope,
respectively. We assume that the envelope is radiation
pressure dominated, i.e., Eint ¼ 3PV. In the following
estimation, we ignore the heating source of the envelope.
By using the diffusion approximation, the luminosity of

the surface of the SMS could be written by

L ≈ 4πR2
c
κρ

∂P
∂r

≈
4πcREint

3κMenv
; ð5:3Þ
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models with DT ¼ 0.5. The filled-circles, squares, and triangles
denote the value for Γ ¼ 1.334; 1.335, and 1.336 at t − tBH ¼
5000tg, respectively.
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FIG. 19. The relation between Moflw and Trot=jWj for the N
models with DT ¼ 0.5. The filled-circles, squares, and triangles
denote the value for Γ ¼ 1.334; 1.335, and 1.336 at t − tBH ¼
5000tg, respectively.

0.15

0.16

0.17

0.18

0.19

 0.2

 1000  1500  2000  2500  3000  3500  4000  4500  5000

〈vinf〉[c]

(t-tBH)/tg

A1
A2
A3
A4

FIG. 20. The time evolution of the average velocity, hvinfi, for
models A1 (purple-solid), A2 (green-dotted), A3 (light-blue-
dashed), A4 (orange-dashed-dotted), respectively.

GRAVITATIONAL COLLAPSE OF ROTATING … PHYSICAL REVIEW D 96, 083016 (2017)

083016-17



where ρ, κ, and R are the density, the opacity and the radius
of the envelope given by

RðtÞ ¼ R0 þ vexpt; ð5:4Þ
respectively. Here, R0 is the initial radius of the envelope.
Using Eqs. (5.3) and (5.4), we get the relation between L

and Eint

L ¼ tþ te
t2d

Eint; ð5:5Þ

where te and td are the expansion time and diffusion time
defined by

te≡R0

vsh
≈3.2×105 s

�
R0

1014 cm

��
Eexp

1055 erg

�
−1
2

�
Menv

105M⊙

�1
2

;

ð5:6Þ

td ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3κMenv

4πvshc

s

≈ 1.3 × 109 s

�
Eexp

1055 erg

�
−1
4

�
Menv

105 M⊙

�3
4

; ð5:7Þ

respectively. Here, we use κ ¼ 0.35 g=cm2, which is the
Thomson scattering opacity of the primordial chemical
composition. Using Eq. (5.5), we can integrate Eq. (5.2)
and get the time evolution of the luminosity

LðtÞ ¼ L0 exp

�
−

1

2t2d
ðt2 þ 2tetÞ

�
; ð5:8Þ

where L0 is the initial luminosity. By Eq. (5.5), L0 can be
given by L0 ¼ teEintð0Þ=2t2d where Eintð0Þ is the initial
internal energy of the outflow. Eint is of order 1055 erg.
Inserting Eqs. (5.6) and (5.7), we get L0 ≈ 1042 erg=s.
However, this luminosity is much smaller than
the initial Eddington luminosity of the SMS LEdd ≈
1043 erg=s ðMSMS=105 M⊙Þ. Here, MSMS is the total mass
of the SMS. This fact shows that we cannot observe directly
the shock due to the outflow but observe the time evolution
of the luminosity due to expanding envelope.
Next, we estimate the time evolution of the luminosity of

the expanding envelope. For the expanding envelope, we
can get the time evolution of the luminosity by inserting the
Eddington luminosity into L0. Equation (5.8) shows that
the luminosity will gradually decrease with time scale td.
When the surface effective temperature drops to

T ion ≈ 6000 K, the hydrogen recombination would occur.
We define the time tion as the moment that the surface
effective temperature drops to the critical temperature T ion.
Assuming tion ≪ td and L ≈ LEdd, tion and the radius at this
moment, Rion, could be estimated by using Eq. (5.4) and
LEdd ¼ 4πR2

ionσSBT
4
ion as,

tion ≈ 1.2× 107 s ×

�
MSMS

105 M⊙

��
Eexp

1055 erg

�
−1
2

�
Menv

105 M⊙

�1
2

;

ð5:9Þ

Rion ≈ 3.9 × 1015 cm
�

MSMS

105 M⊙

�
; ð5:10Þ

where σSB is the Stefan Boltzmann constant. For t > tion,
the radius of photosphere Rph locates on the inside of the
surface of the SMS.
We assume that the region with its effective temperature

≳6000 K is fully ionized and the photosphere is formed
around the surface with its effective temperature ≈ 6000 K.
By using the first law of thermodynamics, we get the time
evolution of the radius of the photosphere (see Appendix B
of [35])

RphðtÞ2 ¼ v2sh

�
t
6
5t

4
5

ion

�
1þ t2ion

7t2d

�
−

t4

7t2d

�
: ð5:11Þ

Rph takes a maximum value Rph;max at tmax,

tmax ≈
�
21

10

� 5
14

t
2
7

iont
5
7

d

≈ 4.4 × 108s ð5:12Þ

×

�
MSMS

105M⊙

�2
7

�
Eexp

1055erg

�
− 9
28

�
Menv

105M⊙

�19
28

;

Rph;max ≈ 2.9 × 1016cm

×

�
MSMS

105M⊙

�8
7

�
Eexp

1055erg

� 3
14

�
Menv

105M⊙

� 3
14

: ð5:13Þ

At this time, the luminosity also takes a maximum value,

Lmax ≈ 4πR2
ph;maxσSBT

4
ion

≈ 7.5 × 1044erg=s

×

�
MSMS

105M⊙

�16
7

�
Eexp

1055erg

�3
7

�
Menv

105M⊙

�3
7

: ð5:14Þ

This shows that if the collapse of a SMS with mass 105 M⊙
takes place at z ≈ 10, the luminosity would become
approximately 100 times brighter than its Eddington
luminosity at ≈102 yrs after the gravitational collapse of
the SMS and be kept for ≈102 yrs.

B. Ringdown gravitational waves associated
with the formation of black holes

As we showed in our previous paper [31], bursts
gravitational waves are emitted in the formation process
of rotating black holes and they can be the sources for LISA
[32]. Figure 21 plots gravitational waves [ðl; mÞ ¼ ð2; 0Þ
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component of the outgoing component of the complexWeyl
scalar] for N models with Γ ¼ 1.335 and with Trot=W¼
0.004 and ≈0.009. Note that for Trot=jWj ≈ 0.009, the
waveform agrees approximately with that shown in our
previous paper [31]. This figure illustrates the fact that the
gravitational waveforms are characterized primarily by the
ringdown oscillation associated with the quasinormal mode
of the formed black holes. This feature is found irrespective
of the values of Γ and Trot=jWj.
The other important finding is that the amplitude of

gravitational waves (and hence the total radiated energy of
gravitational waves) does not depend strongly on the values
of Trot=W as long as it is of order 10−3 (i.e., it is of order
Γ − 4=3). This property is in particular the case for smaller
values of Γ. The reason for this is as follows: As described
in Sec. III D, the compactness of the marginally stable
configuration of SMS depends strongly on the value of
Trot=jWj because the high value of Trot=jWj contributes
significantly to the stabilization against general relativistic
instability to radial collapse [30] (specifically, the compact-
ness of the marginally stable SMS with higher values of
Trot=jWj is larger). Reflecting this fact, the dimension-
less spin parameter of marginally stable SMS depends
weakly on the value of Trot=jWj. This implies that for
Trot=jWj ¼ Oð10−3Þ, irrespective of the values of Trot=jWj,
the SMS has an appreciably nonspherical degree at the
formation of black holes, which contributes to the emission
of gravitational waves in the black hole formation.
Table IV lists the energy emitted by gravitational waves

for all N models. This shows that the total radiated energy,

ΔE, is in a narrow range between 5 × 10−7M0 and
1.2 × 10−6M0. We note that the peak amplitude of gravi-
tational waves depends approximately on ΔE1=2. Thus, the
dependence of the peak amplitude on Trot=jWj is even
weaker.
In Ref. [31], we pointed out that gravitational waves

from the collapse of rapidly rotating SMS can be detected
by LISA if the collapse occurs for the cosmological redshift
smaller than about 3. The finding in this paper shows that
even if the SMS is not rapidly rotating, gravitational waves
from the collapse of SMS may be detected by LISA if the
value of Trot=jWj is of Oð10−3Þ.

C. Possible gravitational waves from massive torus

A massive torus surrounding a black hole may be
unstable to the so-called Papaloizou-Pringle instability
(PPI) [55]. The PPI sets in if the torus has particular
angular momentum distribution. If the PPI occurs, the torus
is deformed by non-axisymmetric perturbation and gravi-
tational waves are emitted. Figure 22 displays the density
and specific angular momentum distribution of the torus
along the cylindrical coordinate on the equatorial plane for
the N model with Γ ¼ 1.335 and Trot=jWj ≈ 0.009.
Immediately after the formation of the torus, the torus
oscillates, and thus, we plot the profiles at t − tBH ¼
9000tg, which is the time at which the oscillating pertur-
bation of the torus is sufficiently damped. Here, j, ρ̄, and Rg

are the specific angular momentum, dimensionless density,
and the gravitational radius of the black hole; ρ̄ and Rg are
defined by

ρ̄≡ ρKNc−2N; ð5:15Þ
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FIG. 21. Gravitational waveforms (l ¼ 2 axisymmetric mode of
Ψ4) as a function of retarded time for N models with Γ ¼ 1.335
and with Trot=jWj ¼ 0.004 (light blue) and Trot=jWj ≈ 0.009
(purple).
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FIG. 22. The profiles of the specific angular momentum (upper
panel) and dimensionless density (lower panel) distribution as
functions of the radial coordinate on the equatorial plane
at t − tBH ¼ 9000tg for the N model with Γ ¼ 1.335 and
Trot=jWj ≈ 0.009. The red-dashed and blue-dotted curves denote
the radius of the ISCO and the specific angular momentum which
is needed for a test particle to rotate at the ISCO, respectively. The
green dashed-dotted curve denotes a slope proportional to X0.3.

TABLE IV. ΔE=M0 in units of 10−6.

Trot=jWj Γ ¼ 1.334 1.335 1.336

0.002 1.2 0.7 0.5
0.004 1.2 1.0 0.8
0.006 1.2 1.1 1.0
0.008 1.2 1.1 1.1
≈0.009 1.2 1.1 1.1
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Rg ≡ GMBH

c2
; ð5:16Þ

respectively. Here K is the polytropic constant defined by
Eq. (2.33). The peak of the density depends weakly on Γ
and Trot=jWj and is located at X ≈ 5Rg. For X ≲ 5Rg,
j ≈ const, and for X ≳ 5Rg, j ∝ X0.3. The reason why
j ≈ const at X ≲ XISCO is that a fraction of the torus
material falls to the black hole from the inner edge of
the torus due to the oscillation of the torus while conserving
its specific angular momentum.
Previous general relativistic simulations show that the

stability against the PPI depends on the profile of j and
strength of the self-gravity of tori [56]. If a torus is strongly
self-gravitating and has the specific angular momentum
distribution of the form of j ∝ Xβ, the torus is unstable to
the PPI if β ≲ 0.25 [57]. The torus found in our present
study is also self-gravitating and β ≈ 0 at the density
maximum, and hence, it may be unstable. To determine
the stability to the PPI of these tori, we plan to perform a 3D
numerical simulation in the future work.
Here, we estimate the frequency and amplitude of

gravitational waves from the black hole-torus system
assuming that the PPI hypothetically occurs. The amplitude
of gravitational waves can be approximately estimated by
using quadrupole formula as

hij ≈
2G
c4rL

Q̈ij; ð5:17Þ

where rL and Qij are the luminosity distance and the mass
quadrupole moment, respectively [58]. We assume that a
fraction of the torus deforms into one clump and rotates
with Keplerian motion around the black hole. We regard
this system as a star with mass Mclump rotating around the
central black hole with mass MBHð≫ MclumpÞ. Then, the
frequency of gravitational waves measured by the observer,

fðobsÞgw , can be approximated by

fðobsÞgw ¼ 1

πð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBH

r3tor

s
; ð5:18Þ

where z and rtor are the cosmological redshift and the
distance of the clump from the central black hole, respec-
tively. In this system, the magnitude of Q̈ij can be
approximated by Mclumpv2, where v is the orbital velocity
of the clump. Previous numerical simulation shows that if
the PPI occurs, the system emits quasiperiodic gravitational
waves and its emission will continue for ≳100 cycles if the
viscosity of the torus is not very high [57]. Hence the peak
amplitude of gravitational waves, hpeak, may be enhanced

by approximately
ffiffiffiffiffiffiffiffi
100

p ¼ 10 times. Then if the collapse of
a SMS takes place z ¼ 5, we get the typical peak frequency
and amplitude of gravitational waves

fðobsÞgw ∼ 1 × 10−2
�
zþ 1

6

�
−1
�
rtor
5Rg

�
−3
2

�
MBH

105M⊙

�
−1

Hz;

ð5:19Þ

hpeak ∼ 2 × 10−21
�

Mtor

0.05MBH

��
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0.1Mtor

��
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�

×

�
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5Rg

�
−1
�

rL
50 Gpc

�
−1
�
Ncycle

100

�1
2

: ð5:20Þ

Here, Mtor and Ncycle are the mass of the torus and the
number of the cycles of gravitational waves, respectively.
From Eqs. (5.19) and (5.20), we find that the typical
frequency and amplitude of gravitational waves are
≈10−2 Hz and ≈10−21. These values correspond to the
sensitive observation band of LISA [32] if the collapse of a
SMS takes place at z≲ 5.

VI. CONCLUSION

We explored the gravitational collapse of rotating SMS
cores employing realistic initial conditions and including
the effects of nuclear burning. We showed that though the
efficiency of nuclear burning exponentially grows just
before the black-hole formation, its effect is negligible in
our models. After the collapse, a fraction of the initial mass
forms a torus surrounding the remnant black hole and
drives an outflow. We also find that nuclear burning gives
only a minor effect for the evolution of the torus.
We also studied the gravitational collapse of SMS cores

with various adiabatic constants and rotation parameters
turning off nuclear burning and analyzed quantitatively the
mass of the torus, black-hole spin, and the property of the
outflow. We found that the black-hole spin agrees well with
our previous analytical predictions [30]. On the other hand,
the mass of the torus is slightly smaller than the predicted
value. This is because in our prediction, we regard each
fluid element of the SMS core as a test particle, and assume
that it has a circular orbit around the hypothetically formed
black hole. However, in reality, each fluid element of the
SMS core feels the pressure force, and falls in an elliptical
orbit to the central black hole, and hence, a fraction of the
fluid element falls into the black hole even though they
have specific angular momentum larger than the value
of ISCO.
If a SMS core is sufficiently rapidly rotating

(Trot=jWj > 0.004), the outflow would have mass ≈1%
of initial mass and kinetic energy 1054−56 erg with its
velocity ≈0.2c. The outflow would collide with the
envelope of the SMS and forms shocks. We estimated
the luminosity when the shocks reach the surface of the
SMS and found that its typical luminosity and time scale
are of order 1045 erg=s and 10 yrs, respectively. Exploring
more detailed time evolution of the outflow and possibility
for observing it is our future work. We note that a recent 3D
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magnetohydrodynamic simulation suggests that the mag-
netic fields could enhance the amount of the outflow [59].
When the black hole forms, burst gravitational waves are

emitted [31]. We found that the gravitational waveforms are
characterized primarily by the ringdown oscillation asso-
ciated with the quasinormal mode of the formed black
holes. We also found that the amplitude of gravitational
waves depends weakly on the values of Trot=jWj as long as
it is of order 10−3 and the total radiated energy is
Oð10−6ÞM0c2. If the value of Trot=jWj is of Oð10−3Þ,
gravitational waves can be detected by LISA if the collapse
of a SMS takes place at z≲ 3.
We also estimated the frequency and amplitude of

gravitational waves assuming that the torus surrounding
the central black hole may be deformed by the PPI. We
found that if the PPI occurs, gravitational waves emitted
from the torus may be observed by LISA [32] if the
collapse of a SMS takes place at z≲ 5.
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APPENDIX A: CALCULATION
OF THE NUCLEAR BURNING

The effect of nuclear burning might be able to be taken
into account by naively adding nuclear energy generation
rates as a source term of the evolution equation of the fluid
with fixed chemical composition as [37]

∇μTμν ¼ ρ0 _quν

c
; ðA1Þ

_q ¼ _qCNO þ _q3α: ðA2Þ

However, we find that this method is not very appropriate to
calculate the effects of nuclear burning even if the change
of the chemical composition is negligible when we set the
initial metallicity of order 10−3.
To illustrate this fact, we compare the results of two

simulations with the same initial conditions but with
different formalisms to incorporate the effects of nuclear
burning. One is the formalism described in Eq. (A1) (model
T1), and the other is that described in Sec. II D (model T2).
We set the initial condition which mimics model R1.d of

Ref. [37], that is, the SMS core is rotating at mass-shedding
limit, its mass is ≈5 × 105 M⊙, and its chemical compo-
sition is ðYp; Xα; ZCÞ ¼ ð0.748; 0.250; 0.002Þ. We per-
formed another simulation with the same condition as
model T2 except initial metallicity chosen as ðYp; Xα;
ZCÞ ¼ ð0.74; 0.25; 0.01Þ (model T3). We also per-
formed simulations with the same initial conditions as
models A1 and A3 (see Sec. III) with the formalism
described in Eq. (A1) (models TA1 and TA3).
We find that for models TA1 and TA3, our results are

essentially the same as those for models A1 and A3,
respectively. Thus, we conclude that when we set the initial
metallicity of order 10−9, the differences between our for-
malism and formalism described in Eq. (A1) are negligible.
However, when we set the initial metallicity of order

10−3, a considerable problem occurs. Figure 23 shows the
time evolution of the ratio of the released rest-mass energy
due to nuclear burning, Q, to the initial total energy, Eini.
Here, Q and Eini are defined by

QðtÞ≡
8<
:

Z
t

0

dt
R
V ρ0� _qdV ðT1Þ;

Eq. ð3.13Þ ðT2 and T3Þ;
ðA3Þ

and

Eini ≡ ðT tot þU þWÞðt ¼ 0 sÞ; ðA4Þ

respectively. The filled circle denotes the time
(t ≈ 25000 s) at which the system becomes unbound and
starts exploding for model T1. We check that in the absence
of the nuclear burning, this model does not explode. Thus
this explosion is due to the nuclear burning. However, the
value of Q is by more than one order of magnitude smaller
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FIG. 23. Time evolution of the ratio of the released rest-mass
energy due to nuclear burning to the initial total energy. The
dotted, dashed, and dashed-dotted curves denote for models T1,
T2, and T3, respectively. For models T1 and T3, the explosion is
found at t ≈ 25000 s (filled circle) and t ≈ 29000 s (filled
square), while for model T2, a black hole is formed at
t ≈ 31000 s (filled triangle), respectively.
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than the value of jEinij at this time. Thus, in terms of energy
conservation, it is incomprehensible that the nuclear burn-
ing causes the explosion. Indeed, we find that for model T2,
the nuclear burning cannot halt the collapse and the black
hole is formed at t ≈ 31000 s (filled triangle). We check
that the chemical composition at the center of the SMS core
for model T2 does not change approximately until
t ≈ 25000 s. Thus this difference would be due to the fact
that Eq. (A1) violates the energy-momentum conservation.
We suspect that even though the violation is much smaller
than the total energy, this violation is accumulated and
finally induces the unnatural increase of the total energy.
We also find that for model T3, the SMS core starts

exploding at t ≈ 29000 s (filled square). At this time,
Q ≈ jEinij is realized, and thus, this explosion would be
indeed due to the nuclear burning. We conclude that for the
computation of the gravitational collapse of a SMS core, it
is important to employ the formalism in which the con-
servation of the total energy is satisfied with the required
level.

APPENDIX B: DEFINITION OF THE MASS
AND ENERGY FLUX OF THE OUTFLOW

In this section, we define the mass and energy fluxes of
the outflow by using the conservation of the total mass and
energy. The local conservation equation for the energy-
momentum tensor together with the Killing equation for a
timelike Killing vector field ξμ gives

∇μðTμ
νξνÞ ¼ 0: ðB1Þ

For the analysis of the outflow, we assume that the space-
time becomes a stationary state after the collapse. Then
ð∂tÞμ should be a timelike Killing vector field, and hence,

∇μT
μ
t ¼ 0; ðB2Þ

is realized. On the other hand, if we neglect nuclear burning
after the collapse, the rest-mass density should be conserved,
i.e.,

∇μðρ0uμÞ ¼ 0: ðB3Þ

By using Eqs. (B2) and (B3), we get two equations of
continuity as

∂ρA
∂t þ ∇ · fA ¼ 0ðA ¼ M;EÞ; ðB4Þ

where

ρM ≡ ρ0�; ðB5Þ

ρE ≡ −ρ0�c2
�
h0ut
c3

þ P
ρ0c3ut

þ 1

�
; ðB6Þ

and

fM ≡ ρ0�v; ðB7Þ

fE ≡ −ρ0�c2v
�
h0ut
c3

þ 1

�
: ðB8Þ

Here, ρ0� ≡ ρ0
ffiffiffiffiffiffi−gp

cut and h0 are the weighted rest-mass
density and the specific enthalpy, respectively. ρE is defined
as the total energy density minus rest-mass energy density.
Subscripts “M” and “E” denote the total mass and energy,
respectively.
Assuming that the internal energy is much smaller than

the kinetic and potential energy of the outflow, we
define the fluid component which satisfies ut < −1 as
the outflow component. In the Newtonian approximation,
ut is written by

ut ≈ −1þGMBH

R
−
1

2
v2; ðB9Þ

where MBH; R, and v are the mass of the black hole,
distance from the black hole, and velocity of the fluid
element, respectively. Hence ut < −1 is equivalent to
v2=2 > GMBH=R which implies that the fluid element is
unbound.
To analyze the mass and energy of the outflow, we

replace ρ0 with ρeje0 where ρeje0 is defined by

ρeje0 ≡ ρ0Θð−ut − 1Þ; ðB10Þ

ΘðxÞ≡
�
1 x ≥ 0;

0 x < 0.
ðB11Þ

We denote the quantities associated with the unbound
material by subscript “eje”.
Then, the mass and energy of the outflow, which are

ejected from the domain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
< D, can be written as

AejeðD; tÞ ¼ −
Z

t

0

dt0
Z

f ejeA · dS

¼
Z

t

0

dt0
Z π

2

0

dθð−4πD2f ejeA · r̂ sin θÞðA ¼ M;EÞ;

ðB12Þ

where r̂ and θ are the radial unit vector and the polar angle,
i.e., tan θ ¼ X=Z. We define the total mass and energy of
the outflow by

AejeðDÞ≡ AejeðD; t ¼ t�Þ; ðB13Þ

where t� is the time at which all of the unbound fluid
elements finish escaping from the domain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
< D.
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The total mass and energy of the outflow also can be
defined by

AoflwðtÞ≡
Z
V 0
ρejeA dVðA ¼ M;EÞ: ðB14Þ

Aoflwðt ¼ ∞Þ should correspond to AejeðDÞ irrespective of
the value of D if the total mass and energy of the outflow
are conserved. Finally, we define the total kinetic energy,
Toflw, the radial component of the total kinetic energy,
Tr
oflw, the total internal energy, Uoflw, and the total gravi-

tational potential energy, Woflw, of the outflow by

ToflwðtÞ≡
Z
V 0

1

2
ρeje0� c

2ð1 − ðαcutÞ2ÞdV; ðB15Þ

Tr
oflwðtÞ≡

Z
V 0

1

2c
ρeje0�h0v

rurdV; ðB16Þ

UoflwðtÞ≡
Z
V 0
ρeje� ϵdV; ðB17Þ

and

WoflwðtÞ≡ Eoflw − Toflw −Uoflw; ðB18Þ

respectively. Here, ρeje� ≡ ρ
ffiffiffiffiffiffi−gp

cutΘð−ut − 1Þ.

APPENDIX C: INITIAL PERTURBATION
DEPENDENCE OF THE OUTFLOW

In this section, we analyze the dependence of total mass
and energy of the outflow on DT. In this analysis, we
performed additional simulations with Trot=jWj ¼ 0.005
for the helium-burning models (model A5).
Figures 24 and 25 display the dependence of the

total mass and energy of the outflow on DT for the
helium-burning models with three rotation parameters,
i.e., Trot=jWj ¼ 0.002ðmodelA2Þ; 0.005ðmodelA5Þ, and
≈0.009 ðmodelA4Þ at t−tBH¼5000tg, respectively. Here,
Moflw and Eoflw are defined by Eq. (B14). The total mass
and energy of the outflow increase approximately linearly
withDT. Thus we can estimate the total mass and energy of
the outflow ofDT ¼ 0 by using linear fitting formula. Each
of three lines of Figs. 24 and 25 denote the linear fitting
function for each value of Trot=jWj. Here the value with
DT ¼ 0 should be regarded as the physical value.
We find that for Trot=jWj ¼ 0.002 (model A2), 0.005

(model A5), and ≈0.009 (model A4), the value of Moflw is

overestimated with DT ¼ 0.5 by 47%, 35%, and 42%, and
Eoflw is overestimated by 1%, 37%, and 54%, respectively.
We speculate the reason why Moflw and Eoflw are

increasing functions of DT is as follows: For the larger
value of DT, the fluid falls with larger velocity, and hence,
shock heating more efficiently occurs around the inner edge
of the torus, and the bubble which we describe in Sec. IVA
is more strongly pushed by the torus.
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FIG. 24. The total mass of the outflow, Moflw, as a function of
DT with Trot=jWj ¼ 0.002 (model A2, filled-circles), 0.005
(model A5, filled-squares), and 0.009 (model A4, filled-triangles)
at t − tBH ¼ 5000tg for the helium-burning models. The solid,
dashed, and dotted curves denote the linear fitting function for the
value of Trot=jWj ¼ 0.002, 0.005, and 0.009, respectively.
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FIG. 25. The total energy of the outflow, Eoflw, as a function of
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