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Extending our previous studies, we perform high-resolution simulations of inspiraling binary neutron
stars in numerical relativity. We thoroughly carry through a convergence study in our currently available
computational resources with the smallest grid spacing of ≈63–86 meter for the neutron-star radius 10.9–
13.7 km. The estimated total error in the gravitational-wave phase is of order 0.1 rad for the total phase of
≳210 rad in the last ∼15–16 inspiral orbits. We then compare the waveforms (without resolution
extrapolation) with those calculated by the latest effective-one-body formalism (tidal SEOBv2 model
referred to as TEOB model). We find that for any of our models of binary neutron stars, the waveforms
calculated by the TEOB formalism agree with the numerical-relativity waveforms up to ≈3 ms before the
peak of the gravitational-wave amplitude is reached: For this late inspiral stage, the total phase error is
≲0.1 rad. Although the gravitational waveforms have an inspiral-type feature for the last ∼3 ms, this stage
cannot be well reproduced by the current TEOB formalism, in particular, for neutron stars with large tidal
deformability (i.e., lager radius). The reason for this is described.
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I. INTRODUCTION

Gravitational-wave astronomy has vividly revealed its
usefulness for exploring the nature of compact objects.
Advanced LIGO operating since 2015 [1] has already
reported three merger events of binary black holes [2–4],
and the masses and spins of individual black holes have
been successfully determined to modest accuracy despite
the cosmological distances to these sources [5]. A note-
worthy feature of these events, particularly GW 150914 [2],
is that they are observed throughout the inspiral-merger-
ringdown phases, which cannot be fully modeled by the
traditional post-Newtonian (PN) approximation suitable
only for the early inspiral phase [6]. Thus, accurate
theoretical waveforms applicable to dynamical phases
are essential for the estimation of binary parameters [5]
and also the test of general relativity [7]. For this purpose,
the effective-one-body (EOB) formalism calibrated by
numerical-relativity simulations played a very important
role in the data analysis (see Ref. [5] and references
therein). As the quality of gravitational-wave data will
be further improved in the near future with advanced Virgo
[8] in operation since 2017 and upcoming KAGRA [9],
accuracy of waveform models will become more important
so as to avoid systematic errors.

The next target for ground-based detectors is gravita-
tional waves from coalescing binary neutron stars (and also
black hole-neutron star binaries), which will inform us
about finite-size properties of neutron stars along with their
masses. Simultaneous measurements of these quantities
will become a powerful method to strongly constrain the
not-yet-understood equation of state (EOS) of the neutron-
star matter, and its accomplishment is one of the most
important goals of gravitational-wave astronomy. On one
hand, the masses of two neutron stars will be determined
with high accuracy of≲1% from gravitational-wave signals
in the inspiral phase for a sufficiently high signal-to-noise
ratio [10] as far as the neutron-star spins are small [11]. On
the other hand, it will be challenging to extract quantities
associated with the finite-size effect, because it does not
become appreciable until the very late inspiral phase.
Among various proposals, one of the most promising

strategy is to read off tidal deformability, which governs
the late-phase orbital evolution, from gravitational waves
emitted during the inspiral phase up to the merger [12–18].
This strategy requires an accurate template of gravitational
waves from binary-neutron-star inspirals taking into
account tidal deformation that influences the dynamics
of the late inspiral orbits. In anticipation of coming
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detections of binary-neutron-star mergers, developing an
accurate model of gravitational waveforms for binary-
neutron-star inspirals including the tidal effects is an urgent
task.
The EOB formalism will play an important role also in

the analysis of gravitational waves from binary neutron
stars. Because the finite-size effect becomes important in
the very late stage of the orbits, PN approximations with
tidal effects [13] are not satisfactory. Indeed, it has been
shown that the lack of knowledge about higher-order PN
point-particle terms prevents us from accurately extracting
the tidal deformability [17,19–23]. The EOB formalism can
improve the accuracy of the waveform templates for the
dynamical phase via effective incorporation of higher-order
PN terms and non-adiabatic dynamics close to merger.
Motivated by this success, tidal EOB (TEOB) models have
been developed by various authors to model the coales-
cence of binary neutron stars [15,24–28]. These studies
demonstrate that the extraction of tidal deformability is
feasible for an event with a moderately high signal-to-noise
ratio [28] (this fact is also confirmed by a numerical-
relativity study [29]), or by stacking analysis of multiple
events [18]. All these results support the idea that extracting
the tidal deformability from gravitational waves emitted in
the late inspiral phase of binary-neutron-star mergers is a
promising way to constrain the EOS of neutron-star matter.
However, Ref. [26] also suggests that the current TEOB

approach is not yet accurate enough to model waveforms
for the last few cycles for the case that the neutron-star
radius is large. This implies that further modeling aided by
high-precision waveforms derived by numerical relativity is
required to obtain reliable templates in the final inspiral
stage of neutron star binaries. For this purpose, a large-scale
numerical-relativity simulation is crucial.
Long-term simulations for binary-neutron-star inspirals

have recently been performed by several groups aiming at
deriving high-precision numerical-relativity waveforms
[21,25,29–40]. These work, in particular the latest ones,
followed the late inspiral phase for ≳10 orbits up to the
onset of merger. However, past numerical simulations
would not be able to obtain gravitational waveforms with
sufficient accuracy due to the following reasons. First in the
early-stage work, initial data with an unphysical residual
eccentricity were employed. This seriously degrades the
accuracy of derived waveforms, because binary neutron
stars in the late inspiral stage are believed to have a
quasicircular orbit with negligible eccentricity [41]. This
problem has been overcome, and simulations were per-
formed with much less eccentric initial conditions in the
latest work [21,29–31,40]. However, even in these recent
work, the phase error in the waveforms was likely to be still
of order 1 rad because of the insufficient grid resolutions
except for a single highest resolution model of Ref. [31].
In this paper, we push forward our previous numerical-

relativity studies [21,29] to a sub-100-meter-resolution

regime. The simulations are performed for about 15–16
inspiral orbits employing the initial data in which the
eccentricity is sufficiently small (∼10−3: see Appendix A)
as in our previous studies [21,29]. The update lies in the
grid resolution improved by a factor of up to ∼2.2 from the
previous ones. In the highest-resolution case, the minimum
grid spacing is 63–86 m for the neutron stars of radius
10.9–13.7 km: The major diameter of neutron stars is
covered by ≈270 grid points. We show that the waveform
depends very weakly on the grid spacing at such a high
resolution, and the phase error in the gravitational wave-
forms is estimated to be of order 0.1 rad among the total
phase of ≳210 rad. We then show that a TEOB model can
be reliably calibrated with such high-accuracy numerical
gravitational waveforms.
The paper is organized as follows. In Sec. II, we

summarize the formulation and numerical schemes
employed in our numerical-relativity study, and also review
the adopted EOS. In Sec. III, we present numerical
gravitational waveforms and show that the phase error in
gravitational waves derived with our highest grid resolution
is of order 0.1 rad. We then compare our best-resolved
waveforms with those derived by the latest TEOB approach
and examine the accuracy of the TEOB waveform in
Sec. IV. Section V is devoted to a summary. Throughout
this paper, we employ the geometrical units of c ¼ G ¼ 1
where c and G are the speed of light and the gravitational
constant, respectively.

II. SUMMARY OF OUR SETTING FOR
NUMERICAL-RELATIVITY SIMULATION

In this section, we summarize the formulation and
numerical schemes of our numerical-relativity simulations,
EOS employed for neutron stars, definitions of the tidal
deformability for binaries, and our recipe for constructing a
waveform.

A. Formulation, code, and models

We follow the inspiral and early merger stages of
binary neutron stars using a numerical-relativity code,
SACRA [42]. Following our previous work [21,29], we
employ a moving puncture version of the Baumgarte-
Shapiro-Shibata-Nakamura formalism [43], locally incor-
porating a Z4c-type constraint propagation prescription
[44] (see Ref. [45] for our implementation) for a solution of
Einstein’s equation. In our numerical simulations, a fourth-
order finite differencing scheme in space and time is used
implementing an adaptive mesh refinement (AMR) algo-
rithm (see Ref. [42] for details). In this work, we paral-
lelized and tuned this AMR code significantly, and this
improvement enables us to perform a number of high-
resolution simulations in a relatively short time scale: As
we describe later, the grid resolution is more than twice
better (i.e., the grid spacing is by a factor ≲2 smaller) than
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that in our previous work [21]. The required CPU time is
540-650k core hours for the highest resolution models.
In this work, we prepare ten refinement levels for the

AMR computational domain. Specifically, two sets of four
finer domains comoving with each neutron star cover the
region of their vicinity. The other six coarser domains cover
both neutron stars by a wider domain with their origins
fixed at the center of the mass of the binary system. Each
refinement domain consists of a uniform, vertex-centered
Cartesian grid with ð2N þ 1; 2N þ 1; N þ 1Þ grid points
for ðx; y; zÞ (the equatorial plane symmetry at z ¼ 0 is
imposed). The distance from the origin to outer boundaries
along each axis is denoted by L. Here, L is much larger than
the initial wavelength of gravitational waves, λ0 ¼ π=Ω0,
with Ω0 being the initial orbital angular velocity (see
Table I). We always choose it Ω0 ≈ 0.0155=m0 where
m0 is the total mass of the binary system at infinite
separation.
In this work, we consider the models of total mass m0 ≈

2.7 M⊙ (see Table II). More precisely, we select equal-
mass models with each mass m1 ¼ m2 ¼ 1.35 M⊙ and
unequal-mass models with each mass m1 ≈ 1.21 M⊙ and
m2 ≈ 1.51 M⊙. For these models, the chirp mass defined
by ðm1m2Þ3=5m−1=5

0 (where m0 ¼ m1 þm2) is fixed to be

≈1.17524 M⊙. For the unequal-mass models, the sym-
metric mass ratio defined by η ≔ m1m2=m2

0 is chosen
to be 0.247 (i.e., the corresponding mass ratio q ¼
m1=m2 is chosen to be ≈0.8025). For these values of
m0, λ0 ≈ 810 km and initial gravitational-wave frequency
f ≈ 370 Hz.
The grid spacing for each domain is Δxl ¼ L=ð2lNÞ,

where l ¼ 0–9. In this work, we choose a wide variety of
values for N and examine the convergence properties of
numerical results: For the equal-mass models, we perform
the simulations with N ¼ 182, 150, 130, 110, 102, and 90
and for the unequal-mass models, N ¼ 150, 130, 110, 102,
and 90. We note that in our previous work [21,29],N was at
best 72 [46]. With the highest grid resolution, N ¼ 182, the
semimajor diameter of each neutron star is covered by
about 270 grid points. For the simulation with a small-
radius neutron star of radius 10.9 km, the best grid spacing
is ≈63 m (see Table I). With our setting of m0Ω0 ≈ 0.0155,
the binary experiences 15–16 orbits before the gravita-
tional-wave amplitude reaches a peak.
We prepare binary neutron stars in quasicircular orbits

with small eccentricity ∼10−3 for the initial condition
of numerical simulations. These initial conditions are
numerically obtained by using a spectral-method library,
LORENE [47]. The eccentricity reduction is performed by
the method of Ref. [45]. The neutron stars are assumed to
have an irrotational velocity field, which is believed to be
an astrophysically realistic (or at least approximately
realistic) configuration [48,49].
We note that even with the eccentricity-reduced initial

conditions, the small residual eccentricity of ∼10−3 still
gives a small damage for getting accurate quasicircular
waveform. This is in particular the case for carefully
comparing the numerical waveforms with those by
TEOB formalisms (see the discussion in Appendix A).
The numerical waveforms for the first 3–4 orbits are not
very suitable for performing the careful analysis of gravi-
tational-wave data. Thus, when comparing the numerical
waveforms with those by the TEOB formalisms, we only
employ the waveforms for the last 11–12 orbits. We first
notice this fact when we obtain the results of high-
resolution simulations in this paper. This finding recon-
firms that the eccentricity reduction for constructing the
initial data is crucial for accurately deriving the late inspiral
waveforms.

B. Equations of state

Following our previous work [16,33,50], we employ a
parametrized piecewise-polytropic EOS [51] with two
pieces. In this work, our purpose is to accurately clarify
the dependence of inspiral gravitational waveforms on the
tidal deformability. For this purpose, the choice of the
simple EOS is acceptable.
This EOS is written in terms of two segments of

polytropes of the form

TABLE I. Model name, the location of outer boundaries along
each axis denoted by L, and the finest grid spacing, Δxfinest, in
several different grid-resolution runs. The model name reflects
the EOS and mass of neutron stars. Δxfinest is listed for N ¼ 182,
150, 130, 110, 102, and 90 in the equal-mass models and
N ¼ 150, 130, 110, 102, and 90 in the unequal-mass models.
We note that the wavelength of gravitational waves is initially
λ0 ≈ 810 km irrespective of the models in this paper.

Model L (km) Δxfinest (m)

B135-135 5860 63, 76, 88, 104, 112, 127
HB135-135 6392 69, 83, 96, 113, 122, 138
H135-135 6991 75, 91, 105, 124, 134, 152
125H135-135 7324 79, 95, 110, 130, 140, 159
15H135-135 7990 86, 104, 120, 142, 153, 173
B121-151 5991 78, 90, 106, 114, 129
HB121-151 6324 82, 95, 112, 121, 137
H121-151 6823 89, 103, 121, 131, 148
125H121-151 7323 95, 110, 130, 140, 159
15H121-151 7822 102, 118, 138, 150, 170

TABLE II. Equations of state employed, the radius, RM, and the
dimensionless tidal deformability ΛM of spherical neutron stars
of M ¼ 1.21, 1.35, and 1.51 M⊙. RM is listed in units of km.

EOS R1.21 R1.35 R1.51 Λ1.21 Λ1.35 Λ1.51

B 10.98 10.96 10.89 581 289 131
HB 11.60 11.61 11.57 827 422 200
H 12.25 12.27 12.26 1163 607 298
125H 12.93 12.97 12.98 1621 863 435
15H 13.63 13.69 13.73 2238 1211 625
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P ¼
�
K0ρ

Γ0 ðfor ρ0 ≤ ρ < ρ1Þ
K1ρ

Γ1 ðfor ρ1 ≤ ρÞ ð2:1Þ

where ρ is the rest-mass density, P is the pressure, K0 and
K1 are a polytropic constant, and Γ0 and Γ1 are an adiabatic
index. At the boundary of these two piecewise polytropes,
ρ ¼ ρ1, the pressure is required to be continuous, i.e.,
K0ρ

Γ0

1 ¼ K1ρ
Γ1

1 . Thus, the parameters, which have to be
given, are K0, ρ1, Γ0, and Γ1. Following the previous
studies [16,33,50], these parameters are determined in the
following manner: The low-density EOS is fixed by setting
Γ0 ¼ 1.3562395 and K0 ¼ 3.594 × 1013 in cgs units. The
adiabatic index for the high-density region is set to be
Γ1 ¼ 3, and hence, K1 is determined to be K1 ¼ K0ρ

Γ0−Γ1

1 .
The remaining parameter, ρ1, is varied for a wide range to
prepare neutron stars with a variety of the radius and tidal
deformability (see Table II). We note that for any EOS
employed in this paper, the maximum mass of spherical
neutron stars is larger than 2.0 M⊙; the approximate
maximum mass for neutron stars for which the mass is
accurately measured to date [52] (see Ref. [50] on the data
of the maximum mass for each EOS).
In numerical simulations, we employ the following

modified version of the piecewise polytropic EOS to
approximately take into account thermal effects:

P ¼ PcoldðρÞ þ ðΓth − 1Þρεth; ð2:2Þ

ε ¼ εcoldðρÞ þ εth; ð2:3Þ

where Γth is a constant. The cold parts (the first terms) of
both variables are calculated using the original piecewise
polytropic EOS from ρ, and then the thermal part of the
specific internal energy is determined from ε as εth ¼
ε − εcoldðρÞ. Because εth vanishes in the absence of shock
heating, it is regarded as the finite-temperature part deter-
mined by the shock heating in the present context.
Following our latest work [21,29,45], Γth is chosen to be
1.8, but this is not relevant for the present study because we
focus only on the late inspiral evolution.

C. Parameters associated with tidal deformability

For modeling the late inspiral orbital motion and
corresponding gravitational waves of binary neutron stars,
two parameters constructed from the dimensionless tidal
deformability of two neutron stars are often used. One is the
EOB tidal parameter [28] which appears in the equation of
motion of the TEOB formalism and is defined by

ΛT ≔ 16ηðX3
1Λ1 þ X3

2Λ2Þ; ð2:4Þ

where Xi ≔ mi=m0 and Λi is the dimensionless tidal
deformability of each neutron star. We note that the

originally defined variable is κT2 and it is calculated
by 3ΛT=16.
The other parameter is the so-called binary tidal deform-

ability, ~Λ, defined by [17]

~Λ ¼ 8

13
½ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ�: ð2:5Þ

where we supposed that m1 ≤ m2 and then, Λ1 ≥ Λ2. ~Λ is
related to the leading term associated with the tidal effect in
the gravitational-wave phase in the Fourier space, and
hence, in the real gravitational-wave detection, this can be
regarded as the primarily measured quantity.
One interesting property for ΛT and ~Λ is that for a fixed

chirp mass, these values are in a narrow range (within 1%
disagreement) as long as we consider the cases that m0 ≈
2.7 M⊙ and 0.8 ≤ q ≤ 1. Hence, in the following, we refer
only to ~Λ, supposing that ~Λ agrees approximately with ΛT .
Note that for the equal-mass models (η ¼ 0.25), ΛT ¼ ~Λ.

D. Extraction of gravitational waves

As a first step toward producing gravitational waves
from numerical data, we extract the outgoing-component
of complex Weyl scalar Ψ4 [42]. If Ψ4 is extracted at a
sufficiently large radius, complex gravitational waveforms
are determined in spherical coordinates ðr; θ;ϕÞ by

hðt; θ;φÞ ¼ − lim
r→∞

Z
t
dt0

Z
t0

dt00Ψ4ðt00; r; θ;φÞ: ð2:6Þ

Ψ4 can be expanded with respect to the spin-weighted
spherical harmonics of weight −2, −2Ylm, as

Ψ4ðt; r; θ;ϕÞ ¼
X
lm

Ψl;m
4 ðt; rÞ−2Ylmðθ;ϕÞ; ð2:7Þ

where Ψl;m
4 is the expansion coefficient defined by this

equation. In this work, we focus only on the ðl; jmjÞ ¼
ð2; 2Þ mode because we pay attention only to the equal-
mass or nearly equal-mass binary, and hence, this quadru-
pole mode is the dominant one.
We extract Ψ4 at a finite spherical-coordinate radius of

r ≈ 200m0, and then, calculate Ψ2;2
4 as a function of the

retarded time defined by

tret ≔ t − r�; ð2:8Þ
where r� is the so-called tortoise coordinate defined by

r� ≔ rA þ 2m0 ln

�
rA
2m0

− 1

�
; ð2:9Þ

with rA ≔
ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
and A the proper area of the extraction

sphere.

KENTA KIUCHI et al. PHYSICAL REVIEW D 96, 084060 (2017)

084060-4



Since Ψ2;2
4 ðtretÞ extracted at a finite radius, r0 ≈ 200m0,

is different from the true gravitational waveform observed
at null infinity, we then have to compute an extrapolated
waveform at r0 → ∞. As in our previous studies [21,29],
for this purpose, we employ the Nakano’s method (approx-
imately equivalent to the Cauchy matching method)
[53–55], by which the waveform at infinity is calculated by

Ψl;m;∞
4 ðtret; r0Þ ¼ Cðr0Þ½Ψl;m

4 ðtret; r0Þ

−
ðl − 1Þðlþ 2Þ

2rA

Z
tret
Ψl;m

4 ðt0; r0Þdt0�;

ð2:10Þ
where Cðr0Þ is a function of r0. Since our coordinates are
similar to isotropic coordinates of nonrotating black holes,
we choose rA ¼ r0½1þm0=ð2r0Þ�2 and Cðr0Þ¼ 1–2m0=rA.
In this setting, tret at r ¼ r0 is given by Eqs. (2.8) and (2.9).
We also perform the same analysis choosing different

extraction radii as r0=m0 ¼ 156 and 178 and estimate
the error of the gravitational-wave phase coming from the
extraction of Ψ4 at finite radii, because the effect of the
finite-radius extraction still remains in Ψl;m;∞

4 .
For Ψl;m;∞

4 ðtret; r0Þ thus determined, the gravitational
waveform of each mode is obtained by twice integrating
it as [see Eq. (2.6)]

hl;mðtretÞ ≔ hl;mþ ðtretÞ − ihl;m× ðtretÞ

¼ −
Z
tret

dt0
Z
t0
dt00Ψl;m;∞

4 ðt00Þ: ð2:11Þ

For this integration, we employ the method of Ref. [56],
and write hl;mðtretÞ as

hl;mðtretÞ ¼
Z

dω0 Ψl;m;∞
4 ðω0Þ

maxðω0;ωcutÞ2
expðiω0tretÞ; ð2:12Þ

whereΨl;m;∞
4 ðωÞ is the Fourier transform ofΨl;m;∞

4 ðtretÞ and
ωcut is chosen to be 1.6Ω0. (Note that at the initial stage,
the value of ω is ≈2Ω0 > ωcut). We recall again that in this
paper we pay attention only to l ¼ jmj ¼ 2 modes because
these are the dominant modes in particular for the equal-
mass binaries.
From Eq. (2.12), the evolution of the amplitude, i.e.,

Al;m ¼ jhl;mj, is immediately determined. For the analysis
employed in our method, we can also define the angular
frequency

ωðtretÞ ≔
j _h2;2j
jh2;2j ; ð2:13Þ

and subsequently, the gravitational-wave phase by

ΦðtretÞ ≔
Z

tret
dt0ωðt0Þ: ð2:14Þ

Now, using A2;2 and Φ, the quadrupole gravitational
waveform can be written as

h2;2ðtretÞ ¼ A2;2ðtretÞ exp ½iΦðtretÞ�: ð2:15Þ

Before closing this section, we note that the angular
frequency defined by Eq. (2.13) is contaminated by the
time derivative of the amplitude. Although the associated
error for our current analysis that focuses only on the
inspiral phase is negligible, future analysis of more
dynamical merger phase will require more appropriate
definitions such as [57]

ωdynðtretÞ ≔ Im

�
h�2;2 _h2;2

jh2;2j2
�
; ð2:16Þ

where h�2;2 is the complex conjugate of h2;2.

III. NUMERICAL RESULTS

Figure 1 plots the amplitude (A2;2D=m0; upper panels)
and phase (Φ; middle panels) of numerical gravitational
waveforms with different grid resolutions for the equal-
mass models with HB EOS (left) and 125H EOS (right). D
denotes the distance to the source. In the bottom panels for
both left and right, we also plot the difference in phase with
respect to the best grid-resolution (N ¼ 182) results for
N ¼ 90, 102, 110, 130, and 150. This figure shows that the
merger occurs earlier for the poor grid resolutions with
N ≲ 130. Specifically, the evolution of ΦðtretÞ is spuriously
accelerated for such low grid resolutions. However, for the
high grid resolutions with N ≳ 150, the phase evolution
depends only weakly on the grid resolution. In some
models like 15H and 125H models, the merger for N ¼
182 occurs slightly earlier than for N ¼ 150. However, the
peak amplitude time difference is as small as ≈0.5
microsecond. When we pay attention to the waveforms
only up to the peak amplitude, the phase difference between
N ¼ 150 and N ¼ 182 is 0.1–0.2 rad irrespective of the
models (see Fig. 2).
The left panel of Fig. 2 plots differences in the

gravitational-wave phase, ΦðtretÞ, at the moment that the
gravitational-wave amplitude forN ¼ 182 reaches the peak
as a function of ð182=NÞ4 for the equal-mass models with
five different EOS. This shows that the phase difference
steeply (as fast as or faster than the fourth-order conver-
gence) decreases with the improvement of the grid reso-
lution for N ≳ 100 irrespective of the EOS. In particular for
N ≳ 150, the phase difference is decreased to 0.1–0.2 rad,
and the phase error appears to be convergent (besides
an irregular error that does not converge monotonically
with the improvement of the grid resolution: see below
for a discussion). This indicates that for N ≳ 150
(Δx9 ≲ 100 m), nearly convergent waveforms with the
phase error within ∼0.2 rad would be obtained.
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The right panel of Fig. 2 plots differences in the
gravitational-wave phase for the unequal-mass models. It
is found that the convergence behavior of the phase
difference is similar to that for the equal-mass models.
This suggests that for N ¼ 150, a nearly convergent
waveform is likely to be also obtained for these
unequal-mass models.
Figure 1 shows that for N ≲ 110, the phase difference

monotonically decreases with the improvement of the grid
resolution. However, for N ≳ 130, the phase difference
does not show such monotonic behavior as already men-
tioned. This indicates the presence of an unidentified
source of the numerical error that does not monotonically
converge with the improvement of the grid resolution.
Figure 1 indicates that such error source generates the error
in gravitational-wave phase by ∼0.1 rad irrespective of the
EOS employed.

The another phase error sources are the finite-radius
extraction and the violation of the baryon mass conserva-
tion. In Appendix B, we show the phase error due to the
finite-radius extraction is less than 0.04 rad irrespective of
the models.
The violation of the baryon mass conservation may cause

a phase error [30]. We also show that this error is much
smaller than 0.01 rad up to the merger irrespective of the
models in the Appendix B. Therefore, we have to bear in
mind that in our current numerical waveform, the phase
error of ∼0.1 rad cannot be avoided.
Figure 3 plots the peak amplitude of gravitational waves,

hpeak, and the frequency at the peak, fpeak, as functions of
the grid resolution, described by ð182=NÞ, for the equal-
mass models (left panel) and as functions of ð150=NÞ for
the unequal-mass models (right panel). This figure shows
that the quantities associated with the peak depend weakly
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on the grid resolution. In particular, it is found that fpeak
may be underestimated if the grid resolution is not high
enough. It should be also remarked that the fluctuation in
fpeak is rather large even among the high-resolution results.
This is reasonable because the frequency rapidly increases
near the amplitude peak. We should keep in mind that the
value of the peak frequency has an error of 2–3%.
Figure 4 plots the relation between hpeak and fpeak and

between ~Λ and fpeak following Ref. [16]. This shows that
the relation between hpeak and fpeak depends only weakly
on the mass ratio. Qualitatively this is reasonable because
hpeak should be an increasing function of fpeak. It is also

found that the relation between ~Λ and fpeak depends

strongly on the mass ratio. We note that ~Λ is approximately
equal to ΛT for the models employed in this paper. Thus,
our results do not show a universal relation (see also

Ref. [58]). Nevertheless, Fig. 4 shows that fpeak (and hence

hpeak) has valuable information on ~Λ as follows: (i) if fpeak
is higher than ∼2 kHz (i.e., hpeakD=m0 ≳ 0.16) for the

chirp mass of ≈1.1752 M⊙, ~Λ ≲ 500, implying that the
EOS is rather soft. (ii) if fpeak is lower than ∼1.4 kHz (i.e.,
hpeakD=m0 ≲ 0.14) for the chirp mass of ≈1.1752 M⊙,
~Λ≳ 1000, implying that the EOS is rather stiff.

IV. COMPARISON BETWEEN NUMERICAL-
RELATIVITY AND TEOB WAVEFORMS

In this section, we compare the NR waveforms with
those by a TEOB formalism. For the TEOB formalism, we
employ a latest version reported in Ref. [26], in which the
effects of not only the static but also dynamical tides are
taken into account.
In this comparison, we use the NR waveforms without

performing extrapolation to the limit of Δxfinest ¼ 0
because as we showed in the previous section (and found
in this section), the numerical error of the waveforms is
small enough to perform the direct comparison. In the
following, we employ the NR waveforms obtained for N ¼
182 or N ¼ 150 for the comparison: For the equal-mass
models, we use the two waveforms of different grid
resolutions and show that the results on the comparison
do not lead to any serious difference.
When comparing two waveforms, we first have to align

the time and phase of the NR and TEOBwaveforms. This is
done by searching for the minimum of the following
correlation, Ic, varying τ and ϕ:

Ic ¼ min
τ;ϕ

Z
tf

ti

dtretjA2;2
NRðtretÞ exp ½iΦNRðtretÞ�

− A2;2
TEOBðtret þ τÞ exp ½iΦTEOBðtret þ τÞ þ iϕ�j2:

ð4:1Þ
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Here, A2;2
NR and ΦNR denote the amplitude and phase of

gravitational waves for the numerical-relativity data, res-
pectively. A2;2

TEOB and ΦTEOB denote those by the TEOB
formalism. For calculating the correlation, we employ the
time domain NR waveforms of 20 ms ≤ tret ≤ 40 ms. The
corresponding gravitational-wave frequency at tret ¼ 20
and 40 ms is ≈410 and 500 Hz, respectively.
The reason that we choose the rather late-time NR

waveforms of 20 ms ≤ tret ≤ 40 ms for the correlation Ic
is as follows: In the early stage of the numerical evolution
with tret ≲ 15 ms, the frequency of gravitational waves
always has an irregular modulation (see Appendix A). For
precisely comparing the NR waveforms with those by the
TEOB approach, such modulation, even if its amplitude is
not very large, introduces the uncertainty in matching. To
remove such uncertainty, we discard the waveforms in the
early stage. We note that even for tret ≥ 20 ms, there are

≳22 wave cycles (≳11 orbits) in our numerical data. We
confirmed that the choice of the time-window of the
matching does not significantly affect the following result.
In Figs. 5 and 6, we compare the NR waveforms with the

TEOB waveforms. In Table III, we also list ΦNR −ΦTEOB
at the moment that the gravitational-wave amplitude
reaches the peak (referred to as tpeak in the following).
Figures 5 and 6 show that up to tpeak − 3 ms, the TEOB
waveforms well reproduce the NR waveforms irrespective
of the EOS and mass ratio: In particular for the models for
which the compactness is large and the tidal deformability
is small (e.g., for B EOS), the agreement is quite good
even at t ¼ tpeak − 1 ms, and the disagreement in the
gravitational-wave phase is within 0.3 rad up to tpeak,
which is within the uncertainty due to the phase error.
On the other hand, for the models for which the

compactness is relatively small (e.g., for 125H and 15H
EOS), agreement between the NR and TEOB waveforms
becomes poor for the last few ms prior to tpeak, leading to a
phase disagreement of ≳1 rad, which is greater than the
uncertainty due to the phase error (see Table III). The
interpretation for this is described as follows: For these
small-compactness models, two neutron stars come into
contact at tcont ∼ tpeak − 1 ms (see the left panel of Fig. 7).

 0

 0.05

 0.1

 0.15

 0  10  20  30  40  50  60

h
D

 /m
0

tret (ms)

15H, NR
15H, TEOB

125H, NR
125H, TEOB

H, NR

H, TEOB
HB, NR

HB, TEOB
B, NR

B, TEOB

-0.5

 0

 0.5

 1

 1.5

Φ
N

R
-Φ

T
E

O
B

 (
ra

d) 15H
125H

H
HB

B

 0

 0.05

 0.1

 0.15

 0  10  20  30  40  50  60

h
D

 /m
0

tret (ms)

15H, NR
15H, TEOB

125H, NR
125H, TEOB

H, NR

H, TEOB
HB, NR

HB, TEOB
B, NR

B, TEOB

-0.5

 0

 0.5

 1

 1.5

Φ
N

R
-Φ

T
E

O
B

 (
ra

d) 15H
125H

H
HB

B

FIG. 5. Comparison between NR and TEOB waveforms for the equal-mass models. For the NR waveforms, we use the data with
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FIG. 6. The same as Fig. 5 but for the unequal-mass models.
For the NR waveforms, we use the data with N ¼ 150.

TABLE III. ΦNR −ΦTEOB at t ¼ tpeak in units of radian for the
equal-mass models with N ¼ 182 and 150, and for the unequal-
mass models with N ¼ 150.

EOS ðη; NÞ ¼ ð0.250; 182Þ (0.250,150) (0.247,150)

B 0.1 0.3 0.2
HB 0.3 0.6 0.4
H 0.7 0.9 0.7
125H 1.0 1.1 1.1
15H 1.3 1.3 1.3
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Then, after the contact, the tidal deformation is further
enhanced and a dumbbell-like object is formed (see the
middle panel of Fig. 7). However, the density peaks of the
dumbbell-like object are still clearly separated, and hence,
the gravitational waveform has a chirp-type signal although
the waveform is different slightly from the chirp signal
from the separated body; that is, the evolution process of
the system is determined by hydrodynamics equations (not
simply by two-body equations of motion) and emission
process of gravitational waves by the dumbbell-like object.
As the distance between two density peaks decreases
sufficiently, the gravitational-wave amplitude eventually
reaches the peak (see the right panel of Fig. 7), and after the
two density peaks merge, the amplitude significantly
decreases. As mentioned above, for tcont ≤ tret ≤ tpeak,
chirp-type gravitational waves are emitted from a dumb-
bell-like object. However, the evolution of the object and
the resulting gravitational waveforms cannot be well
modeled by the current TEOB formalism because this
stage is beyond the range of its application.
For the larger-compactness models, similar disagreement

is found but only for the short duration because the tidal
effects are weak, and furthermore, tpeak − tcont is ≲1 ms:

For such compact models, the separation between two
neutron stars is already small at tret ¼ tcont, and hence, the
time scale of gravitational radiation reaction is as short as or
shorter than the orbital period. Therefore, the duration of
the stage of the dumbbell-like configuration is quite short
and the disagreement between the NR and TEOB wave-
forms are not very remarkable.
Figure 5 and Table III show that irrespective of the

numerical data employed, we obtain approximately the
same results for the comparison between the NR and
TEOB waveforms. This reconfirms that for N ≳ 150, an
approximately convergent waveform (but with the phase
error of order 0.1 rad) can be obtained in our numerical
implementation.
To quantify the disagreement between the NR and TEOB

waveforms, we define a measure of the mismatch by

MðtretÞ ≔ 1 −
jðhNRjhTEOBÞj

ðhTEOBjhTEOBÞ1=2ðhNRjhNRÞ1=2
; ð4:2Þ

where ðh1jh2Þ is a function of tret defined (without referring
to detector noises) by

FIG. 7. Density profiles on the equatorial plane for the model 15H135-135 with N ¼ 182 at t ¼ tpeak − 1.10 ms (left), tpeak − 0.55 ms
(middle), and tpeak (right).
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ðh1jh2Þ ≔
Z

tret

ti

h1ðt0retÞh�2ðt0retÞdt0ret; ð4:3Þ

and h� denotes the complex conjugate of h. Here, ti is
chosen to be 20 ms, and hNR and hTEOB denote the NR and
TEOB waveforms, respectively.
Figure 8 plotsMðtÞ for all the models withN ≥ 150 that

we consider in this paper. This shows that the degree of the
mismatch steeply increases for the last inspiral orbits, in
particular for the stiff EOS, due to the lack of modeling in
the TEOB formalism as mentioned above. On the other
hand, up to ∼tpeak − 3 ms, the match is quite good: M is
smaller than 10−3. This convinces us that the final issue in
the TEOB formalism, in particular for the stiff EOS of large
tidal deformability, is to take into account dynamics and the
waveform in the dumbbell-like object phase. The phase
difference, ΦNR −ΦTEOB, as well as the mismatch,M, at a
given moment of the retarded time increases nonlinearly
with ~Λ. This suggests that for the improvement of the
TEOB approach, a new nonlinear term of the tidal
deformability is needed. This point will be discussed in
our accompanying paper [59].

V. SUMMARY

We presented our latest numerical-relativity results of
long-term, high-accuracy simulations for the inspiraling
binary neutron stars. The simulations were performed not
only for the equal-mass binaries but also for the unequal-
mass ones. We showed that if the grid resolution is high
enough (i.e., the neutron-star radii are covered with the grid
of its spacing 60–80 m), it is possible to obtain a nearly
convergent gravitational waveform (with the phase error of
order 0.1 rad) from inspiraling binary neutron stars.
By comparing our high-resolution waveforms with the

TEOB waveforms, we find that the TEOB formalism can
reproduce accurate waveforms for binary neutron stars up
to ∼tpeak − 3 ms irrespective of the neutron star EOS
models. However, it is also found that for tpeak − 3 ms≲
t≲ tpeak (in particular for tpeak−1ms≲ t≲ tpeak), the cur-
rent TEOB formalism cannot reproduce the numerical
waveforms, in particular for the binary neutron stars of
stiff EOS, and the phase error between the numerical and
TEOB waveforms cannot be negligible as ≳1 rad at the
amplitude peak for the stiff EOS models. The primary
reason for this is that for such a stage, the evolution of the
system cannot be well reproduced by the current TEOB
equation of motion.
Accurate numerical data is crucial for modeling gravi-

tational waveforms in the frequency domain [60]. Our
numerical waveforms are the most accurate ones among
those have been ever derived. We are now developing a
phenomenological model from our numerical waveforms in
the frequency domain, since we find that the numerical
waveforms have a quality enough for the modeling. The
results will be presented in our accompanying paper [59].
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APPENDIX A: THE EFFECTS OF
RESIDUAL ECCENTRICITY IN

THE NUMERICAL WAVEFORMS

We here demonstrate that the numerical waveforms in the
early stage of numerical simulations are not suitable for the
precise analysis because of the presence of the unphysical
and irregular modulation in the angular frequency in the
numerical waveforms, which is likely to be generated due to
an unphysical setting of initial conditions (see below).
The modulation in the angular frequency of the numeri-

cal waveforms is extracted in the following procedure.
First, we fit and subtract the nonoscillatory (i.e., physical)
part of the numerical angular frequency by employing a
function of the form

ωFitðtÞ ¼
X7

n¼0;n≠1
anðt1 − tÞ−ðnþ3Þ=8: ðA1Þ

The choice of this form is motivated by the Taylor-T3
approximant [6,61], and the coefficients, t1 and an, are
determined by the least-square fitting procedure. The fitting
is performed for 5 ms ≤ tret ≤ 50 ms of the waveforms. We
checked that the result of the fitting depends only weakly
on the choice of the time window.
Figure 9 shows the modulation in the angular frequency

of the numerical waveforms for the equal-mass model
with 15H and B EOS with N ¼ 150. The modulation is
defined by

ωNR − ωFit

ωFit
; ðA2Þ

where ωNR is the angular frequency of the numerical-
relativity waveforms. The fitting curves in this figure are
determined from the data in 17 ms ≤ tret ≤ 27 ms assum-
ing that the modulation is written as a sinusoidal function.
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For e ≪ 1, the residual eccentricity e of the binary orbits is
related to the amplitude of the modulation in the angular
frequency, Δω, by Δω ≈ 2eω assuming that the Newtonian
relation is satisfied. For these fitting curves, the eccentricity
of the binary orbits is measured to be e ≈ 1.19 × 10−3 and
1.05 × 10−3 for 15H and B EOS, respectively. Figure 9
shows that the eccentricity decreases with time, and it is
≲10−3 for≳20 ms irrespective of the EOS and binary mass
employed.
Figure 9 shows that in the early part of the evolution with

tret ≲ 15 ms, the modulation in the angular frequency
behaves in an irregular manner, although that for tret ≳
15 ms exhibits a simple damped-oscillation-like feature
(neglecting its fine structure). That is, for tret ≲ 15 ms, the
center of the oscillation is not located at zero. This irregular
oscillation causes an irregular error in the gravitational-
wave phase and makes it difficult to perform a careful
comparison between the numerical and TEOB waveforms.
Therefore, we discard the waveforms in the early stage, and
use only the data with tret ≥ 20 ms for the comparison in
this paper. We note that even when we discard the data with

tret ≤ 20 ms, i.e., first ∼6.5–7 wave cycles, we still have
≳22 cycles in the waveforms up to tpeak.
Our interpretation for this irregular modulation for the

first ∼15 ms is that burstlike junk radiation is emitted just
after the simulation is started, and it takes about 15 ms until
the system relaxes to a quasistationary state. The junk
radiation is caused by unphysical setting of the initial
condition associated with the so-called conformal flatness
approximation for the initial-data problem (e.g., see chap-
ter 5 of Ref. [62]).

APPENDIX B: PHASE ERROR DUE TO THE
FINITE-RADIUS EXTRACTION AND VIOLATION

OF THE BARYON MASS CONSERVATION

According to the Nakano’s method Eq. (2.10), we
extrapolate the gravitational waveforms extracted at
r0=m0 ¼ 156, 178, and 200 to infinity. We find that the
extrapolated waveforms slightly deviate each other due to
the finite-radius extraction. By assuming this error falls off
as 1=r0, we obtain a waveform at infinity from the
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FIG. 9. The modulation in the angular frequency of the numerical waveforms for 15H (left panel) and B (right panel) EOS. The fitting
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waveforms generated by the Nakano’s method. Figure 10
plots the phase difference between the waveform generated
by the Nakano’s method and the waveform at infinity as a
function of the retarded time. The phase error due to
the finite-radius extraction is as small as ∼0.01 rad up to
the peak amplitude time and it decreases as a function of the
extraction radius. We find a similar trend in the other equal-
mass models and the unequal-mass models.
The baryon mass conservation is slightly violated at the

merger because the conservative mesh refinement is not
implemented in our code [63,64]. Following Ref. [30], we
estimate the phase error due to the violation of the baryon
mass conservation by

δΦb ¼ ωtret
ΔMb

Mb
; ðB1Þ

where ω is the angular frequency Eq. (2.13) and Mb is the
baryon mass. ΔMb is the violation of the baryon mass
conservation. Figure 11 plots the estimated phase error due
to the violation of the baryon mass conservation for the
equal-mass models with N ¼ 182. This plot shows that
the resolution adopted in this work is high enough to reduce
the error in the baryon mass conservation to ≈10−4 % up to

the peak amplitude time. Consequently, the phase error is
≈Oð10−4Þ rad at the peak amplitude time irrespective
of the models. The unequal-mass models show a similar
result.
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