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Note: In my poster, the word ``noncommutative (=NC)’’ means noncommutative
spaces but most of  results can be extended to more general situation.
This work would be related to twistor rathar than twistor string… µννµ θixx =],[



Successful points in NC theories
Appearance of new physical objects
Description of real physics (in gauge theory)
Various successful applications
to D-brane dynamics etc.

1. Introduction

Construction of exact solitons are important.
(partially due to their integrablity)

Final goal: NC extension of all soliton theories
(Soliton eqs. can be embedded in gauge theories 
via Ward’s conjecture ! [R. Ward, 1985] )



NC Ward’s conjecture: Many (perhaps all?)  NC
integrable eqs are reductions of the  NC ASDYM eqs.
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Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture 
– NC twistor theory geometrical origin
– D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory
– Existence of  ``hierarchies’’ various soliton eqs.
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
– Construction of multi-soliton solutions
– Theory of tau-functions structure of the solution 

spaces and the symmetry

(i),(ii) complete understanding of the NC soliton theories



2. Backlund transform for NC ASDYM eqs.
In this section, we derive (NC) ASDYM eq.  from the 
viewpoint of linear systems, which is suitable for 
discussion on integrable aspects.
We define NC Yang’s equations which is equivalent to 
NC ASDYM eq. and give a Backlund transformation for 
it.
The generated solutions would contain not only finite-
action solutions (NC instantons) but also infinite-action 
solutions (non-linear plane waves and so on.)
This Backlund transformation could be applicable for 
lower-dimensional integrable eqs. via Ward’s conjecture. 



(Q) How we get NC version of the theories?
(A) We have only to replace all products of fields in 

ordinary commutative gauge theories 
with star-products:
The star product: (NC and associative)
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Here we discuss G=GL(N) NC ASDYM eq. from the 
viewpoint of linear systems with a spectral parameter .ζ

(All products are star-products.)

Linear systems (NC case):

Compatibility condition of the linear system:
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Yang’s form and NC Yang’s equation
NC ASDYM eq. can be rewritten as follows
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If we define Yang’s matrix:
then we obtain from the third eq.:
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The solution     reproduces the gauge fields asJ



Backlund transformation for NC Yang’s eq.
Yang’s J matrix can be decomposed as follows

Then NC Yang’s eq. becomes

The following trf. leaves NC Yang’s eq. as it is: 
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We could generate various (non-trivial) solutions
of NC Yang’s eq. from a (trivial) seed solution by 
using the previous Backlund trf. together with
a simple trf. 

This combined trf. would generate a group of 
hidden symmetry of NC Yang’s eq., which would 
be also applied to lower-dimension. 
For G=GL(2), we can present the transforms 
more explicitly  and give an explicit form of a 
class of solutions (NC Atiyah-Ward ansatz).
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Backlund trf. for NC ASDYM eq.
Let’s consider the combined Backlund trf.

If we take a seed sol.,
the generated solutions are :
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Quasi-determinants
Quasi-determinants are not just a NC generalization of 
commutative determinants, but rather related to inverse 
matrices. 
For an n by n matrix                 and  the inverse           
of X, quasi-determinant of X is directly defined by

Recall that
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We can also define quasi-determinants recursively

ijX : the matrix obtained
from X deleting i-th
row and j-th column



Quasi-determinants
Defined inductively as follows
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Explicit Atiyah-Ward ansatz solutions of
NC Yang’s eq. G=GL(2)
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Quasideterminants
naturally appear in 
this framework.
The proof is done
direcly by NC Jacobi 
identity etc. and 
indirectly by twistor.
[Gilson-MH-Nimmo.
forthcoming paper]



We could generate various solutions of NC
ASDYM eq. from a simple seed solution by 
using the previous Backlund trf.                          

NC twistor could give an origin of NC CFYG trf.

NC CFYG trf. would generate all solutions in some 
sense and could be applied to reveal the hidden 
symmetry of NC ASDYM eq. and the reductions.
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NC instantons
NC Non-Linear plane-waves
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Patching matrix of holomorphic vec. bdl over NC twistor sp.
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