Instanton effects in string/M-theory from 3d superconformal field theories

Masazumi Honda

Harish-Chandra Research Institute

References: [M.H.-Okuyama, 1405.3653] [M.H.-Moriyama, 1404.0676] [Hatsuda-M.H.-Moriyama-Okuyama, 1306.4297]

+ recent papers by Calvo, Codesido, Grassi, Hatsuda, Kallen, Marino, Matsumoto, Moriyama, Nosaka, Okuyama, Putrov, Yamazaki and Zakany

Non-perturbative effects in string/M-theory دWorldsheet, D-brane and membrane instantons

Non-perturbative effects in string/M-theory כWorldsheet, D-brane and membrane instantons

In this talk, I will report
low-energy effective theories of M2-branes provide good laboratory to probe these effects via AdS/CFT.

M2-branes w/ fractional M2-branes in certain space

3d necklace quiver Chern-Simons matter theory

(N M2-branes) + (M fractional M2-branes) on $\mathbf{R}^{\mathbf{8}} / \mathbf{Z}_{\mathrm{k}}$

 (=M5-branes wrapped on $S^{3} / Z_{k} \subset R^{8} / Z_{k}$)
(N M2-branes) + (M fractional M2-branes) on $\mathbf{R}^{\mathbf{8}} / \mathbf{Z}_{\mathrm{k}}$

 (=M5-branes wrapped on $\mathrm{S}^{3} / Z_{k} \subset \mathrm{R}^{8} / Z_{k}$)Effective theory $=\mathrm{ABJ}(\mathrm{M})$ theory:

$3 \mathrm{~d} \mathcal{N}=6 \mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-\mathrm{k}}$
 (k : CS level) superconformal Chern-Simons theory

(N M2-branes) + (M fractional M2-branes) on $\mathbf{R}^{\mathbf{8}} / \mathbf{Z}_{\mathrm{k}}$

 (=M5-branes wrapped on $S^{3} / Z_{k} \subset R^{8} / Z_{k}$)Effective theory $=\mathrm{ABJ}(\mathrm{M})$ theory:

$3 \mathrm{~d} \mathcal{N}=6 \mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-\mathrm{k}}$
 (k : CS level) superconformal Chern-Simons theory

$\supset\left\{\begin{array}{l}\cdot \text { Vector multiplet } \quad \text { (in } 3 \mathrm{~d} \mathcal{N}=2 \\ -2 \text { bi-fundamental chiral multiplets } \\ -2 \text { anti-bi-fundamental chiral multiplets }\end{array}\right.$

CFT_{3}
$\mathrm{U}(\mathrm{N})_{k} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-k}$ $A B J$ theory

CFT_{3}

AdS_{4}

M-theory

$\mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-\mathrm{k}}$

 $A B J$ theory
CFT_{3}

AdS_{4}
M-theory

$\mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-\mathrm{k}}$

 $A B J$ theory$$
\lambda=\frac{N}{k}=\text { fixed, } N \gg 1
$$

Type IIA superstring on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
with $\frac{1}{2 \pi} \int_{C P^{1}} B_{2}=\frac{1}{2}-\frac{M}{k}$

CFT_{3}

AdS_{4}

M-theory

on $\mathrm{AdS}_{4} \times \mathrm{S}^{7} / Z_{k}$

$$
\text { with } \frac{1}{2 \pi} \int_{S^{3} / Z_{k}} C_{3}=\frac{1}{2}-\frac{M}{k}
$$

$\mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N}+\mathrm{M})_{-\mathrm{k}}$

 $A B J$ theory$$
\lambda=\frac{N}{k}=\text { fixed, } \mathrm{N} \gg 1
$$

Type IIA superstring on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
with $\frac{1}{2 \pi} \int_{C P^{1}} B_{2}=\frac{1}{2}-\frac{M}{k}$

AdS_{4}

D2-brane instanton:

D2-brane instanton:
Worldsheet instanton:

D2-brane instanton:
Worldsheet instanton:

D2-brane instanton:

$$
\exp \left[-T_{D 2} \operatorname{Vol}\left(R P^{3}\right)\right]=\exp \left[-\pi \sqrt{\frac{2 N^{2}}{\lambda}}\right]
$$

Worldsheet instanton:

$$
\exp \left[-\frac{1}{2 \pi \alpha^{\prime}} \operatorname{Area}\left(C P^{1}\right)\right]=\exp [-2 \pi \sqrt{2 \lambda}]
$$

AdS_{4}
 X

D2-brane instanton:

$$
\exp \left[-T_{D 2} \operatorname{Vol}\left(R P^{3}\right)\right]=\exp \left[-\pi \sqrt{\frac{2 N^{2}}{\lambda}}\right]
$$

Worldsheet instanton:

$$
\exp \left[-\frac{1}{2 \pi \alpha^{\prime}} \operatorname{Area}\left(C P^{1}\right)\right]=\exp [-2 \pi \sqrt{2 \lambda}]
$$

non-perturbative in the sense of genus expansion!!

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.
$A B J(M)$ partition function on sphere:

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.
$\underline{A B J}(M)$ partition function on sphere:
-Ideal Fermi gas formalism

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

$\underline{A B J}(M)$ partition function on sphere:

- Ideal Fermi gas formalism
-Exact computation of the ABJ partition function for various (k,M,N)
[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]
Ex.) For $(k, M)=(2,1)$ up to $N=65$, etc...

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

$\underline{A B J}(M)$ partition function on sphere:

- Ideal Fermi gas formalism
- Exact computation of the ABJ partition function for various (k,M,N)
[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama] Ex.) For $(k, M)=(2,1)$ up to $N=65$, etc...
- Non-perturbative structure from the refined topological string

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

$\underline{A B J}(M)$ partition function on sphere:

- Ideal Fermi gas formalism
- Exact computation of the ABJ partition function for various (k,M,N)
[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama] Ex.) For $(k, M)=(2,1)$ up to $N=65$, etc...
- Non-perturbative structure from the refined topological string
[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]
- Drastic simplification for $\mathcal{N}=8$ SUSY cases

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

$\mathrm{ABJ}(M)$ partition function on sphere:

- Ideal Fermi gas formalism
-Exact computation of the ABJ partition function for various (k,M,N)
[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama] Ex.) For $(k, M)=(2,1)$ up to $N=65$, etc...
- Non-perturbative structure from the refined topological string
[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]
- Drastic simplification for $\mathcal{N}=8$ SUSY cases
[Codesido-Grassi-Marino]
- Resumming the $1 / \mathrm{N}$-expansion in ABJM

Here I will overview recent progress on probing instanton effects in string/M-theory from M2-brane theories.

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

-Ideal Fermi gas formalism

- Exact computation of the ABJ partition function for various (k, M, N)

$$
\text { Ex.) For }(k, M)=(2,1) \text { up to } N=65 \text {, etc... }
$$

- Non-perturbative structure from the refined topological string
[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]
-Drastic simplification for $\mathcal{N}=8$ SUSY cases
[Codesido-Grassi-Marino]
- Resumming the $1 / \mathrm{N}$-expansion in ABJM

Some generalizations:
-BPS Wilson loop

Main result

$$
e^{J(\mu)} \sim \sum_{N} Z_{\mathrm{ABJ}}(k, M ; N) e^{\mu N},
$$

$$
Z_{\mathrm{D} 2, \ell-\mathrm{inst} ; \mathrm{WS}, \mathrm{~m}-\mathrm{inst}}=g_{\ell, m}\left(k, M ; \frac{\partial}{\partial N}\right) \mathrm{Ai}\left[C^{-\frac{1}{3}}(k)\left(N-B(k, M)+2 \ell+\frac{4 m}{k}\right)\right]
$$

$$
\left(\frac{Z_{\mathrm{D} 2, \ell-\text { inst } ; \text { WS }, \mathrm{m}}-\text { inst }}{Z_{\text {perturbative }}} \sim e^{-\pi \ell \sqrt{2 k N}-2 \pi m \sqrt{\frac{2 N}{k}}}\right)
$$

Instanton effects from $A B J(M)$ partition function

$$
Z_{\mathrm{ABJ}(\mathrm{M})}=\int[D \Phi] e^{-S_{\mathrm{ABJ}(\mathrm{M})} \Phi \Phi}
$$

$$
Z_{\mathrm{ABJ}(\mathrm{M})}=\int[D \Phi] e^{-S_{\mathrm{ABJ}(\mathrm{M})}[\Phi]}
$$

In this representation, analysis is basically limited to perturbative expansion of $\lambda=N / k$. (inconvenient to study the instantons)

$$
Z_{\mathrm{ABJ}(\mathrm{M})}=\int[D \Phi] e^{-S_{\mathrm{ABJ}(\mathrm{M})}[\Phi]}
$$

In this representation, analysis is basically limited to perturbative expansion of $\lambda=N / k$. (inconvenient to study the instantons)

SUSY Localization

[Kapustin-Willett-Yaakov, Jafferis, Hama-Hosomichi-Lee]
$Z_{\mathrm{ABJ}(\mathrm{M})}=($ Finite dimentional integral $)$

$$
Z_{\mathrm{ABJ}(\mathrm{M})}=\int[D \Phi] e^{-S_{\mathrm{ABJ}(\mathrm{M})}[\Phi]}
$$

In this representation, analysis is basically limited to perturbative expansion of $\lambda=N / k$. (inconvenient to study the instantons)

SUSY Localization

[Kapustin-Willett-Yaakov, Jafferis, Hama-Hosomichi-Lee]

$Z_{\mathrm{ABJ}(\mathrm{M})}=($ Finite dimentional integral $)$

Standard matrix model technique is available to study genus expansion, which is convenient to study worldsheet instanton $\mathcal{O}\left(e^{-2 \pi \sqrt{2 \lambda}}\right)$, but not D2-instanton $\mathcal{O}\left(e^{-\pi \sqrt{2 N^{2} / \lambda}}\right)$,

$A B J(M)$ theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

$$
\left\{\begin{array}{l}
\hat{Z}^{(N, N+M)}(k)=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^{N} y}{(4 \pi k)^{N}} \prod_{a=1}^{N} \rho\left(y_{a}, y_{\sigma(a)}\right), \\
\rho(x, y)=\frac{\sqrt{V(x) V(y)}}{\cosh \frac{x-y}{2 k}} . \quad V(x)=\frac{1}{e^{\frac{x}{2}}+(-1)^{M} e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2 \pi i s}{2|k|} .
\end{array}\right.
$$

$A B J(M)$ theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

$$
\left\{\begin{array}{l}
\hat{Z}^{(N, N+M)}(k)=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^{N} y}{(4 \pi k)^{N}} \prod_{a=1}^{N} \rho\left(y_{a}, y_{\sigma(a)}\right), \quad \text { Ideal Fermi gas!! } \\
\rho(x, y)=\frac{\sqrt{V(x) V(y)}}{\cosh \frac{x-y}{2 k}} . \quad V(x)=\frac{1}{e^{\frac{x}{2}}+(-1)^{M} e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2 \pi i s}{2|k|} .
\end{array}\right.
$$

$A B J(M)$ theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

$$
\left\{\begin{array}{l}
\hat{Z}^{(N, N+M)}(k)=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^{N} y}{(4 \pi k)^{N}} \prod_{a=1}^{N} \rho\left(y_{a}, y_{\sigma(a)}\right), \quad \text { Ideal Fermi gas!! } \\
\rho(x, y)=\frac{\sqrt{V(x) V(y)}}{\cosh \frac{x-y}{2 k}} . \quad V(x)=\frac{1}{e^{\frac{x}{2}}+(-1)^{M} e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2 \pi i s}{2|k|} .
\end{array}\right.
$$

Switch to grand canonical formalism

$$
\equiv_{k}^{(M)}(\mu)=\sum_{N=0}^{\infty} e^{\mu N} \widehat{Z}^{(N, N+M)}(k)=\operatorname{Det}\left[1+e^{\mu} \rho\right]
$$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$
\rho(x, y)=\langle x| e^{-\hat{H}(\hat{q}, \hat{p})}|y\rangle, \quad e^{-\hat{H}(\hat{\tilde{p}} \hat{\hat{p}})}=\sqrt{V(\hat{q})} \frac{1}{2 \cosh \frac{\hat{\tilde{p}}}{} \sqrt{V(\hat{q})}, \quad[\hat{q}, \hat{p}]=2 \pi i k,}
$$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$
\rho(x, y)=\langle x| e^{-\hat{H}(\hat{q} \hat{p})}|y\rangle, \quad e^{-\hat{H}(\hat{\tilde{p}} \hat{\hat{p}})}=\sqrt{V(\hat{q})} \frac{1}{2 \cosh \frac{\tilde{p}}{2}} \sqrt{V(\hat{q})}, \quad[\hat{q}, \hat{p}]=2 \pi i k,
$$

CS level k can be regarded as Planck constant: $\quad \hbar=2 \pi k$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$
\rho(x, y)=\langle x| e^{-\hat{H}(\hat{q}, \hat{p})}|y\rangle, \quad e^{-\hat{H}(\hat{q}, \hat{p})}=\sqrt{V(\hat{q})} \frac{1}{2 \cosh \frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \quad[\widehat{q}, \hat{p}]=2 \pi i k,
$$

CS level k can be regarded as Planck constant: $\quad \hbar=2 \pi k$

Semi-classical expansion

| |

Expansion in M-theory regime

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$
\rho(x, y)=\langle x| e^{-\hat{H}(\hat{q} \hat{p})}|y\rangle, \quad e^{-\hat{H}(\hat{q}, \hat{p})}=\sqrt{V(\hat{q})} \frac{1}{2 \cosh \frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \quad[\hat{q}, \hat{p}]=2 \pi i k,
$$

CS level k can be regarded as Planck constant: $\quad \hbar=2 \pi k$

Semi-classical expansion | |

Expansion in M-theory regime

In this expansion,
D2-instanton: $\mathcal{O}\left(e^{-\pi \sqrt{2 k N}}\right)$ appears perturbatively
but not for worldsheet instanton: $\mathcal{O}\left(e^{-2 \pi \sqrt{2 N / k}}\right)$

Simple derivation of $N^{3 / 2}$ law

$$
Z_{\mathrm{ABJ}}^{(N, N+M)}(k)=\int d \mu e^{J_{k}^{(M)}(\mu)-N \mu}
$$

Simple derivation of $N^{3 / 2}$ law

$$
\begin{gathered}
Z_{\mathrm{ABJ}}^{(N, N+M)}(k)=\int d \mu e^{J_{k}^{(M)}(\mu)-N \mu} \\
\log \hat{Z}^{(N, N+M)}(k) \simeq J_{k}^{(M)}\left(\mu_{*}\right)-\mu_{*} N, \quad \text { with }\left.\frac{\partial J_{k}^{(M)}(\mu)}{\partial \mu}\right|_{\mu=\mu_{*}} ^{\substack{\text { Lcf. M.f.okuyam } \\
\text { Herrogkrebana }}}=N .
\end{gathered}
$$

Simple derivation of $N^{3 / 2}$ law

$$
Z_{\mathrm{ABJ}}^{(N, N+M)}(k)=\int d \mu e^{J_{k}^{(M)}(\mu)-N \mu}
$$

$$
N \rightarrow \infty
$$

$$
\log \hat{Z}^{(N, N+M)}(k) \simeq J_{k}^{(M)}\left(\mu_{*}\right)-\mu_{*} N, \quad \text { with }\left.\frac{\partial J_{k}^{(M)}(\mu)}{\partial \mu}\right|_{\mu=\mu_{*}}=N
$$

Classical Hamiltonian:

$$
H_{\mathrm{Cl}}(q, p)=\log \left(2 \cosh \frac{q}{2}\right)+\log \left(2 \cosh \frac{p}{2}\right) \sim \frac{|q|+|p|}{2}
$$

Simple derivation of $N^{3 / 2}$ law

$$
Z_{\mathrm{ABJ}}^{(N, N+M)}(k)=\int d \mu e^{J_{k}^{(M)}(\mu)-N \mu}
$$

$$
N \rightarrow \infty
$$

$$
\log \hat{Z}^{(N, N+M)}(k) \simeq J_{k}^{(M)}\left(\mu_{*}\right)-\mu_{*} N, \quad \text { with }\left.\frac{\partial J_{k}^{(M)}(\mu)}{\partial \mu}\right|_{\mu=\mu_{*}}=N
$$

Classical Hamiltonian:

$$
H_{\mathrm{Cl}}(q, p)=\log \left(2 \cosh \frac{q}{2}\right)+\log \left(2 \cosh \frac{p}{2}\right) \sim \frac{|q|+|p|}{2}
$$

Classical grand potential:

$$
J_{k}^{(M)}(\mu) \sim \int d E \frac{\operatorname{Vol}\left(H_{\mathrm{Cl}} \leq E\right)}{1+z e^{-E}} \sim \frac{2}{3 \pi^{2} k} \mu^{3}, \quad \mu_{*}=\pi \sqrt{\frac{k N}{2}}
$$

Simple derivation of $N^{3 / 2}$ law

$$
Z_{\mathrm{ABJ}}^{(N, N+M)}(k)=\int d \mu e^{J_{k}^{(M)}(\mu)-N \mu}
$$

$$
N \rightarrow \infty
$$

$$
\log \hat{Z}^{(N, N+M)}(k) \simeq J_{k}^{(M)}\left(\mu_{*}\right)-\mu_{*} N, \quad \text { with }\left.\frac{\partial J_{k}^{(M)}(\mu)}{\partial \mu}\right|_{\mu=\mu_{*}}=N
$$

Classical Hamiltonian:

$$
H_{\mathrm{Cl}}(q, p)=\log \left(2 \cosh \frac{q}{2}\right)+\log \left(2 \cosh \frac{p}{2}\right) \sim \frac{|q|+|p|}{2}
$$

Classical grand potential:

$$
J_{k}^{(M)}(\mu) \sim \int d E \frac{\operatorname{Vol}\left(H_{\mathrm{Cl}} \leq E\right)}{1+z e^{-E}} \sim \frac{2}{3 \pi^{2} k} \mu^{3}, \quad \mu_{*}=\pi \sqrt{\frac{k N}{2}}
$$

$$
\log Z_{\mathrm{ABJ}}^{(N, N+M)}(k) \sim-\frac{\pi \sqrt{2 k}}{3} N^{3 / 2}
$$

Perturbative part

Semi-classical analysis shows

(C, B, A : independent of μ)

$$
J(\mu)=\underbrace{A+B \mu \text { (instantons) }}_{\substack{\frac{C}{3} \\ \mu^{3} \\ \text { need information only on } \\ \text { leading and sub-leading }}}
$$

Perturbative part

Semi-classical analysis shows

$$
J(\mu)=\underbrace{\frac{C}{3} \mu^{3}+B \mu}_{\begin{array}{l}
\text { need information only on } \\
\text { leading and sub-leading }
\end{array}}+\underbrace{A+\text { (instantons) }}_{\text {need full order information }}
$$

$$
Z_{\text {pert }}(N)=\int_{-i \infty}^{i \infty} d \mu e^{\frac{C}{3} \mu^{3}+(B-N) \mu+A}=C^{-1 / 3} e^{A} \mathrm{Ai}\left[C^{-1 / 3}(N-B)\right]
$$

This is true also for general $\mathcal{N} \geq 3$ necklace quiver.

One-loop test of AdS/CFT

$$
\hat{z}_{\text {pert }}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right] .
$$

One-loop test of AdS/CFT

$$
\hat{Z}_{\mathrm{pert}}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right]
$$

$\log \hat{Z}_{\text {pert }}^{(N, N+M)}(k)=-\frac{2}{3} C^{-1 / 2} N^{3 / 2}+C^{-1 / 2} B N^{1 / 2}-\frac{1}{4} \log N+\mathcal{O}(1)$.

One-loop test of AdS/CFT

$$
\hat{Z}_{\mathrm{pert}}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right] .
$$

$$
\log \hat{Z}_{\text {pert }}^{(N, N+M)}(k)=\frac{-\frac{2}{3} C^{-1 / 2} N^{3 / 2}}{\text { classical SUGRA }}+C^{-1 / 2} B N^{1 / 2}-\frac{1}{4} \log N+\mathcal{O}(1)
$$

One-loop test of AdS/CFT

$$
\hat{Z}_{\text {pert }}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right]
$$

$$
\log \hat{Z}_{\text {pert }}^{(N, N+M)}(k)=\frac{-\frac{2}{3} C^{-1 / 2} N^{3 / 2}}{\text { classical SUGRA }}+C^{-1 / 2} B N^{1 / 2}-\frac{1}{4} \log N+\mathcal{O}(1)
$$

One-loop test of AdS/CFT

$$
\hat{\mathrm{p}}_{\text {pert }}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right] .
$$

$$
\log \hat{Z}_{\text {pert }}^{(N, N+M)}(k)=\frac{-\frac{2}{3} C^{-1 / 2} N^{3 / 2}}{\text { classical SUGRA }}+C^{-1 / 2} B N^{1 / 2}-\frac{1}{4} \log N+\mathcal{O}(1)
$$

The logarithmic term appears in 11d SUGRA on $\mathrm{AdS}_{4} \times \mathrm{X}_{7}$ at 1-loop.
[Bhattacharyya -Grassi-Marino-Sen '12]

One-loop test of AdS/CFT

$$
\hat{z}_{\text {pert }}^{(N, N+M)}(k)=C^{-1 / 3} e^{A} \operatorname{Ai}\left[C^{-1 / 3}(N-B)\right] .
$$

$$
\log \hat{Z}_{\text {pert }}^{(N, N+M)}(k)=\frac{-\frac{2}{3} C^{-1 / 2} N^{3 / 2}}{\text { classical SUGRA }}+C^{-1 / 2} B N^{1 / 2}-\frac{1}{4} \log N+\mathcal{O}(1)
$$

The logarithmic term appears in 11d SUGRA on $\mathrm{AdS}_{4} \times \mathrm{X}_{7}$ at 1-loop.

Airy function behavior also appears from localization of the SUGRA.

Exact computations

We can also obtain exact values for various (k, M, N) by applying integrability-like technique to the ideal Fermi gas

Ex.) For $(k, M)=(2,1)$ up to $N=65$ and for $(k, M)=(4,1)$ up to $N=64$, etc...

Exact computations

We can also obtain exact values for various (k, M, N)

by applying integrability-like technique to the ideal Fermi gas
Ex.) For $(k, M)=(2,1)$ up to $N=65$ and for $(k, M)=(4,1)$ up to $N=64$, etc...
Exact values for $(k, M)=(2,1)$

$$
\begin{aligned}
& \hat{Z}^{(1,2)}(2)=\frac{1}{4 \pi}, \quad \hat{Z}^{(2,3)}(2)=\frac{1}{128}-\frac{1}{16 \pi^{2}}, \quad \hat{Z}^{(3,4)}(2)=\frac{5 \pi^{2}-48}{4608 \pi^{3}}, \\
& \hat{Z}^{(4,5)}(2)=\frac{9}{32768}+\frac{5}{3072 \pi^{4}}-\frac{53}{18432 \pi^{2}}, \quad \hat{Z}^{(5,6)}(2)=\frac{6240-800 \pi^{2}+17 \pi^{4}}{29491200 \pi^{5}}, \\
& \hat{Z}^{(6,7)}(2)=\frac{-218880+1413600 \pi^{2}-1160264 \pi^{4}+103275 \pi^{6}}{8493465600 \pi^{6}}, \\
& \hat{Z}^{(7,8)}(2)=\frac{-4677120-8631840 \pi^{2}+14206864 \pi^{4}-1345977 \pi^{6}}{1664719257600 \pi^{7}}, \\
& \hat{Z}^{(8,9)}(2)=\frac{61608960-1051438080 \pi^{2}+2363612608 \pi^{4}-1477376224 \pi^{6}+126511875 \pi^{8}}{213084064972800 \pi^{8}}, \\
& \hat{Z}^{(9,10)}(2)=\frac{633830400+6140897280 \pi^{2}-22473501120 \pi^{4}+16465544384 \pi^{6}-1444050207 \pi^{8}}{23013079017062400 \pi^{9}},
\end{aligned}
$$

Exact values for $(k, M)=(2,1)$

$\hat{Z}^{(14,15)}(2)=\frac{1}{5440330889784980321379287040000 \pi^{14}}\left[-555727897460736000+89573494835323699200 \pi^{2}-1055636150467356057600 \pi^{4}+5131488836828022789120 \pi^{6}\right.$ $\left.-12078328057432325328640 \pi^{8}+13537831707363614586208 \pi^{10}-6051892803562043641080 \pi^{12}+486239579473363340625 \pi^{14}\right]$,
$\hat{Z}^{(15,16)}(2)=-\frac{1}{4896297800806482289241358336000000 \pi^{15}}\left[36090194527715328000+6104583949671567360000 \pi^{2}-92067509353118319820800 \pi^{4}\right.$ $\left.+507831737592928484736000 \pi^{6}-1344043476982266371351040 \pi^{8}+1708199914796799315018400 \pi^{10}-841038818134977117865584 \pi^{12}+69024176701151867566875 \pi^{14}\right]$
$\hat{Z}^{(16,17)}(2)=\frac{1}{1253452237006459466045787734016000000 \pi^{16}}\left[644515885825523712000-195903374317541130240000 \pi^{2}+3317788425511538166988800 \pi^{4}-24242575894767562235904000 \pi^{6}\right.$ $\left.+91686579377609424295127040 \pi^{8}-184621497276384941161625600 \pi^{10}+187135567910967396538249344 \pi^{12}-78705401521585216044052800 \pi^{14}+6236022606745884843515625 \pi^{16}\right]$,
$\hat{Z}^{(17,18)}(2)=\frac{1}{1448990785979467142748930620522496000000 \pi^{17}}\left[50222901705188179968000+17114872531857226334208000 \pi^{2}-355825180591455246748876800 \pi^{4}\right.$ $+2838673897897708635616051200 \pi^{6}-11715836542518334641324349440 \pi^{8}+26594007390595358524134338560 \pi^{10}$ $\left.-31088486157208526910587238784 \pi^{12}+14680941405810341458359816576 \pi^{14}-1194793767361309903416444375 \pi^{16}\right]$, $\hat{Z}^{(18,19)}(2)=\frac{1}{1251928039086259611335076056131436544000000 \pi^{18}}\left[-2837855912505174392832000+1565466573304371781435392000 \pi^{2}-36201047925887447842868428800 \pi^{4}\right.$ $+374743421357886210747698380800 \pi^{6}-2099946681695866974987064688640 \pi^{8}+6688454172020401470415744112640 \pi^{10}-11982818897222541532284369726464 \pi^{12}$
$\left.+11220643955054903542467568447104 \pi^{14}-4489098718626188671320477135000 \pi^{16}+351431054003164340356323046875 \pi^{18}\right]$,
$\hat{Z}^{(19,20)}(2)=-\frac{1}{1807784088440558878767849825053794369536000000 \pi^{19}}\left[260034050935690604052480000+167378576740920004904091648000 \pi^{2}-4603213941146778919710228480000 \pi^{4}\right.$ $+49864936569429230001889571635200 \pi^{6}-292626274613554624545116349235200 \pi^{8}+1022337025900122231369611246684160 \pi^{10}-2112649945836780855818878981703680 \pi^{12}$ $\left.+2341691134873926453650025102600576 \pi^{14}-1075830030189292612090801154991984 \pi^{16}+87057436298005995587368943405625 \pi^{18}\right]$,
 $-10621602174332426380613505515520000 \pi^{6}+83475984203142035463930152647065600 \pi^{8}-388930780899716024500536537133056000 \pi^{10}+1087554872133572209767569467463813120 \pi^{12}$ $\left.-1775932910388692220449035532375705600 \pi^{14}+1558438899830276774076529628858407584 \pi^{16}-597787290215170549303861405923030000 \pi^{18}+46306312830726949307050906271484375 \pi^{20}\right]$

Exact values for $(k, M)=(3,1)$

$$
\begin{aligned}
& \hat{Z}^{(1,2)}(3)=\frac{1}{12}(2 \sqrt{3}-3), \quad \dot{Z}^{(2,3)}(3)=\frac{1}{432}\left(-27+14 \sqrt{3}+\frac{9}{\pi}\right), \quad \dot{Z}^{(3,4)}(3)=-\frac{45+18 \sqrt{3}-14 \sqrt{3} \pi}{1728 \pi}, \quad \hat{Z}^{(4,5)}(3)=\frac{702+84(27+2 \sqrt{3}) \pi+(1152 \sqrt{3}-2881) \pi^{2}}{248832 \pi^{2}}, \\
& \hat{Z}^{(5,6)}(3)=\frac{54(14 \sqrt{3}-37)+840 \sqrt{3} \pi+(5797-3574 \sqrt{3}) \pi^{2}}{995328 \pi^{2}}, \quad \hat{Z}^{(6,7)}(3)=\frac{17982+162(182 \sqrt{3}-1647) \pi+27(2304 \sqrt{3}-5905) \pi^{2}-7(42110 \sqrt{3}-78327) \pi^{3}}{322486272 \pi^{3}}, \\
& z^{(7,8)}(3)=\frac{-2430(61+18 \sqrt{3})+83916 \sqrt{3} \pi+27(28553+16770 \sqrt{3}) \pi^{2}+(78732-335594 \sqrt{3}) \pi^{3}}{1289945088 \pi^{3}}, \\
& \hat{Z}^{(8,9)}(3)=\frac{1472580+9072(2295+74 \sqrt{3}) \pi+324(91008 \sqrt{3}-105709) \pi^{2}-168(793233+60254 \sqrt{3}) \pi^{3}+(178071703-76499136 \sqrt{3}) \pi^{4}}{371504185344 \pi^{4}}, \\
& z^{(9,10)}(3)=\frac{2916(774 \sqrt{3}-2857)+5533920 \sqrt{3} \pi-324(152814 \sqrt{3}-521209) \pi^{2}-48(1483097 \sqrt{3}-511758) \pi^{3}+(226863738 \sqrt{3}-370195279) \pi^{4}}{1486016741376 \pi^{4}}, \\
& \hat{Z}^{(10,11)}(3)=\frac{299312820+72900(7070 \sqrt{3}-171747) \pi+24300(382464 \sqrt{3}-411157) \pi^{2}-2700(6698762 \sqrt{3}-62488989) \pi^{3}-9(5065099200 \sqrt{3}-9212744479) \pi^{4}+25(6475592722 \sqrt{3}-11826421389) \pi^{5}}{4012245201715200 \pi^{5}}, \\
& \hat{Z}^{(11,12)}(3)=\frac{-131220(28925+6642 \sqrt{3})+2915854200 \sqrt{3} \pi+24300(2404421+1236762 \sqrt{3}) \pi^{2}-5400(8730505 \sqrt{3}-7125246) \pi^{3}-9(40242657395+27610808958 \sqrt{3}) \pi^{4}+50(3671699105 \sqrt{3}-1298211948) \pi^{5}}{16048980806860800 \pi^{5}}, \\
& \hat{Z}^{(12,13)}(3)=\frac{1}{6933159708563865600 \pi^{6}}\left[25651672920+3674160(281907+4562 \sqrt{3}) \pi+218700(11516544 \sqrt{3}-6754681) \pi^{2}-226800(106545861+3385430 \sqrt{3}) \pi^{3}-162(232246756800 \sqrt{3}-175868541043) \pi^{4}\right. \\
& \left.+36(3302763448131+214002197506 \sqrt{3}) \pi^{5}+25(2873091390912 \sqrt{3}-6479908382207) \pi^{6}\right], \\
& \hat{Z}^{(13,14)}(3)=\frac{1}{27732638834255462400 \pi^{6}}\left[787320(66366 \sqrt{3}-316045)+212550156000 \sqrt{3} \pi-218700(12640806 \sqrt{3}-69160621) \pi^{2}-64800(147495509 \sqrt{3}-104910390) \pi^{3}\right. \\
& \left.+162(296550133938 \sqrt{3}-1076243018035) \pi^{4}+360(205884495833 \sqrt{3}-99859338540) \pi^{5}-175(1189802574054 \sqrt{3}-1946635606421) \pi^{6}\right], \\
& \hat{Z}^{(14,15)}(3)=\frac{1}{146761124710879907020800 \pi^{7}}\left[9762153103080+38578680(456134 \sqrt{3}-24118263) \pi+19289340(70712064 \sqrt{3}-37224121) \pi^{2}-3572100(371449442 \sqrt{3}-9412651737) \pi^{3}\right. \\
& \left.-23814(1164740241600 \sqrt{3}-760466097211) \pi^{4}+7938(4920941754202 \sqrt{3}-40985286126129) \pi^{5}+9(10577414304217152 \sqrt{3}-16694829965655623) \pi^{6}-1225(241451318806186 \sqrt{3}-436239059157621) \pi^{7}\right], \\
& \hat{Z}^{(15,16)}(3)=\frac{1}{587044498843519628083200 \pi^{7}}\left[-49601160(3662825+677322 \sqrt{3})+170696384888400 \sqrt{3} \pi+19289340(210402593+126703602 \sqrt{3}) \pi^{2}-7144200(729601789 \sqrt{3}-1620343926) \pi^{3}\right. \\
& \left.-23814(2803076569895+2326367522214 \sqrt{3}) \pi^{4}+79380(992950495129 \sqrt{3}-1601735224140) \pi^{5}+9(65702735219040679+49510164883503726 \sqrt{3}) \pi^{6}-2450(134862880599065 \sqrt{3}-58222941612138) \pi^{7}\right],
\end{aligned}
$$

Exact values for $(k, M)=(4,1)$

```
\mp@subsup{Z}{}{(1,2)}(4)=\frac{\pi-2}{16\pi},\quad\mp@subsup{Z}{}{(2,3)}(4)=\frac{12+12\pi-55\mp@subsup{\pi}{}{2}}{512\mp@subsup{\pi}{}{2}},\quad\mp@subsup{Z}{}{(3,4)}(4)=\frac{-168+396\pi+202\mp@subsup{\pi}{}{2}-99\mp@subsup{\pi}{}{3}}{73728\mp@subsup{\pi}{}{3}},\quad\mp@subsup{Z}{}{(4,5)}(4)=\frac{1200+4320\pi-3512\mp@subsup{\pi}{}{2}-4872\mp@subsup{\pi}{}{3}+1755\mp@subsup{\pi}{}{4}}{4718592\mp@subsup{\pi}{}{4}},
\mp@subsup{\hat{Z}}{}{(5,6)}(4)=\frac{-38880+241200\pi+186000\mp@subsup{\pi}{}{2}-400200\mp@subsup{\pi}{}{3}-203494\mp@subsup{\pi}{}{4}+96975\mp@subsup{\pi}{}{5}}{1887436800\mp@subsup{\pi}{}{5}},\quad\mp@subsup{\hat{Z}}{}{(6,7)}(4)=\frac{953280+8320320\pi-7378800\mp@subsup{\pi}{}{2}-36784800\mp@subsup{\pi}{}{3}+17373764\mp@subsup{\pi}{}{4}+27667476\mp@subsup{\pi}{}{5}-9333225\mp@subsup{\pi}{}{6}}{543581798400\mp@subsup{\pi}{}{6}},
\mp@subsup{\hat{Z}}{}{(7,8)}(4)=\frac{-52536960+691346880\pi+566479200\mp@subsup{\pi}{}{2}-2914304400\mp@subsup{\pi}{}{3}-2014346488\mp@subsup{\pi}{}{4}+3962357364\mp@subsup{\pi}{}{5}+2156964930\mp@subsup{\pi}{}{6}-995722875\mp@subsup{\pi}{}{7}}{426168129945600\mp@subsup{\pi}{}{7}},
\mp@subsup{\hat{Z}}{}{(8,9)}(4)=\frac{478759680+8468167680\pi-7157041920\mp@subsup{\pi}{}{2}-89293397760\mp@subsup{\pi}{}{3}+38961966624\mp@subsup{\pi}{}{4}+232256453184\mp@subsup{\pi}{}{5}-82822457776\mp@subsup{\pi}{}{6}-145218219408\mp@subsup{\pi}{}{7}+47021834475\mp@subsup{\pi}{}{8}}{54549520633036800\mp@subsup{\pi}{}{8}}
Z}\mp@subsup{\tilde{Z}}{}{(9,10)}(4)=\frac{1}{23565392913471897600\mp@subsup{\pi}{}{9}}[-12959654400+320811321600\pi+249167439360\mp@subsup{\pi}{}{2}-2406136078080\mp@subsup{\pi}{}{3}-1813794393120\mp@subsup{\pi}{}{4}+7622732486880\mp@subsup{\pi}{}{5
+5866548067808\mp@subsup{\pi}{}{6}-10329554789424\mp@subsup{\pi}{}{7}-6075970569810\mp@subsup{\pi}{}{8}+2721498152625\mp@subsup{\pi}{}{9}],
```

$\hat{Z}^{(10,11)}(4)=\frac{1}{18852314330777518080000 \pi^{10}}\left[646656998400+20855511936000 \pi-15908447520000 \pi^{2}-423480742272000 \pi^{3}+155455887162240 \pi^{4}+2407085602588800 \pi^{5}\right.$
$\left.-690712514324000 \pi^{6}-4858102787889600 \pi^{7}+1434686348402316 \pi^{8}+2720310664056300 \pi^{9}-855380089265625 \pi^{10}\right]$,
$\hat{Z}^{(11,12)}(4)=\frac{1}{36498080544385275002880000 \pi^{11}}\left[-71248933324800+3066836963097600 \pi+2147272497216000 \pi^{2}-32994976801248000 \pi^{3}-26307684678401280 \pi^{4}+169824342336485760 \pi^{5}\right.$
$\left.+173665340769940800 \pi^{6}-543644538181826400 \pi^{7}-506552450721933352 \pi^{8}+791312771801094444 \pi^{9}+502106969790796050 \pi^{10}-218816278991454375 \pi^{11}\right]$,
$\hat{Z}^{(12,13)}(4)=\frac{1}{21022894393565918401658880000 \pi^{12}}\left[2305385523302400+126291787634073600 \pi-84666760738560000 \pi^{2}-4394402461709568000 \pi^{3}+1299328657279107840 \pi^{4}\right.$
$+44622842590319938560 \pi^{5}-9109124891322297600 \pi^{6}-187333512163572614400 \pi^{7}+38674141099980946736 \pi^{8}+324147996295923358944 \pi^{9}-82963880513737784280 \pi^{10}$
$\left.-168381450188362233000 \pi^{11}+51759053721397378125 \pi^{12}\right]$,
$\dot{Z}^{(13,14)}(4)=\frac{1}{56845906440202243358085611520000 \pi^{13}}\left[-326696029973913600+23110746777403084800 \pi+14222217559476326400 \pi^{2}-296594132415214233600 \pi^{3}-262735740032464258560 \pi^{4}\right.$
$+1724522555482742695680 \pi^{5}+3140617642113715146240 \pi^{6}-9346414694706594236160 \pi^{7}-17675870289759454430944 \pi^{8}+38402692345719161274672 \pi^{9}+45493756685677679170896 \pi^{10}$
$\left.-63043272699716161765224 \pi^{11}-42976871049629192344650 \pi^{12}+18272369792404283180625 \pi^{13}\right]$,

Comparison with classical SUGRA

[cf. Klebanov-Tseytlin]

$$
F_{\mathrm{SUGRA}}=-\frac{\pi \sqrt{2 k}}{3} N^{3 / 2}
$$

Comparison with classical SUGRA

[cf. Klebanov-Tseytlin]

$$
F_{\text {SUGRA }}=-\frac{\pi \sqrt{2 k}}{3} N^{3 / 2} .
$$

Now we have information on

- genus expansion
- small-k expansion
- exact values for various specific (k,M,N)

Now we have information on

However,
we have not obtained exact results for arbitrary (k, M, N)

Now we have information on

> - genus expansion
> - small-k expansion
> - exact values for various specific (k, M, N)

However,
we have not obtained exact results for arbitrary (k, M, N)

To determine structures of non-perturbative effects completely, we will "guess" the form of the grand potential and test this "guess" by using the above information.

Basic idea

$\mathrm{ABJ}(\mathrm{M})$ matrix model

Basic idea

$\mathrm{ABJ}(\mathrm{M})$ matrix model

Analytic continuation

Pure CS theory on $\mathrm{S}^{3} / \mathrm{Z}_{2}$
(Lens space matrix model)

Basic idea

$\mathrm{ABJ}(\mathrm{M})$ matrix model

Analytic continuation
Pure CS theory on $\mathrm{S}^{3} / \mathrm{Z}_{2}$
(Lens space matrix model)

Geometric transition
[cf. Gopakumar-Vafa '98]
Topological string on certain space (local $\mathrm{P}^{1} \times \mathrm{P}^{1}$)

Perturbative + Worldsheet instanton part

Perturbative + Worldsheet instanton part

| |

Perturbative in the sense of genus expansion

Perturbative + Worldsheet instanton part

| |

Perturbative in the sense of genus expansion

This part is described by the standard topological string.

Perturbative + Worldsheet instanton part

| |

Perturbative in the sense of genus expansion

This part is described by the standard topological string.

$$
\begin{aligned}
& Z_{\mathrm{WS}, \mathrm{~m}-\mathrm{inst}}=d_{m}(k, M) \mathrm{Ai}\left[C^{-1 / 3}\left(N-B+\frac{4 m}{k}\right)\right] \\
& \frac{Z_{\mathrm{WS}, \mathrm{~m}-\mathrm{inst}}}{Z_{\mathrm{pert}}} \sim e^{-2 \pi m \sqrt{\frac{2 N}{k}}}
\end{aligned}
$$

Test of WS 1-instanton

$$
Z_{\mathrm{WS}, 1-\mathrm{inst}}^{(N, N+M)}(k)=-2 C^{-1 / 3} e^{A} \frac{\cos \pi\left(1-\frac{2 M}{k}\right)}{\sin ^{2} \frac{2 \pi}{k}} \mathrm{Ai}\left[C^{-1 / 3}\left(B-N-\frac{4}{k}\right)\right]
$$

Test of WS 1-instanton

$$
Z_{\mathrm{WS}, 1-\mathrm{inst}}^{(N, N+M)}(k)=-2 C^{-1 / 3} e^{A} \frac{\cos \pi\left(1-\frac{2 M}{k}\right)}{\sin ^{2} \frac{2 \pi}{k}} \mathrm{Ai}\left[C^{-1 / 3}\left(B-N-\frac{4}{k}\right)\right]
$$

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]
The WS-instanton part is divergent for physical integer k .

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]
The WS-instanton part is divergent for physical integer k .
For instance,

$$
J_{\mathrm{WS}, 1-\mathrm{inst}}=\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad J_{\mathrm{Ws}, 2-\mathrm{inst}}=\frac{\sharp}{\sin ^{2} \frac{4 \pi}{k}}+\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad \text { etc.. }
$$

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]
The WS-instanton part is divergent for physical integer k .
For instance,

$$
J_{\mathrm{Ws}, 1-\mathrm{inst}}=\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad J_{\mathrm{Ws}, 2-\text { inst }}=\frac{\sharp}{\sin ^{2} \frac{4 \pi}{k}}+\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad \text { etc.. }
$$

However,
we know that the exact result is finite

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]
The WS-instanton part is divergent for physical integer k .
For instance,

$$
J_{\mathrm{WS}, 1-\text { inst }}=\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad J_{\mathrm{WS}, 2-\text { inst }}=\frac{\sharp}{\sin ^{2} \frac{4 \pi}{k}}+\frac{\sharp}{\sin ^{2} \frac{2 \pi}{k}}, \quad \text { etc.. }
$$

However,
we know that the exact result is finite

This divergence must be apparent and must cancel out if we include other sector: D2-instanton

D2-instanton + Mixture of D2- \& WS-instanton part

D2-instanton + Mixture of D2- \& WS-instanton part

 | |Non-perturbative in the sense of genus expansion

D2-instanton + Mixture of D2- \& WS-instanton part

 | |Non-perturbative in the sense of genus expansion

This part is described by non-perturbative formulation of topological string: refined topological string in certain limit (Nekrasov-Shashvili limit)

D2-instanton + Mixture of D2- \& WS-instanton part

 | |
Non-perturbative in the sense of genus expansion

This part is described by non-perturbative formulation of topological string: refined topological string in certain limit (Nekrasov-Shashvili limit)

$$
\begin{aligned}
& Z_{\mathrm{D} 2, \ell-\mathrm{inst} ; \mathrm{Ws}, \mathrm{~m}-\mathrm{inst}}=g_{\ell, m}\left(k, M ; \frac{\partial}{\partial N}\right) \mathrm{Ai}\left[C^{-1 / 3}\left(N-B+2 \ell+\frac{4 m}{k}\right)\right] \\
& \frac{Z_{\mathrm{D} 2, \ell-\mathrm{inst} ; \mathrm{WS}, \mathrm{~m}-\mathrm{inst}}}{Z_{\mathrm{pert}}} \sim e^{-\pi \ell \sqrt{2 k N}-2 \pi m \sqrt{\frac{2 N}{k}}}
\end{aligned}
$$

Test of our proposal

Drastic simplification for $\mathcal{N}=8$ SUSY cases

Generally,
the $\mathrm{ABJ}(\mathrm{M})$ grand potential receives contributions from all-genus of topological string free energy.

Drastic simplification for $\mathcal{N}=8$ SUSY cases

Generally,
the $\mathrm{ABJ}(\mathrm{M})$ grand potential receives contributions from all-genus of topological string free energy.

However,
for (k, M) $=(1,0),(2,0)$ and (2,1) (enhanced to $\mathcal{N}=8$ SUSY),
the $A B J(M)$ grand potential after pole cancellation has contributions only from genus-0 and genus-1 !!

Drastic simplification for $\mathcal{N}=8$ SUSY cases

Generally, the $A B J(M)$ grand potential receives contributions from all-genus of topological string free energy.

However,
for $(k, M)=(1,0),(2,0)$ and $(2,1)$ (enhanced to $\mathcal{N}=8$ SUSY),
the $A B J(M)$ grand potential after pole cancellation has contributions only from genus-0 and genus-1 !!

$$
\begin{aligned}
\left.\equiv(\mu)\right|_{(k, M)=(1,0)}= & \left(\vartheta_{2}(\bar{\xi} / 4, \bar{\tau} / 4)+i \vartheta_{1}(\bar{\xi} / 4, \bar{\tau} / 4)\right) \quad\left(\bar{\xi}, \bar{\tau}: \text { determined by } F_{0}\right) \\
& \times \exp \left[\frac{3 \mu}{8}-\frac{3}{4} \log 2+F_{1}+F_{1}^{\mathrm{NS}}-\frac{1}{4 \pi^{2}}\left(F_{0}-\lambda \partial_{\lambda} F_{0}+\frac{\lambda^{2}}{2} \partial_{\lambda}^{2} F_{0}\right)\right] \\
\left.\equiv(\mu)\right|_{(k, M)=(2,0)}= & \vartheta_{3}(\bar{\xi}, \bar{\tau}) \exp \left[\frac{\mu}{4}+F_{1}+F_{1}^{\mathrm{NS}}-\frac{1}{\pi^{2}}\left(F_{0}-\lambda \partial_{\lambda} F_{0}+\frac{\lambda^{2}}{2} \partial_{\lambda}^{2} F_{0}\right)\right] \\
\left.\equiv(\mu)\right|_{(k, M)=(2,1)}= & \vartheta_{1}(\bar{\xi}+1 / 4, \bar{\tau}) \exp \left[\frac{\log 2}{2}+F_{1}+F_{1}^{\mathrm{NS}}-\frac{1}{\pi^{2}}\left(F_{0}-\lambda \partial_{\lambda} F_{0}+\frac{\lambda^{2}}{2} \partial_{\lambda}^{2} F_{0}\right)\right]
\end{aligned}
$$

Resumming the $1 / \mathrm{N}$-expansion in ABJM
[Grassi-Marino-Zakany]
[cf. Drukker-Marino-Putrov]
$\left.F_{\text {ABJM }}\right|_{\text {genus- }} \sim(2 g)!$ asymptotic

Resumming the $1 / \mathrm{N}$-expansion in ABJM

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

$\left.F_{\text {ABJM }}\right|_{\text {genus-g }} \sim(2 g)!$ asymptotic

Can we resum the $1 / \mathrm{N}$-expansion(=dual string perturbation series)?

Resumming the $1 / \mathrm{N}$-expansion in ABJM

$\left.F_{\text {ABJM }}\right|_{\text {genus-g }} \sim(2 g)!$ asymptotic

Can we resum the $1 / \mathrm{N}$-expansion(=dual string perturbation series)?
__ Yes, because this is Borel summable.

Resumming the $1 / \mathrm{N}$-expansion in ABJM

$\left.F_{\text {ABJM }}\right|_{\text {genus- } g} \sim(2 g)!$ asymptotic

Can we resum the $1 / \mathrm{N}$-expansion(=dual string perturbation series)?
__ Yes, because this is Borel summable.

Does the Borel resummation reproduce the exact results?
Does resummed string perturbation series describe D2-instanton?

Resumming the $1 / \mathrm{N}$-expansion in ABJM

$$
\left.F_{\text {ABJM }}\right|_{\text {genus- } g} \sim(2 g)!\text { asymptotic }
$$

Can we resum the $1 / \mathrm{N}$-expansion(=dual string perturbation series)?
__ Yes, because this is Borel summable.

Does the Borel resummation reproduce the exact results?
Does resummed string perturbation series describe D2-instanton?
_- No, Grassi-Marino-Zakany have found relevant differences.
We should resum each string perturbation series around each D2-instanton background (to get full result).

Some generalizations

Half-BPS Wilson loop in ABJM

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

Half-BPS Wilson loop in ABJM

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,
\langle Generating function $\rangle=$ (Ideal Fermi gas)

Half-BPS Wilson loop in ABJM

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,
\langle Generating function $\rangle=$ (Ideal Fermi gas)

The Wilson loop is described by the open topological string.

Half-BPS Wilson loop in ABJM

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,
〈Generating function〉 $=$ (Ideal Fermi gas)

The Wilson loop is described by the open topological string.

$$
\begin{aligned}
& Z_{\mathrm{AB} \mathrm{MM}}\left\langle W_{\mathbf{R}}\right\rangle_{\mathrm{D} 2, \ell-\mathrm{inst} ; \mathrm{WS}, \mathrm{~m}-\mathrm{inst}}=d_{\ell, m}(k) \mathrm{Ai}\left[C^{-\frac{1}{3}}\left(N-B+\frac{2|\mathbf{R}|}{k}+2 \ell+\frac{4 m}{k}\right)\right] \\
& \left\langle W_{\mathbf{R}}\right\rangle_{\mathrm{D} 2, \ell-\mathrm{inst} ; \mathrm{WS}, \mathrm{~m}-\mathrm{inst}} \sim e^{\pi|\mathbf{R}| \sqrt{\frac{2 N}{k}}-\pi \ell \sqrt{2 k N}-2 \pi m \sqrt{\frac{2 N}{k}}}
\end{aligned}
$$

Less SUSY theories

Is the pole cancelation common in general M2-brane theories?

Less SUSY theories

Is the pole cancelation common in general M2-brane theories?
__ Yes, probably.
Cancelation has been found also in some $\mathcal{N}=4 \mathrm{M} 2$-brane theories (=special cases of Gaiotto-Witten theory).

Less SUSY theories

Is the pole cancelation common in general M2-brane theories?
_- Yes, probably.
Cancelation has been found also in some $\mathcal{N}=4 \mathrm{M} 2$-brane theories (=special cases of Gaiotto-Witten theory).

Technical difficulties for less SUSY theories:

1. Corresponding topological string is unknown.
2. Except some special cases, density matrix of Fermi gas becomes complicated (given by integral)
3. For $\mathcal{N}=2$, Fermi gas becomes interacting.

Summary \& Outlook

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion = M-theory expansion

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion $=$ M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion $=$ M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)
- Non-perturbative structure from the refined topological string

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion $=$ M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)
- Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion $=$ M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)
- Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases
-The 1/N-expansion in ABJM is Borel summable. But the resummation deviates from the exact values.

Summary

$\mathrm{ABJ}(\mathrm{M})$ partition function on sphere:

- Fermi gas formalism is powerful.

Semi-classical expansion $=$ M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)
- Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases
-The 1/N-expansion in ABJM is Borel summable. But the resummation deviates from the exact values.

Some generalizations:

- Half-BPS Wilson loop in ABJM is described by open topological string.
- Pole cancelation occurs also in some less SUSY theories.

Outlook

- More general M2-brane theory
[Hatsuda-M.H.-Okuyama, work in progress]
- Other quantities

Ex.) Vortex loop, Energy-momentum tensor correlator, super-Renyi entropy

- Relation to Higgs branch localization formula
[cf. Pasquetti, Fujitsuka-M.H.-Yoshida, Benini-Peelaers]
-_ Localization formula has another equivalent representation in terms of vortex partition functions for many 3d theories.
- Analysis on the gravity side
—— Test many predictions.
Probably, localization on the gravity side and string perturbation around instanton background would be useful.

