Instanton effects in string/M-theory from 3d superconformal field theories

Masazumi Honda

Harish-Chandra Research Institute

<u>References:</u> [M.H.-Okuyama, 1405.3653] [M.H.-Moriyama, 1404.0676] [Hatsuda-M.H.-Moriyama-Okuyama, 1306.4297]

+ recent papers by

Calvo, Codesido, Grassi, Hatsuda, Kallen, Marino, Matsumoto, Moriyama, Nosaka, Okuyama, Putrov, Yamazaki and Zakany

19th, Dec.

Indian Strings Meeting 2014

Non-perturbative effects in string/M-theory ⊃Worldsheet, D-brane and membrane instantons

Non-perturbative effects in string/M-theory ⊃Worldsheet, D-brane and membrane instantons

In this talk, I will report

low-energy effective theories of M2-branes provide good laboratory to probe these effects via AdS/CFT.

[The figure is borrowed from Marino-Putrov]

M2-branes w/ fractional M2-branes in certain space

3d necklace quiver Chern-Simons matter theory

[Aharony-Bergman-Jafferis-Maldacena '08, Aharony-Bergman-Jafferis '08

(N M2-branes) + (M <u>fractional</u> M2-branes) on R^8/Z_k

(=M5-branes wrapped on $S^3/Z_k \subset R^8/Z_k$)

(N M2-branes) + (M <u>fractional</u> M2-branes) on R^8/Z_k

(=M5-branes wrapped on $S^3/Z_k \subset R^8/Z_k$)

Effective theory = ABJ(M) theory:

3d $\mathcal{N} = 6 U(N)_k x U(N+M)_{-k}$ (k: CS level) superconformal Chern-Simons theory

(N M2-branes) + (M fractional M2-branes) on $\mathbb{R}^8/\mathbb{Z}_{k}$

(=M5-branes wrapped on $S^3/Z_k \subset R^8/Z_k$)

Effective theory = ABJ(M) theory:

 $3d \mathcal{N} = 6 U(N)_k \times U(N+M)_{-k}$ (k: CS level) superconformal Chern-Simons theory

- Vector multiplet (in 3d N = 2 I)
 2 bi-fundamental chiral multiplets
 2 anti-bi-fundamental chiral multiplets (in 3d $\mathcal{N} = 2$ language)

$U(N)_k \times U(N+M)_{-k}$ ABJ theory

CFT₃

 AdS_4

$\begin{array}{c} \text{M-theory}\\ k \ll N^{1/5} & \text{on } \text{AdS}_4 \times \text{S}^7/\text{Z}_k\\ & \text{with } \frac{1}{2\pi} \int_{S^3/Z_k} C_3 = \frac{1}{2} - \frac{M}{k} \end{array}$

$U(N)_k \times U(N+M)_{-k}$ ABJ theory

D2-brane instanton:

D2-brane instanton:

D2-brane instanton:

D2-brane instanton:

$$\exp\left[-T_{D2} \operatorname{Vol}(RP^3)\right] = \exp\left[-\pi \sqrt{\frac{2N^2}{\lambda}}\right]$$

$$\exp\left[-\frac{1}{2\pi\alpha'}\operatorname{Area}(CP^1)\right] = \exp\left[-2\pi\sqrt{2\lambda}\right]$$

D2-brane instanton:

$$\exp\left[-T_{D2} \operatorname{Vol}(RP^{3})\right] = \exp\left[-\pi \sqrt{\frac{2N^{2}}{\lambda}}\right]$$

non-perturbative in the sense of genus expansion!!

$$\exp\left[-\frac{1}{2\pi\alpha'}\operatorname{Area}(CP^1)\right] = \exp\left[-2\pi\sqrt{2\lambda}\right]$$

ABJ(M) partition function on sphere:

ABJ(M) partition function on sphere:

Ideal Fermi gas formalism

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

ABJ(M) partition function on sphere:

- Ideal Fermi gas formalism
 [Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]
- Exact computation of the ABJ partition function for various (k,M,N)

[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]

Ex.) For (k,M)=(2,1) up to N=65, etc...

ABJ(M) partition function on sphere:

- Ideal Fermi gas formalism [Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]
- Exact computation of the ABJ partition function for various (k,M,N)

[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]

Ex.) For (k,M)=(2,1) up to N=65, etc...

Non-perturbative structure from the refined topological string

[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]

ABJ(M) partition function on sphere:

Ex.) For (k,M)=(2,1) up to N=65, etc...

- Ideal Fermi gas formalism
 [Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]
- Exact computation of the ABJ partition function for various (k,M,N)

[Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]

•Non-perturbative structure from the refined topological string

[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]

• Drastic simplification for $\mathcal{N} = 8$ SUSY cases [Codesi

[Codesido-Grassi-Marino]

ABJ(M) partition function on sphere:

- Ideal Fermi gas formalism
 [Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]
- Exact computation of the ABJ partition function for various (k,M,N) [Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]

Ex.) For (k,M)=(2,1) up to N=65, etc...

Non-perturbative structure from the refined topological string

[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]

- Drastic simplification for $\mathcal{N} = 8$ SUSY cases [Codesido-Grassi-Marino]
- Resumming the 1/N-expansion in ABJM [Grassi-Marino-Zakany]

ABJ(M) partition function on sphere:

- Ideal Fermi gas formalism [Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]
- Exact computation of the ABJ partition function for various (k, M, N)
 [Hatsuda-Moriyama-Okuyama, Putrov-Yamazaki, M.H.-Okuyama]

Ex.) For (k,M)=(2,1) up to N=65, etc...

Non-perturbative structure from the refined topological string

[Hatsuda-Marino-Moriyama-Okuyama, M.H.-Okuyama]

- Drastic simplification for $\mathcal{N} = 8$ SUSY cases [Codesido-Grassi-Marino]
- Resumming the 1/N-expansion in ABJM [Grassi-Marino-Zakany]

Some generalizations:

- BPS Wilson loop [Grassi-Kallen-Marino, Hatsuda-M.H.-Moriyama-Okuyama]
- Less SUSY theories [M.H.-Moriyama, Grassi-Marino, Hatsuda-Okuyama, Moriyama-Nosaka]

Main result

Instanton effects from ABJ(M) partition function

 $Z_{\mathsf{ABJ}(\mathsf{M})} = \int [D\Phi] \ e^{-S_{\mathsf{ABJ}(\mathsf{M})}[\Phi]}$

$$Z_{\mathsf{ABJ}(\mathsf{M})} = \int [D\Phi] \ e^{-S_{\mathsf{ABJ}(\mathsf{M})}[\Phi]}$$

In this representation,

analysis is basically limited to perturbative expansion of $\lambda = N/k$. (inconvenient to study the instantons)

$$Z_{\mathsf{ABJ}(\mathsf{M})} = \int [D\Phi] \ e^{-S_{\mathsf{ABJ}(\mathsf{M})}[\Phi]}$$

In this representation,

analysis is basically limited to perturbative expansion of $\lambda = N/k$. (inconvenient to study the instantons)

 $Z_{ABJ(M)} = (Finite dimensional integral)$

$$Z_{\mathsf{ABJ}(\mathsf{M})} = \int [D\Phi] \ e^{-S_{\mathsf{ABJ}(\mathsf{M})}[\Phi]}$$

In this representation,

analysis is basically limited to perturbative expansion of $\lambda = N/k$. (inconvenient to study the instantons)

$Z_{ABJ(M)} = (Finite dimensional integral)$

Standard matrix model technique is available to study genus expansion, which is convenient to study worldsheet instanton $O(e^{-2\pi\sqrt{2\lambda}})$, but not D2-instanton $O(e^{-\pi\sqrt{2N^2/\lambda}})$,

ABJ(M) theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

$$\hat{Z}^{(N,N+M)}(k) = \frac{1}{N!} \sum_{\sigma \in S_N} (-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^N y}{(4\pi k)^N} \prod_{a=1}^N \rho(y_a, y_{\sigma(a)}),$$
$$\rho(x, y) = \frac{\sqrt{V(x)V(y)}}{\cosh \frac{x-y}{2k}}. \quad V(x) = \frac{1}{e^{\frac{x}{2}} + (-1)^M e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2\pi i s}{2|k|}.$$

ABJ(M) theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

 $\overline{}$

$$\hat{Z}^{(N,N+M)}(k) = \frac{1}{N!} \sum_{\sigma \in S_N} (-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^N y}{(4\pi k)^N} \prod_{a=1}^N \rho(y_a, y_{\sigma(a)}), \quad \text{Ideal Fermi gas!!}$$

$$\rho(x, y) = \frac{\sqrt{V(x)V(y)}}{\cosh \frac{x-y}{2k}}, \quad V(x) = \frac{1}{e^{\frac{x}{2}} + (-1)^M e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2\pi i s}{2|k|}.$$

ABJ(M) theory as a Fermi gas

[Marino-Putrov, Okuyama, Awata-Hirano-Shigemori, M.H.]

Localization + some explicit calculations lead us to

$$\hat{Z}^{(N,N+M)}(k) = \frac{1}{N!} \sum_{\sigma \in S_N} (-1)^{\sigma} \int_{-\infty}^{\infty} \frac{d^N y}{(4\pi k)^N} \prod_{a=1}^N \rho(y_a, y_{\sigma(a)}), \quad \text{Ideal Fermi gas!!}$$

$$\rho(x, y) = \frac{\sqrt{V(x)V(y)}}{\cosh \frac{x-y}{2k}}, \quad V(x) = \frac{1}{e^{\frac{x}{2}} + (-1)^M e^{-\frac{x}{2}}} \prod_{s=-\frac{M-1}{2}}^{\frac{M-1}{2}} \tanh \frac{x+2\pi i s}{2|k|}.$$

$$\text{Switch to grand canonical formalism}$$

$$\equiv {(M) \choose k} (\mu) = \sum_{N=0}^{\infty} e^{\mu N} \hat{Z}^{(N,N+M)}(k) = \text{Det} [1+e^{\mu}\rho]$$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$\rho(x,y) = \langle x | e^{-\hat{H}(\hat{q},\hat{p})} | y \rangle, \quad e^{-\hat{H}(\hat{q},\hat{p})} = \sqrt{V(\hat{q})} \frac{1}{2\cosh\frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \qquad [\hat{q},\hat{p}] = 2\pi i k,$$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$\rho(x,y) = \langle x | e^{-\hat{H}(\hat{q},\hat{p})} | y \rangle, \quad e^{-\hat{H}(\hat{q},\hat{p})} = \sqrt{V(\hat{q})} \frac{1}{2\cosh\frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \qquad [\hat{q},\hat{p}] = 2\pi i k,$$

CS level k can be regarded as Planck constant: $\hbar = 2\pi k$
ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$\rho(x,y) = \langle x | e^{-\hat{H}(\hat{q},\hat{p})} | y \rangle, \quad e^{-\hat{H}(\hat{q},\hat{p})} = \sqrt{V(\hat{q})} \frac{1}{2\cosh\frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \qquad [\hat{q},\hat{p}] = 2\pi i k,$$

CS level k can be regarded as Planck constant: $\hbar = 2\pi k$

ABJ(M) Fermi gas as QM

Quantum mechanical description:

$$\rho(x,y) = \langle x | e^{-\hat{H}(\hat{q},\hat{p})} | y \rangle, \quad e^{-\hat{H}(\hat{q},\hat{p})} = \sqrt{V(\hat{q})} \frac{1}{2\cosh\frac{\hat{p}}{2}} \sqrt{V(\hat{q})}, \qquad [\hat{q},\hat{p}] = 2\pi i k,$$

CS level k can be regarded as Planck constant: $\hbar = 2\pi k$

In this expansion,

D2-instanton: $\mathcal{O}(e^{-\pi\sqrt{2kN}})$ appears perturbatively but not for worldsheet instanton: $\mathcal{O}(e^{-2\pi\sqrt{2N/k}})$

<u>Simple derivation of $N^{3/2}$ law</u>

[Marino-Putrov]

[cf. M.H.-Okuyama, Drukker-Marino-Putrov, Herzog-Klebanov-Pufu-Teseleanu]

 $Z_{ABJ}^{(N,N+M)}(k) = \int d\mu \ e^{J_k^{(M)}(\mu) - N\mu}$

$$\begin{split} \underline{\text{Simple derivation of } N^{3/2} \text{ [law]}}_{Z_{ABJ}^{(N,N+M)}(k)} &= \int d\mu \ e^{J_k^{(M)}(\mu) - N\mu} & \begin{bmatrix} \text{(f. M.H.-Okuyama, Drukker-Marino-Putrov,} \\ Herzog-Klebanov-Pufu-Teseleanu \end{bmatrix}} \\ &= \int d\mu \ e^{J_k^{(M)}(\mu) - N\mu} & \begin{bmatrix} \text{(f. M.H.-Okuyama, Drukker-Marino-Putrov,} \\ Herzog-Klebanov-Pufu-Teseleanu \end{bmatrix}} \\ &= N \\ \log \hat{Z}^{(N,N+M)}(k) \simeq J_k^{(M)}(\mu_*) - \mu_*N, & \text{with } \left. \frac{\partial J_k^{(M)}(\mu)}{\partial \mu} \right|_{\mu=\mu_*} = N. \end{split}$$

Classical Hamiltonian:

$$H_{\mathsf{CI}}(q,p) = \log\left(2\cosh\frac{q}{2}\right) + \log\left(2\cosh\frac{p}{2}\right) \sim \frac{|q| + |p|}{2}$$

$$\begin{split} \underline{\text{Simple derivation of } N^{3/2} \text{ [law]}}_{Z_{ABJ}^{(N,N+M)}(k) = \int d\mu \ e^{J_k^{(M)}(\mu) - N\mu} & \text{[ff. M.H.-Okuyama, Drukker-Marino-Putrov, Herzog-Klebanov-Pufu-Teseleanu]} \\ \hline N \rightarrow \infty & \log \hat{Z}^{(N,N+M)}(k) \simeq J_k^{(M)}(\mu_*) - \mu_*N, & \text{with } \frac{\partial J_k^{(M)}(\mu)}{\partial \mu} \Big|_{\mu=\mu_*} = N. \end{split}$$

Classical Hamiltonian:

$$H_{\mathsf{CI}}(q,p) = \log\left(2\cosh\frac{q}{2}\right) + \log\left(2\cosh\frac{p}{2}\right) \sim \frac{|q| + |p|}{2}$$

Classical grand potential:

$$J_k^{(M)}(\mu) \sim \int dE \; \frac{\text{Vol}(H_{\text{Cl}} \le E)}{1 + ze^{-E}} \sim \frac{2}{3\pi^2 k} \mu^3, \quad \mu_* = \pi \sqrt{\frac{kN}{2}}$$

H(q,p)=E=4

$$H_{\mathsf{CI}}(q,p) = \log\left(2\cosh\frac{q}{2}\right) + \log\left(2\cosh\frac{p}{2}\right) \sim \frac{|q| + |p|}{2}$$

Classical grand potential:

$$J_k^{(M)}(\mu) \sim \int dE \; \frac{\text{Vol}(H_{\text{Cl}} \le E)}{1 + ze^{-E}} \sim \frac{2}{3\pi^2 k} \mu^3, \quad \mu_* = \pi \sqrt{\frac{kN}{2}}$$

$$\log Z_{ABJ}^{(N,N+M)}(k) \sim -\frac{\pi\sqrt{2k}}{3}N^{3/2}$$

Perturbative part

[Marino-Putrov]

[cf. Analysis by genus expansion:Fuji-Hirano-Moriyama, Monte-Carlo: Hanada-M.H.-Honma-Nishirmura-Shiba-Yoshida]

Semi-classical analysis shows

(C,B,A: independent of μ)

leading and sub-leading

Perturbative part

[Marino-Putrov]

[cf. Analysis by genus expansion:Fuji-Hirano-Moriyama, Monte-Carlo: Hanada-M.H.-Honma-Nishirmura-Shiba-Yoshida]

Semi-classical analysis shows

(C,B,A: independent of μ)

This is true also for general $N \ge 3$ necklace quiver.

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\log \hat{Z}_{\text{pert}}^{(N,N+M)}(k) = -\frac{2}{3}C^{-1/2}N^{3/2} + C^{-1/2}BN^{1/2} - \frac{1}{4}\log N + \mathcal{O}(1).$$

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\log \hat{Z}_{\text{pert}}^{(N,N+M)}(k) = \frac{-\frac{2}{3}C^{-1/2}N^{3/2} + C^{-1/2}BN^{1/2} - \frac{1}{4}\log N + \mathcal{O}(1).$$

classical SUGRA

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\log \hat{Z}_{\text{pert}}^{(N,N+M)}(k) = \frac{-\frac{2}{3}C^{-1/2}N^{3/2} + C^{-1/2}BN^{1/2} - \frac{1}{4}\log N + \mathcal{O}(1).$$

classical SUGRA universal term coming from Airy

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\log \hat{Z}_{\text{pert}}^{(N,N+M)}(k) = \frac{-\frac{2}{3}C^{-1/2}N^{3/2} + C^{-1/2}BN^{1/2} - \frac{1}{4}\log N + \mathcal{O}(1).$$

classical SUGRA universal term coming from Airy

The logarithmic term appears in 11d SUGRA on AdS₄ x X₇ at 1-loop.

[Bhattacharyya – Grassi-Marino-Sen '12]

$$\hat{Z}_{\text{pert}}^{(N,N+M)}(k) = C^{-1/3} e^A \operatorname{Ai}[C^{-1/3}(N-B)].$$

$$\log \hat{Z}_{\text{pert}}^{(N,N+M)}(k) = \frac{-\frac{2}{3}C^{-1/2}N^{3/2} + C^{-1/2}BN^{1/2} - \frac{1}{4}\log N + \mathcal{O}(1).$$

classical SUGRA universal term coming from Airy

The logarithmic term appears in 11d SUGRA on $AdS_4 \times X_7$ at 1-loop.

[Bhattacharyya – Grassi-Marino-Sen '12]

Airy function behavior also appears from localization of the SUGRA.

[Dabholkar-Drukker-Gomes]

Exact computations

We can also obtain exact values for various (k,M,N) by applying integrability-like technique to the ideal Fermi gas

Ex.) For (k,M)=(2,1) up to N=65 and for (k,M)=(4,1) up to N=64, etc...

Exact computations

We can also obtain exact values for various (k,M,N) by applying integrability-like technique to the ideal Fermi gas

Ex.) For (k,M)=(2,1) up to N=65 and for (k,M)=(4,1) up to N=64, etc...

Exact values for (k,M)=(2,1)

$$\begin{split} \hat{Z}^{(1,2)}(2) &= \frac{1}{4\pi}, \quad \hat{Z}^{(2,3)}(2) = \frac{1}{128} - \frac{1}{16\pi^2}, \quad \hat{Z}^{(3,4)}(2) = \frac{5\pi^2 - 48}{4608\pi^3}, \\ \hat{Z}^{(4,5)}(2) &= \frac{9}{32768} + \frac{5}{3072\pi^4} - \frac{53}{18432\pi^2}, \quad \hat{Z}^{(5,6)}(2) = \frac{6240 - 800\pi^2 + 17\pi^4}{29491200\pi^5}, \\ \hat{Z}^{(6,7)}(2) &= \frac{-218880 + 1413600\pi^2 - 1160264\pi^4 + 103275\pi^6}{8493465600\pi^6}, \\ \hat{Z}^{(7,8)}(2) &= \frac{-4677120 - 8631840\pi^2 + 14206864\pi^4 - 1345977\pi^6}{1664719257600\pi^7}, \\ \hat{Z}^{(8,9)}(2) &= \frac{61608960 - 1051438080\pi^2 + 2363612608\pi^4 - 1477376224\pi^6 + 126511875\pi^8}{213084064972800\pi^8}, \\ \hat{Z}^{(9,10)}(2) &= \frac{633830400 + 6140897280\pi^2 - 22473501120\pi^4 + 16465544384\pi^6 - 1444050207\pi^8}{23013079017062400\pi^9}, \end{split}$$

Exact values for (k,M)=(2,1)

[M.H.-Okuyama]

 $-12078328057432325328640\pi^8 + 13537831707363614586208\pi^{10} - 6051892803562043641080\pi^{12} + 486239579473363340625\pi^{14}$ $\hat{Z}^{(15,16)}(2) = -\frac{1}{489629780080648228924135833600000\pi^{15}} \left| 36090194527715328000 + 6104583949671567360000\pi^2 - 92067509353118319820800\pi^4 - 92067509766 - 920675966 - 920675966 - 92067566 - 920$ $+507831737592928484736000\pi^{6} - 1344043476982266371351040\pi^{8} + 1708199914796799315018400\pi^{10} - 841038818134977117865584\pi^{12} + 69024176701151867566875\pi^{14} \ ,$ $-31088486157208526910587238784\pi^{12} + 14680941405810341458359816576\pi^{14} - 1194793767361309903416444375\pi^{16}$ $+ 11220643955054903542467568447104\pi^{14} - 4489098718626188671320477135000\pi^{16} + 351431054003164340356323046875\pi^{18} \ ,$ $\hat{Z}^{(19,20)}(2) = -\frac{1}{180778408844055887876784982505379436953600000\pi^{19}} \left| 260034050935690604052480000 + 167378576740920004904091648000\pi^2 - 4603213941146778919710228480000\pi^4 + 16737857674092004904091648000\pi^2 - 4603213941146778919710228480000\pi^4 + 1673785767409200490491648000\pi^2 - 4603213941146778919710228480000\pi^4 + 16737857674092004904091648000\pi^2 - 4603213941146778919710228480000\pi^4 + 1673785767409200490491648000\pi^2 - 460321394114677891971022848000\pi^4 + 1673785767409000\pi^2 + 1673785767409000\pi^2 + 1673785767409000\pi^2 - 460321394114677891971022848000\pi^4 + 1673785767409000\pi^2 - 4603213941477897674 + 167378576740974 + 16737857674974 + 16737857674974 + 16737857674974 + 167378576749 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674974 + 16737857674 + 16737857674974 + 16737857674974 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737857674 + 16737877674 + 1673787767474 + 16737877674 + 167378776744 + 16737$ $+2341691134873926453650025102600576\pi^{14} - 1075830030189292612090801154991984\pi^{16} + 87057436298005995587368943405625\pi^{18}$, $\hat{Z}^{(20,21)}(2) = \frac{1}{289245454150489420602855972008607099125760000000\pi^{20}} \left[2569000707001171197296640000 - 24885517234201682474749132800000\pi^{2} + 755668170954645465216072941568000\pi^{4} + 75566817095464546521607294156800\pi^{4} + 75566817095664000\pi^{4} + 75566817095664000\pi^{4} + 755668170956680\pi^{4} + 755668170956680\pi^{4} + 755668170956680\pi^{4} + 755668170956680\pi^{4} + 75566817095676680\pi^{4} + 75566817095676680\pi^{4} + 75566817095680\pi^{4} + 755668076676680\pi^{4} + 755668076680\pi^{4} + 755668076680\pi^{4} + 755668076680\pi^{4} + 755668076680\pi^{4} + 7556680\pi^{4} + 75566$

Exact values for (k,M)=(3,1)

$$\begin{split} & \left(1,2 \right) \left(3 \right) = \frac{1}{12} \left(2\sqrt{3} - 3 \right), \quad \left(2^{2},3 \right) \left(3 \right) = \frac{1}{332} \left(-27 + 14\sqrt{3} + \frac{9}{3} \right), \quad \left(2^{3},3 \right) \left(3 \right) = -\frac{3}{324} + \frac{1}{12} \left(2\sqrt{3} - \frac{1}{344} + \frac{1}{342} + \frac{1}{344} + \frac{1}{344$$

[M.H.-Okuyama]

Exact values for (k,M)=(4,1)

$$\begin{split} & \left(1^{(2)} (4) = \frac{1}{4^{2}}, \quad \hat{x} (2^{(3)} (4) = \frac{12+12\pi^{5\pi^{2}}}{132\pi^{2}}, \quad \hat{x} (3,4) (4) = \frac{-168+396\pi+202\pi^{2}-39\pi^{3}}{17338^{3}}, \quad \hat{x} (4,5) (4) = \frac{1200+4320\pi-35742\pi^{3}+1735\pi^{4}}{418502\pi^{4}}, \\ & \hat{x} (5,6) (4) = \frac{-38889+241200\pi+18600\pi^{2}-40000\pi^{3}-203494\pi^{4}+46675\pi^{5}}{1858744800\pi^{5}}, \quad \hat{x} (6,7) (4) = \frac{953280+83029\pi-737880\pi^{2}-397480\pi^{3}+173574\pi^{4}+27667476\pi^{5}-9333225\pi^{6}}{4458519840\pi^{6}}, \\ & \hat{x} (5,6) (4) = \frac{-32539606+69134688\pi+56647920\pi^{2}-291430449\pi^{-3}-2914346488\pi^{4}+3962377364\pi^{5}+2156964930\pi^{6}-965722875\pi^{7}}, \\ & \hat{x} (8,9) (4) = \frac{15753680+8468167680\pi-7157011920\pi^{2}-292130140\pi^{-3}-291436488\pi^{4}+3962377364\pi^{5}+2156964930\pi^{6}-965722875\pi^{7}}, \\ & \hat{x} (8,9) (4) = \frac{15753680+8468167680\pi-7157011920\pi^{2}-8923397760\pi^{3}+389610666214^{4}+29232564313184\pi^{5}-82822457776\pi^{6}-145218219408\pi^{7}+47021834175\pi^{8}}, \\ & \hat{x} (9,10) (4) = \frac{1}{23565392913471897600\pi^{9}} \left[-12959654400+320811321600\pi+249167493960\pi^{2}-2406136078080\pi^{3}-1813794333120\pi^{4}+7622752486880\pi^{5}} \right], \\ & \hat{x} (10,11) (4) = \frac{1}{1888231433077751808000\pi^{-11}} \left[646656998400+2085551193600\pi-1590844752000\pi^{2}-42438074227200\pi^{3}+155455887162240\pi^{4}+240708560258880\pi^{5}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564438827500288000\pi^{7}} + 1434686348402316\pi^{8}+2720310664056300\pi^{9}-85538008926525\pi^{10}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564438827500288000\pi^{7}} + 143468348402316\pi^{8}+2720310664056300\pi^{9}-85538008926525\pi^{10}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564438827500288000\pi^{7}} + 143468348402316\pi^{8}+2720310664056300\pi^{9}-85538008926525\pi^{10}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564438827500288000\pi^{7}} + 143468348402316\pi^{8}+2720310664056300\pi^{9}-85538008925625\pi^{10}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564438827500288000\pi^{7}} + 168834602316\pi^{8}+272031066405630\pi^{9}-85538008925625\pi^{10}} \right], \\ & \hat{x} (11,12) (4) = \frac{1}{3649800564545401280\pi^{7}} - 50655245071933352\pi^{8}+791312771801094444\pi^{9}+502106969790796050\pi^{1}-92181627789145475\pi^{11}} \right], \\ & \hat{x} (12,13)$$

[M.H.-Okuyama]

Comparison with classical SUGRA

[cf. Klebanov-Tseytlin]

$$F_{\rm SUGRA} = -\frac{\pi\sqrt{2k}}{3}N^{3/2}.$$

Comparison with classical SUGRA

[cf. Klebanov-Tseytlin]

Now we have information on

- genus expansion
 small-k expansion
 exact values for various specific (k,M,N)

Now we have information on

- genus expansion
 small-k expansion
 exact values for various specific (k,M,N)

However,

we have not obtained exact results for arbitrary (k,M,N)

Now we have information on

genus expansion
 small-k expansion
 exact values for various specific (k,M,N)

However,

we have not obtained exact results for arbitrary (k,M,N)

To determine structures of non-perturbative effects completely, we will "guess" the form of the grand potential and test this "guess" by using the above information. **Basic idea**

[cf. Marino-Putrov]

ABJ(M) matrix model

Basic idea

[cf. Marino-Putrov]

ABJ(M) matrix model

Analytic continuation

Pure CS theory on S^3/Z_2 (Lens space matrix model) Basic idea

[cf. Marino-Putrov]

ABJ(M) matrix model

Analytic continuation

Pure CS theory on S^3/Z_2 (Lens space matrix model)

Topological string on certain space (local P¹ x P¹)

Perturbative in the sense of genus expansion

Perturbative in the sense of genus expansion

This part is described by the standard topological string.

Perturbative in the sense of genus expansion

This part is described by the standard topological string.

$$Z_{\text{WS,m-inst}} = d_m(k, M) \text{Ai} \left[C^{-1/3} \left(N - B + \frac{4m}{k} \right) \right]$$
$$\frac{Z_{\text{WS,m-inst}}}{Z_{\text{pert}}} \sim e^{-2\pi m \sqrt{\frac{2N}{k}}}$$

Test of WS 1-instanton

$$Z_{\text{WS},1-\text{inst}}^{(N,N+M)}(k) = -2C^{-1/3}e^{A}\frac{\cos\pi\left(1-\frac{2M}{k}\right)}{\sin^{2}\frac{2\pi}{k}}\text{Ai}\left[C^{-1/3}\left(B-N-\frac{4}{k}\right)\right]$$

Test of WS 1-instanton

$$Z_{\text{WS},1-\text{inst}}^{(N,N+M)}(k) = -2C^{-1/3}e^{A}\frac{\cos\pi\left(1-\frac{2M}{k}\right)}{\sin^{2}\frac{2\pi}{k}}\text{Ai}\left[C^{-1/3}\left(B-N-\frac{4}{k}\right)\right]$$

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

The WS-instanton part is divergent for physical integer k.
Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

The WS-instanton part is divergent for physical integer k.

For instance,

$$J_{\text{WS},1-\text{inst}} = \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad J_{\text{WS},2-\text{inst}} = \frac{\sharp}{\sin^2 \frac{4\pi}{k}} + \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad \text{etc.}.$$

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

The WS-instanton part is divergent for physical integer k.

For instance,

$$J_{\text{WS},1-\text{inst}} = \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad J_{\text{WS},2-\text{inst}} = \frac{\sharp}{\sin^2 \frac{4\pi}{k}} + \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad \text{etc.}.$$

However,

we know that the exact result is finite

Problem on worldsheet instanton effect

[Hatsuda-Moriyama-Okuyama, Matsumoto-Moriyama, M.H.-Okuyama]

The WS-instanton part is divergent for physical integer k.

For instance,

$$J_{\text{WS},1-\text{inst}} = \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad J_{\text{WS},2-\text{inst}} = \frac{\sharp}{\sin^2 \frac{4\pi}{k}} + \frac{\sharp}{\sin^2 \frac{2\pi}{k}}, \quad \text{etc.}.$$

However,

we know that the exact result is finite

This divergence must be apparent and must cancel out if we include other sector: D2-instanton

Non-perturbative in the sense of genus expansion

Non-perturbative in the sense of genus expansion

This part is described by non-perturbative formulation of topological string: refined topological string in certain limit (Nekrasov-Shashvili limit)

Non-perturbative in the sense of genus expansion

This part is described by non-perturbative formulation of topological string: refined topological string in certain limit (Nekrasov-Shashvili limit)

$$\begin{split} &Z_{\text{D2},\ell-\text{inst};\text{WS},\text{m-inst}} = g_{\ell,m}\left(k,M;\frac{\partial}{\partial N}\right)\text{Ai}\left[C^{-1/3}\left(N-B+2\ell+\frac{4m}{k}\right)\right] \\ &\frac{Z_{\text{D2},\ell-\text{inst};\text{WS},\text{m-inst}}}{Z_{\text{pert}}} \sim e^{-\pi\ell\sqrt{2kN}-2\pi m\sqrt{\frac{2N}{k}}} \end{split}$$

Test of our proposal

Drastic simplification for N = 8 SUSY cases

Generally,

[Codesido-Grassi-Marino]

the ABJ(M) grand potential receives contributions from all-genus of topological string free energy.

Drastic simplification for N = 8 SUSY cases

Generally,

[Codesido-Grassi-Marino]

the ABJ(M) grand potential receives contributions from all-genus of topological string free energy.

However,

for (k,M)=(1,0), (2,0) and (2,1) (enhanced to $\mathcal{N}=8$ SUSY),

the ABJ(M) grand potential after pole cancellation has contributions only from genus-0 and genus-1 !!

Drastic simplification for N = 8 SUSY cases

Generally,

[Codesido-Grassi-Marino]

the ABJ(M) grand potential receives contributions from all-genus of topological string free energy.

However,

for (k,M)=(1,0), (2,0) and (2,1) (enhanced to $\mathcal{N}=8$ SUSY),

the ABJ(M) grand potential after pole cancellation has contributions only from genus-0 and genus-1 !!

$$\begin{split} & \equiv (\mu)|_{(k,M)=(1,0)} = \left(\vartheta_2(\bar{\xi}/4,\bar{\tau}/4) + i\vartheta_1(\bar{\xi}/4,\bar{\tau}/4) \right) & (\bar{\xi},\bar{\tau}: \text{determined by } F_0) \\ & \quad \times \exp\left[\frac{3\mu}{8} - \frac{3}{4}\log 2 + F_1 + F_1^{NS} - \frac{1}{4\pi^2} \left(F_0 - \lambda\partial_\lambda F_0 + \frac{\lambda^2}{2}\partial_\lambda^2 F_0 \right) \right] \\ & \equiv (\mu)|_{(k,M)=(2,0)} = \vartheta_3(\bar{\xi},\bar{\tau}) \exp\left[\frac{\mu}{4} + F_1 + F_1^{NS} - \frac{1}{\pi^2} \left(F_0 - \lambda\partial_\lambda F_0 + \frac{\lambda^2}{2}\partial_\lambda^2 F_0 \right) \right] \\ & \equiv (\mu)|_{(k,M)=(2,1)} = \vartheta_1(\bar{\xi} + 1/4,\bar{\tau}) \exp\left[\frac{\log 2}{2} + F_1 + F_1^{NS} - \frac{1}{\pi^2} \left(F_0 - \lambda\partial_\lambda F_0 + \frac{\lambda^2}{2}\partial_\lambda^2 F_0 \right) \right] \end{split}$$

<u>Resumming the 1/N-expansion in ABJM</u>

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

 $F_{ABJM}|_{genus-g} \sim (2g)!$ asymptotic

<u>Resumming the 1/N-expansion in ABJM</u>

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

$$F_{\text{ABJM}}|_{\text{genus-}g} \sim (2g)!$$
 asymptotic

Can we resum the 1/N-expansion(=dual string perturbation series)?

Resumming the 1/N-expansion in ABJM

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

$$F_{\text{ABJM}}|_{\text{genus-}g} \sim (2g)!$$
 asymptotic

Can we resum the 1/N-expansion(=dual string perturbation series)?

— Yes, because this is Borel summable.

Resumming the 1/N-expansion in ABJM

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

$$F_{\text{ABJM}}|_{\text{genus-}g} \sim (2g)!$$
 asymptotic

Can we resum the 1/N-expansion(=dual string perturbation series)? —— Yes, because this is Borel summable.

Does the Borel resummation reproduce the exact results? Does resummed string perturbation series describe D2-instanton?

Resumming the 1/N-expansion in ABJM

[Grassi-Marino-Zakany] [cf. Drukker-Marino-Putrov]

$$F_{\text{ABJM}}|_{\text{genus-}g} \sim (2g)!$$
 asymptotic

Can we resum the 1/N-expansion(=dual string perturbation series)? —— Yes, because this is Borel summable.

Does the Borel resummation reproduce the exact results? Does resummed string perturbation series describe D2-instanton?

 No, Grassi-Marino-Zakany have found relevant differences.
 We should resum each string perturbation series around each D2-instanton background (to get full result).

Some generalizations

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,

 $\langle Generating function \rangle = (Ideal Fermi gas)$

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,

 $\langle Generating function \rangle = (Ideal Fermi gas)$

The Wilson loop is described by the open topological string.

[Hatsuda-M.H.-Moriyama-Okuyama, Grassi-Kallen-Marino]

By localization + some explicit calculations,

 $\langle Generating function \rangle = (Ideal Fermi gas)$

The Wilson loop is described by the open topological string.

$$Z_{\text{ABJM}}\langle W_{\mathbf{R}} \rangle_{\text{D2},\ell-\text{inst};\text{WS},\text{m-inst}} = d_{\ell,m}(k)\operatorname{Ai}\left[C^{-\frac{1}{3}}\left(N-B+\frac{2|\mathbf{R}|}{k}+2\ell+\frac{4m}{k}\right)\right]$$
$$\langle W_{\mathbf{R}} \rangle_{\text{D2},\ell-\text{inst};\text{WS},\text{m-inst}} \sim e^{\pi|\mathbf{R}|\sqrt{\frac{2N}{k}}-\pi\ell\sqrt{2kN}-2\pi m\sqrt{\frac{2N}{k}}}$$

[M.H.-Moriyama, Grassi-Marino, Hatsuda-Okuyama, Moriyama-Nosaka]

[M.H.-Moriyama, Grassi-Marino, Hatsuda-Okuyama, Moriyama-Nosaka]

Is the pole cancelation common in general M2-brane theories?

[M.H.-Moriyama, Grassi-Marino, Hatsuda-Okuyama, Moriyama-Nosaka]

Is the pole cancelation common in general M2-brane theories?

Yes, probably.

Cancelation has been found also in some $\mathcal{N} = 4$ M2-brane theories (=special cases of Gaiotto-Witten theory).

[M.H.-Moriyama, Grassi-Marino, Hatsuda-Okuyama, Moriyama-Nosaka]

Is the pole cancelation common in general M2-brane theories?

Yes, probably.

Cancelation has been found also in some $\mathcal{N} = 4$ M2-brane theories (=special cases of Gaiotto-Witten theory).

Technical difficulties for less SUSY theories:

- 1. Corresponding topological string is unknown.
- 2. Except some special cases, density matrix of Fermi gas becomes complicated (given by integral)
- 3. For $\mathcal{N} = 2$, Fermi gas becomes interacting.

Summary & Outlook

ABJ(M) partition function on sphere:

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

Semi-classical expansion = M-theory expansion

Exact computation of the ABJ partition function for various (k,M,N)

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

- Exact computation of the ABJ partition function for various (k,M,N)
- Non-perturbative structure from the refined topological string

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

- Exact computation of the ABJ partition function for various (k,M,N)
- •Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

- Exact computation of the ABJ partition function for various (k,M,N)
- •Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases
- The 1/N-expansion in ABJM is Borel summable.
 But the resummation deviates from the exact values.

Summary

ABJ(M) partition function on sphere:

• Fermi gas formalism is powerful.

Semi-classical expansion = M-theory expansion

- Exact computation of the ABJ partition function for various (k,M,N)
- •Non-perturbative structure from the refined topological string
- Drastic simplification for $\mathcal{N}=8$ SUSY cases
- The 1/N-expansion in ABJM is Borel summable.
 But the resummation deviates from the exact values.

Some generalizations:

- Half-BPS Wilson loop in ABJM is described by open topological string.
- Pole cancelation occurs also in some less SUSY theories.

<u>Outlook</u>

- ABJ theory in higher spin limit [Hirano-M.H.-Okuyama-Shigemori, to appear]
- More general M2-brane theory

[Hatsuda-M.H.-Okuyama, work in progress]

Other quantities

Ex.) Vortex loop, Energy-momentum tensor correlator, super-Renyi entropy

Relation to Higgs branch localization formula

[cf. Pasquetti, Fujitsuka-M.H.-Yoshida, Benini-Peelaers]

- Localization formula has another equivalent representation in terms of vortex partition functions for many 3d theories.
- Analysis on the gravity side
 - Test many predictions.

Probably, localization on the gravity side and string perturbation around instanton background would be useful.

