

DFT description of nuclear electromagnetic moments

Jacek Dobaczewski University of York & University of Warsaw

YIPQS long-term workshop "Mean-field and Cluster Dynamics in Nuclear Systems 2022" (MCD2022), YITP, Kyoto, Japan, 9 May–17 June 2022

Jacek Dobaczewski

In collaboration with

- Paolo Sassarini, Jérémy Bonnard, York
- Witek Nazarewicz, MSU
- Ronald Fernando Garcia Ruiz, Adam R. Vernon, MIT
- Ruben P. de Groote, Leuven
- Magda Kowalska, CERN
- Andrew Stuchbery, ANU, Tim Gray, ORNL
- Jacinda Ginges, Georgy Sanamyan, Queensland

Jacek Dobaczewski

Outline

- 1. Recap on nuclear electromagnetic moments
- 2. Odd near doubly magic nuclei
- 3. Indium isotopes
- 4. Particle-core coupling
- 5. Antimony, tin, silver
- 6. Heavy deformed open-shell odd nuclei $82 \le N \le 126 \& 63 \le Z \le 82$
- 7. Magnetic octupole moments
- 8. Bohr-Weisskopf correction
- 9. Conclusions

Jacek Dobaczewski

Jacek Dobaczewski

Basic definitions

The electric and magnetic moments are defined as

$$egin{aligned} Q_{\lambda\mu} &= \langle \Psi | \hat{Q}_{\lambda\mu} | \Psi
angle = \int q_{\lambda\mu}(ec{r}) \, d^3ec{r}, \ M_{\lambda\mu} &= \langle \Psi | \hat{M}_{\lambda\mu} | \Psi
angle = \int m_{\lambda\mu}(ec{r}) \, d^3ec{r}, \end{aligned}$$

where $|\Psi\rangle$ is a many-body state, and $q_{\lambda\mu}(\vec{r})$ and $m_{\lambda\mu}(\vec{r})$ are the corresponding electric and magnetic-moment densities:

$$egin{aligned} q_{\lambda\mu}(ec{r}) &= e
ho(ec{r})Q_{\lambda\mu}(ec{r}), \ m_{\lambda\mu}(ec{r}) &= \mu_N \Big[g_sec{s}(ec{r}) + rac{2}{\lambda+1}g_lig(ec{r} imesec{j}(ec{r})ig) \Big]\cdotec{
abla}Q_{\lambda\mu}(ec{r}), \end{aligned}$$

and e, g_s , and g_l are the elementary charge, and the spin and orbital gyromagnetic factors, respectively. The multipole functions (solid harmonics) have the standard form: $Q_{\lambda\mu}(\vec{r}) = r^{\lambda}Y_{\lambda\mu}(\theta, \phi)$.

Function $m_{\lambda\mu}(\vec{r})$ is called magnetization density and its higher radial moments

$$M^{(n)}_{\lambda\mu} = \int\, r^n\, m_{\lambda\mu}(ec r)\, d^3ec r,$$

define the Bohr-Weisskopf hyperfine splitting corrections.

Mechanism of the e-m moments generation

- In nuclear DFT, properties of odd nuclei can be analysed in terms of the self-consistent polarisation effects caused by the presence of the unpaired nucleon.
- A non-zero quadrupole moment of the odd nucleon induces deformation of the total mean field and thus generates quadrupole moments of all remaining nucleons. $V=-\lambda Q_1 Q_2$
 - The latter moments enhance the deformation of the mean field even more, which in turn influences the quadrupole moment of the odd nucleon.
 - In a self-consistent solution, these mutual polarisation are effectively summed up to infinity, whereupon the final total quadrupole deformation and electric quadrupole moment Q of the system are generated.
 - A non-zero spin and current distributions of the odd particle influence those of all other nucleons and in the self-consistent solution lead to a specific polarisation of the system and its non-zero magnetic dipole moment μ . $V=-\lambda\sigma_1\sigma_2$
 - All nucleons contribute to the moments Q and μ of the system, with individual contributions of nucleons depending on their individual polarisation responses to the deformed and polarised mean field.

Jacek Dobaczewski UNIVERSITY of York

Literature

- B. Castel and I.S. Towner, *Modern theories of nuclear moments*, (Oxford Studies in Nuclear Physics) vol 12, ed P E Hodgson (Oxford: Clarendon,1990).
- Gerda Neyens, Rep. Prog. Phys. 66 (2003) 633–689.
- N.J. Stone, At. Data and Nucl. Data Tables 90 (2005) 75–176.
- I. N. Borzov et al., Phys. Atom. Nucl. 71 (2008) 469
- O.I. Achakovskiy et al., Eur. Phys. J. A (2014) 50:6
- L. Bonneau et al., Phys. Rev. C91 (2015) 054307
- G. Co' et al., Phys. Rev. C92 (2015) 024314
- M. Borrajo and J.L. Egido, Phys. Lett. B764 (2017) 328.
- J. Li and J. Meng, Front. Phys. 13 (2018) 132109
- S. Péru et al., Phys. Rev. C104 (2021) 024328
- P.L. Sassarini *et al*, arXiv:2111.04675 (2021)
- V. Tselyaev *et al.*, arXiv:2201.08838 (2022)

So far ...

	Borrajo and Egido	Péru et al.	Bonneau et al.	Li and Meng	Co' et al.	Sassarini et al.
Nuclei Region	Mg Isotopes	Hg Isotopes	A≈50, 100, 178, 236	A≈16, 40, 208	Doubly magic	All doubly magic
HF				\checkmark	\checkmark	\checkmark
HF-BCS			\checkmark			
HFB	\checkmark	\checkmark				
s.p Operator	\checkmark	\checkmark	\checkmark	Meson Ex. Current	Meson Ex. Current	\checkmark
Eff. spin g-factor		\checkmark	\checkmark			
Core contribution	Microscopic	Model	Microscopic	Model	Model	Microscopic
Collective Mixing (BMF)	\checkmark					
Blocking	\checkmark	\checkmark	\checkmark	N/A	N/A	N/A
AMP	\checkmark					\checkmark
Skyrme			SIII, SLyIII.0.8			UNEDF1, SLy4, SkO'
Gogny	D1S	D1M			D1S, D1M	D1S
Regularized						N ³ LO
Relativistic Lagrangian				\checkmark		
HO Basis	Spherical	Deformed	Cylindrical	Spherical	Space coordinates	Spherical
Oscillator Shells	8	19	13	not specified	N/A	16
Parity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Signature	\checkmark	\checkmark		\checkmark	\checkmark	
Time-reversal	\checkmark	\checkmark		\checkmark	\checkmark	
Spherical				\checkmark	\checkmark	
Axial		\checkmark	\checkmark			\checkmark
Triaxial	\checkmark					
Refrence Frame	Intrinsic	Intrinsic	Intrinsic	Laboratory	Laboratory	Intrinsic
P. L. Sassarini <i>et al.</i> , to be published						

Jacek Dobaczewski

UNIVERSITY of York

Odd near doubly magic nuclei

Jacek Dobaczewski

Quadrupole & dipole moments

- Spectroscopic moments
- Proton-odd (squares) & neutron-odd (circles) nuclei
- Average of UNEDF1, SLy4, SkO', D1S, N3LO functionals
- RMS deviations much smaller than the residuals

Sassarini, J.D., J. Bonnard, R.F. Garcia Ruiz, arXiv:2111.04675

Ч

Time-odd densities & Landau parameters

- In nuclear DFT, what really matters is not the interaction but the functional, that is, the energy density expressed as a function of local or nonlocal particle $\rho(\vec{r})$, spin $\vec{s}(\vec{r})$, kinetic $\tau(\vec{r})$, spin-kinetic $\vec{T}(\vec{r})$, current $\vec{j}(\vec{r})$, spin-current $J(\vec{r})$, ..., densities.
- In particular, for one-body time-odd observables like magnetic moments, the time-odd densities $\vec{s}(\vec{r})$ and $\vec{j}(\vec{r})$ are essential. For a local functional, the corresponding relevant terms read:

$$egin{aligned} \mathcal{H}(ec{r}) &= \sum_{t=0,1} C_t^s \, ec{s}_t(ec{r}) \cdot ec{s}_t(ec{r}) \ &+ \sum_{t=0,1} C_t^ au \left(
ho_t(ec{r}) au_t(ec{r}) - ec{j}_t(ec{r}) \cdot ec{j}_t(ec{r})
ight) \ &+ \sum_{t=0,1} C_t^T \left(ec{s}_t(ec{r}) \cdot ec{T}_t(ec{r}) - \mathsf{J}_t^2
ight) \end{aligned}$$

where t = 0, 1 stands for the isoscalar and isovector terms, respectively.

In the present study, we analyse the isovector spin-spin term only and we parameterise it by the Landau parameter g'_0 as

$$g_0' = N_0 \Big(2 C_1^s + 2 C_1^T \, (3 \pi^2
ho_0/2)^{2/3} \Big),$$

where the normalization factor N_0 is the level density at the Fermi surface

$$rac{1}{N_0} = rac{\pi^2 \hbar^2}{2m^* k_{
m F}} pprox 150 \, rac{m}{m^*} \; {
m MeV} \; {
m fm}^3.$$

Jacek Dobaczewski UNIVERSITY of York

Magnetic dipole moments vs. experiment

Jacek Dobaczewski

Optimisation of the spin-spin term

Jacek Dobaczewski

UNIVERSITY of York

Effective spin g-factor?

Jacek Dobaczewski

Science & Technology Facilities Council

Indium

Jacek Dobaczewski

Magnetic dipole moments in indium

Jacek Dobaczewski UNIVERSITY of Vork

Electric quadrupole moments in indium

UNIVERSITY of York

Jacek Dobaczewski

Particle-core coupling

Jacek Dobaczewski

Particle-core-coupling analysis

Consider three HF states:

- $1^{\circ} |\Phi_K\rangle$: the Indium self-consitent state with projection K = +9/2 of the angular momentum on the z axis,
- $2^{\circ} |\phi_{\Omega}\rangle$: the polarized $g_{9/2}$ orbital with $\Omega = -9/2$ (a hole orbital extracted from the self-consistent results for Indium),
- $3^{\circ} |\Psi\rangle$: the Tin-like polarized core state obtined by adding orbital $|\phi_{\Omega}\rangle$ to the Indium state $|\Phi_{K}\rangle$.

The particle-core model neglects the Pauli principle between the particle and the core and assumes that $|\Psi\rangle = |\Phi_K\rangle \times |\phi_\Omega\rangle$. We perform the angular-momentum restoration for the three states:

 $egin{array}{ll} 1^\circ & |\Phi_K
angle = \sum_I g_I |\Phi_{IK}
angle, \ 2^\circ & |\phi_\Omega
angle = \sum_j c_j |\phi_{j\Omega}
angle, \ 3^\circ & |\Psi
angle = \sum_J C_J |\Psi_{J0}
angle. \end{array}$

where g_I , c_j , and C_J are normalization factors. This gives:

$$\begin{split} \langle \Phi_{IK} | \hat{O}_{\lambda\mu} | \Phi_{IK} \rangle &= |g_I|^2 [I]^4 \begin{pmatrix} I & \lambda & I \\ K & \mu & -K \end{pmatrix} \\ & \times & \left\{ \sum_{J,j,J'} C_J^* C_{J'} | c_j |^2 (-1)^{J'+j-K} \begin{pmatrix} J & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} J' & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} I & \lambda & I \\ J & j & J' \end{pmatrix} \langle J || \hat{O}_{\lambda}^c || J' \rangle \\ & + & \sum_{J,j,j'} |C_J|^2 c_j^* c_{j'} (-1)^{J+j-K} \begin{pmatrix} J & j & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} J & j' & I \\ M & m & -K \end{pmatrix} \begin{pmatrix} I & \lambda & I \\ J & J & j' \end{pmatrix} \langle j || \hat{O}_{\lambda}^{sp} || j' \rangle \right\} \end{split}$$

Jacek Dobaczewski

Particle-core-coupling analysis

UNIVERSITY of York

and Innovation

Facilities Council

Antimony

Jacek Dobaczewski

Dipole and quadrupole moments in antimony

Experimental data exist: S. Lechner *et al.*, to be published

Tin

Jacek Dobaczewski

Dipole and quadrupole moments in tin

Silver

Jacek Dobaczewski

Dipole and quadrupole moments in silver

R. P. de Groote, D. A. Nesterenko, A. Kankainen, ..., J. Bonnard, ..., J. Dobaczewski *et al.*, to be published

Jacek Dobaczewski

$82 \le N \le 126$ $63 \le Z \le 82$

Jacek Dobaczewski

First systematic nuclear-DFT analysis of electromagnetic moments in heavy deformed open-shell odd nuclei

Jacek Dobaczewski

UK Research and Innovation

to be published

Bonnard & J.D,

Jacek Dobaczewski

Science & Technology Facilities Council

UNIVERSITY of York

UK Research

and Innovation

Science & Technology

Facilities Council

Jacek Dobaczewski

Jacek Dobaczewski

Science & Technology Facilities Council

Heavy deformed v13/2+ odd-N nuclei

Jacek Dobaczewski

Heavy deformed v13/2+ odd-N nuclei

Jacek Dobaczewski

Science & Technology Facilities Council

Magnetic octupole moments

Jacek Dobaczewski

Visualisation of the magnetic multipole moments in axial symmetry

λ=1 λ=2 λ=3

Axial solid harmonics:

$\lambda \mu$	$Q_{\lambda\mu}$	$ abla_z Q_{\lambda\mu}$	
00	$\sqrt{\frac{1}{4\pi}}$	0	
10	$\sqrt{rac{3}{4\pi}}z$	$\sqrt{\frac{3}{4\pi}}$	$=\sqrt{3}Q_{00}$
20	$\sqrt{rac{5}{16\pi}}\left(2z^2-x^2-y^2 ight)$	$\sqrt{\frac{5}{\pi}z}$	$=\sqrt{rac{20}{3}}Q_{10}$
30	$\sqrt{rac{7}{16\pi}}\left(2z^3-3x^2z-3y^2z ight)$	$\sqrt{rac{7}{16\pi}}3\left(2z^2-x^2-y^2 ight)$	$=\sqrt{rac{63}{5}}Q_{20}$

Axial electric and magnetic-moment densities:

 $egin{aligned} q_{\lambda 0}(r, heta) &= e
ho(r, heta)Q_{\lambda 0}(r, heta), \ m_{\lambda 0}(r, heta) &= \mu_N \Big[g_s s_z(r, heta) + rac{2}{\lambda+1}g_lig(ec{r} imesec{j}ig)_z(r, heta)\Big]\cdot
abla_z Q_{\lambda 0}(r, heta), \ \mathbf{or} \ m_{\lambda 0}(r, heta) &= \mu_N \Big[g_s s_z(r, heta) + rac{2}{\lambda+1}g_l I_z(r, heta)\Big]C_\lambda Q_{(\lambda-1)0}(r, heta), \end{aligned}$

Jacek Dobaczewski

Magnetic octupole moments in indium

Jacek Dobaczewski

Bohr-Weisskopf correction

Jacek Dobaczewski

Moments of magnetization in silver

UNIVERSITY of York

Jacek Dobaczewski

Conclusions

- 1. Nuclear DFT:
 - An approach of choice to calculate electromagnetic moments in nuclei.
 - Takes into account polarization effects by odd particles to infinite order in full single-particle space.
 - Unified approach with no limits on mass.
- 2. Time-odd mean fields and symmetry restoration are essential.
- **3.** Effective charges and effective g-factors not needed.
- 4. Applications in semi-magic & open-shell nuclei, excited states.
- 5. Future applications to exotic moments: Schiff, anapole, weak... provide links to particle, atomic, and molecular physics.
- 6. Adjustments of the nuclear DFT coupling constants to data should take the magnetic moments into account.
- 7. Terms beyond $\sigma\sigma$? T-odd spin-orbit? tensor? higher order?
- 8. Triaxiality? K-mixing? Configuration interaction?

Thank you

Jacek Dobaczewski

"Spin" magnetic dipole moment

In this study we use the single-particle magnetic-dipole-moment operator for neutron and proton bare orbital and spin gyroscopic factors,

$$g_{\ell}^{p} = \mu_{N}, \ g_{s}^{n} = -3.826 \,\mu_{N}, \ g_{s}^{p} = +5.586 \,\mu_{N},$$

which reads

$$\hat{\mu} = g_\ell^p \hat{L}_p + g_s^n \hat{S}_n, + g_s^p \hat{S}_p,$$

where \hat{L}_{ν} and \hat{S}_{ν} for $\nu = n, p$ are the operators of orbital and spin angular momenta, respectively. Since the total angular momentum $\hat{J} = \sum_{\nu=n,p} (\hat{L}_{\nu} + \hat{S}_{\nu})$ is conserved, it is convenient to subtract its eigenvalue from the spectroscopic magnetic moments of odd-Z nuclei and to define "spin" magnetic moments $\mu^{\mathbf{S}}$ as

$$\begin{split} \mu^{\mathbf{S}} &= \mu = g_{\ell}^{p} \langle \hat{L}_{p} \rangle + g_{s}^{n} \langle \hat{S}_{n} \rangle + g_{s}^{p} \langle \hat{S}_{p} \rangle \quad \text{for } Z \text{ even,} \\ \mu^{\mathbf{S}} &= \mu - J \, \mu_{N} \\ &= g_{\ell}^{\prime n} \langle \hat{L}_{n} \rangle + g_{s}^{\prime n} \langle \hat{S}_{n} \rangle + g_{s}^{\prime p} \langle \hat{S}_{p} \rangle \quad \text{for } Z \text{ odd.} \end{split}$$

with

$$g_{\ell}^{\prime n} = -\mu_N, \ g_s^{\prime n} = -4.826 \ \mu_N, \ g_s^{\prime p} = +4.586 \ \mu_N.$$

Jacek Dobaczewski

Spin magnetic dipole moments

P.L. Sassarini, J.D., J. Bonnard, R.F. Garcia Ruiz, arXiv:2111.04675

Jacek Dobaczewski UNIVERSITY of York

Spin magnetic dipole moments

