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R-Process Abundances



Nuclear Landscape

To convincingly locate the
site(s) of the r process, we
need to know reaction
rates, particularly β-decay
rates, in neutron-rich
nuclei.

To fully understand
supernova evolution, we
need to know
electron-capture rates for
lots of medium-mass
nuclei.
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Calculating These Rates is Hard
Though, As We’ll See, It Gets a Bit Easier in Neutron-Rich Nuclei

To calculate β decay between two states, you need:

an accurate value for the decay energy ∆E (since contribution
to rate ∝ ∆E5 for “allowed” decay).

matrix elements of the decay operator στ− and “forbidden"
operators rτ−, rστ− between the two states.

The operator τ− turns a neutron into a proton; the allowed decay operator does that
while flipping spin.

Most of the time the decay operator leaves you above
threshold, by the way.

So nuclear structure model must do good job with
masses, spectra, and wave functions, in many isotopes.
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What’s Often Used for β-Decay in Simulations

Masses through “finite-range
droplet model with shell
corrections.”
QRPA with simple
space-independent interaction.
First forbidden decay included
in approximate way. Shortens
half lives.

Möller, Pfeiffer, Kratz (2003)

P. M�oller, B. Pfei�er, K.-L. Kratz /Speeding up the lassial r-proess . . . 11

β− decay (Theory: GT + ff) 

Total Error = 4.82  for 546 nuclei, Tβ,exp < 1000 s 
Total Error = 3.08  for 184 nuclei, Tβ,exp < 1 s 
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Figure 4: Ratio of alulated to experimental ��-deay half-lives for nulei from 16O to the heaviest knownin our previous and urrent models.errors there are many more points than for large errors. This is not learly seen in the �gures,sine for small errors many points are superimposed on one another. To obtain a more exatunderstanding of the error in the alulation we therefore perform a more detailed analysis.One often analyzes the error in a alulation by studying a root-mean-square (rms) deviation,whih in this ase would be �rms2 = 1n nXi=1(T�;exp � T�;al)2 (13)However, suh an error analysis is unsuitable here, for two reasons. First, the quantities studied



Self-Consistent Version: Skyrme DFT
Started as zero-range effective potential, treated in mean-field
theory:

VSkyrme = t0 (1 + x0Pσ ) δ (r1 − r2)

+
1
2 t1 (1 + x1Pσ )

[
(+1 − +2)2δ (r1 − r2) + h.c.

]
+ t2 (1 + x2Pσ ) (+1 − +2) · δ (r1 − r2) (+1 − +2)

+
1
6 t3 (1 + x3Pσ ) δ (r1 − r2)ρα ( [r1 + r2]/2)

+ iW0 (σ 1 + σ2) · (+1 − +2) × δ (r1 − r2) (+1 − +2)

where Pσ ≡ 1+σ 1 ·σ2
2 .

Re-framed as density functional, which can then be extended:

E =
∫

d3r
(
Heven +Hodd

HSkyrme

+Hkin. +Hem
)

Hodd has no effect in mean-field description of time-reversal even
states (e.g. ground states), but large effect in β decay.



Time-Even and Time-Odd Parts of Functional
Not including pairing:

Heven =
1∑

t=0

t∑
t3=−t

{
Cρt ρ

2
tt3 + C

∆ρ
t ρtt3+

2ρtt3 + Cτt ρtt3τtt3

+ C+Jt ρtt3+ · Jtt3 + C
J
t J

2
tt3

}
Hodd =

1∑
t=0

t∑
t3=−t

{
Cst s2

tt3 + C
∆s
t stt3 · +2stt3 + CTt stt3 · Ttt3 + C

j
t j

2
tt3

+ C+jt stt3 · + × jtt3 + C
F
t stt3 · Ftt3 + C+st

(
+ · stt3

)2
}

Time-even densities:
ρ = usual density τ = kinetic density J = spin-orbit current

Time-odd densities:
s = spin current T = kinetic spin current j = usual current



Starting Point: Mean-Field-Like Calculation (HFB)
Gives you ground state density, etc. This is where Skyrme
functionals have made their living.

"#"$#%&! '()*+,!-.+,/0*+,1!'/23+,.4)5! F!

Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 

G=HI!β"
JKLM&N76! +OKI!β"

JKLM&N7"J8L!1!PNQN!G@/2R!+5!/)N1!9AS;N!T+<N!U!J"&&$L!



QRPA

Self-consistent QRPA is time-dependent HFB with small harmonic
perturbation. Perturbing operator is β-decay transition operator.
Decay matrix elements obtained from response of nucleus to
perturbation.

QRPA of Möller et al. is simplified version of this.
No fully self-consistent mean-field calculation to start.
Nucleon-nucleon interaction is schematic.



Initial Skyrme Application: Spherical QRPA
Even Isotopes Only

82

50

28

28

50

82

20
82

2
8

20

126

A=
10

A=
12 A~

60

Densit
y Functio

nal T
heory

Selfc
onsis

tent M
ean Field

Ab initio
few-body

calculations No-Core Shell Model 
G-matrix

r-p
rocess

rp
-p

ro
ce

ss

0Ñω Shell
Model

Limits of nuclear
existence

p
ro
to
n
s

neutrons

Towards a unified
description of the nucleus

 

Closed shell nuclei are spherical.



Initial Skyrme Application: Spherical QRPA

In nuclei near “waiting points,” with no
forbidden decay.

Chose functional corresponding to
Skyrme interaction SkO′ because did best
with GT distributions.

One free parameter: strength of
proton-neutron spin-1 pairing (it’s zero in
schematic QRPA.) Adjusted in each of the
three peak regions to reproduce measured
lifetimes.
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Later: Fast Skyrme QRPA in Deformed Nuclei
Finite-Amplitude Method — Nakatsukasa et al.

Strength functions
computed directly from
linear response, in orders
of magnitude less time
than with matrix QRPA.

Beta-decay rates obtained
by integrating strength
with phase-space
weighting function in
contour around excited
states below threshold.
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Rare-Earth Region
Tom Shafer

Local fit of two parameters: strengths of spin-isospin force and
proton-neutron spin-1 pairing force, with several functionals.
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Adjusting spin-isospin force

0 5 10 15 20

Excitation energy (MeV)

0

5

10

15

20

25

G
am

ow
-T

el
le

rs
tre

ng
th

(M
eV

–1
) Cs

10(SkO′) = 128.0 MeV fm3

Cs
10(SkO′-Nd) = 102.0 MeV fm3

Adjusting proton-neutron spin-1 pairing

Extremely important for beta-decay half-lives, but not active in HFB (no 
proton-neutron mixing) ⟶ free parameter.


Adjust to approximately reproduce experimental lifetimes as close as 
possible to the region of interest.

Adjustment:	  proton-‐neutron	  pairing
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Global Skyrme Fit for Even Nuclei
Mika Mustonen

Fit to 7 GT resonance energies, 2 spin-dipole resonance energies, 7
β-decay rates in selected spherical and well-deformed nuclei from
light to heavy.



Initial Step: Two Parameters Again
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Fitting the Full Time-Odd Skyrme Functional
Charge-Changing Part, That is . . .
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More comprehensive fit
Additional adjustment
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Tried Lots of Things. . .
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Results

Four-parameter fit
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Not significantly better than restricted two-parameter fit.



Summary of Fitting Performance
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Odd and Odd-Odd Nuclei
These have J , 0

Treat resulting degeneracy of substates as ensemble (Equal Filling
Approximation). Time-dependent version gives Equal-Filling FAM.
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Problems with Equal Filling
Evan Ney
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We can often correct such cases by hand. . .
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But For High-Q/Fast Decays . . .

These are the most important for the r process.

And they are easier to predict:
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again, pretty much dead-on with more interesting resonance structure
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What’s at Stake Here?
Significance of Factor-of-Two Uncertainty

Real uncertainty is larger, though.
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FIG. 9. A comparison of the experimentally determined
electron-capture rates on 86Kr, at a temperatures of 10 GK over
the range of stellar densities relevant during deleptonization in
the collapse phase of core-collapse supernovae, as derived from
experimental data. The results are compared with rates derived from
the shell-model and QRPA calculations detailed in the text, as well
as the single-state approximation from Eq. (1).

Gamow-Teller transitions to states at less negative Q dominate
the electron-capture rate. As the density increases, the phase-
space factor drops off more slowly with decreasing Q, and
Gamow-Teller transitions to states at more negative Q start
to contribute to the electron-capture rate, as becomes clear
from the bottom panel of Fig. 8. Even at densities in excess of
1011 g/cm3, the contribution from the transition to the lowest
state is still the strongest single contribution to the rate. This is
because the threshold electron-capture Q value for the case of
86Kr is rather negative (−7.607 MeV), and the first Gamow-
Teller transition only appears at Q ≈ −10 MeV. The situation
for 86Kr described in Fig. 8 is exemplary for the neutron-
rich nuclei in the N = 50 region. Due to the relatively large,
negative Q values for electron-capture on these nuclei, the
details of the Gamow-Teller strength distributions, including
the location of the lowest-lying 1+ state, are important for
estimating accurate electron-capture rates, even at relatively
high densities.

The results of the electron-capture rate calculations for
this work are shown in Fig. 9, at a temperature of 10 GK,
and for densities of relevance for the collapse phase of
core-collapse supernovae. The black solid line represents the
electron-capture rates that are calculated from the Gamow-
Teller strengths extracted from the γ -ray analysis in Sec. III C,
as indicated by the green data points in Fig. 5. The uncertainty
band (in gray) extends down to zero, as the extracted Gamow-
Teller strength is also consistent with zero. The upper error in
the estimated electron-capture rate from the data is calculated
by using the upper errors of the extracted Gamow-Teller
strengths from the coincidence data in Fig. 5. It is important
to note that, because it was only possible to extract Gamow-
Teller strength up to Ex = 5 MeV, transitions to states at

higher excitation energies are not included in the electron-
capture rate calculations derived from the data. However, as
explained above, the contributions from these states to the
overall rate are expected to be relatively small at the lower
end of the density scale presented here and slowly increase
at higher excitation energies. Also shown in Fig. 9 are the
rates determined from the theoretical strength distributions
described above, and the single-state approximation presently
implemented in NuLib [11,30,77]. For the latter, �E was 2.5
MeV for the case of 86Kr.

The electron-capture rates derived from the shell-model
and QRPA calculations are consistent with the experimental
result, as they both fall within the experimental uncertainties.
Conversely, the rates obtained by the single-state approxima-
tion are much higher, exceeding the electron-capture rates
estimated based on the data by about two orders of magnitude.
At high stellar temperatures, Pauli unblocking effects will
increase the electron-capture rates [20], but in cases such as
86Kr, where Pauli blocking is not complete at zero temper-
ature, such increases are likely small [20]. The placement
of a single state at one fixed excitation energy of 2.5 MeV
with a Gamow-Teller strength of 4.6 is inconsistent with the
present data. If a single-state approximation were to be used
to represent the present experimental results, then a Gamow-
Teller strength of less than 0.03 or an excitation energy in
excess of 20 MeV would be required. Microscopic models
are needed to more accurately estimate electron-capture rates
for astrophysical simulations. These models can be tested at
zero temperature against available experimental data. We note
that a similar conclusion was drawn on the basis of a recent
88Sr(t, 3He + γ ) experiment [31].

B. New rate table

Because of the importance of the region of nuclei sur-
rounding the N = 50 shell closure, a new electron-capture
rate table was developed for the use in astrophysical simu-
lations that contained, for 78 nuclei in and around the high-
sensitivity region [13], rates calculated on the basis of the
QRPA framework described in Sec. III D. QRPA calculations
were chosen over shell-model calculations in this case because
calculations were needed for a large number of nuclei both
above and below the N = 50 shell closure. In addition, these
QRPA calculations can be extended in the future to include
temperature-dependent effects.

The nuclei included were 75−76Fe, 75−78Co, 75−80Ni,
75−82Cu, 75−84Zn, 75−85Ga, 76−85Ge, 75−85As, 80−85Se,
82−85Br, 84−86Kr, 88Sr, 90Zr, and 93Nb. The ground-state Q
value was obtained from experimental data where available
and from the Hartree-Fock-Bogoliubov solution according to
the approximation in Ref. [78] for nuclei lacking experimental
data. Additionally, the spin and parity of the ground states of
the relevant nuclei were obtained from experimental assign-
ments, and from the Gallagher and Moszkowski rule [79], for
nuclei lacking definite assignments. Although these calcula-
tions do not yet contain temperature-dependent effects that
might increase the electron-capture rates, these simulations
provide important insights in the maximum effects that can

045805-10

86Kr

For terrestrial or astrophysical environments.
Developed a non-zero-temperature FAM.
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Quenching in the sd and pf Shells

Resolving the quenching puzzle of ! decays: medium-mass nuclei

IMSRG calculation, Gysbers et al

Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.

In these A < 50 nuclei, β-decay quenching doesn’t much depend
on Z and N. But what about in heavier nuclei?
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Z- and N-Dependence of Quenching
Integrated GT Strength

Three sets of chiral parameters, no contact
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Density-Matrix Expansion of Exchange Term
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and kF (®r) ≡ [3π2ρ (®r)/2]1/3 is the local Fermi momentum.

Non-contact direct terms are much less important.
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Effect on β-Decay Rates

Difference from rate with one-body operator, with gA = 1.0
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Conclusions:

DME is a good approximation to exchange current.
Use of two body current more important in neutron-rich
nuclei. Quenching of rates decreases and can even become
enhancement near the drip line. Why?



Enhancement of Low-Lying Strength
Can occur in neutron-rich isotopes
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Beyond QRPA
Second RPA with D. Gambacurta and M. Grasso

Second RPA: Add 4p-4h basic excitations to RPA 2q-2h excitations.
Should better describe spreading widths and low-lying strength.
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β Decay of 78Ni in Second RPA
Summed GT strength β-decay lifetime
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Simpler Version: “Time Blocking” Approximation
Equivalent to Quasiparticle-Phonon Model

RPA response function

(again for r-process simulations) in a rea-
sonable amount of CPU time. Second
QRPA was my first choice. I have already
worked a little with second RPA, with-
out the “Q” [63]; it reproduces resonance
widths better than the ordinary RPA with-
out violating the usual sum rules. But
I could not find a good way to handle
its large and complex four-quasiparticle
space in deformed nuclei. I have thus

settled on a version of the time-blocking
approximation (TBA) [64, 65, 66, 67] that
is also known as the quasiparticle-phonon
model [68, 69, 70, 71]. To make a dia-
grammatic representation easier to under-
stand, I will now discuss how it extends
the RPA (no collective pairing) rather than
the QRPA; the generalization to pairing
and the QRPA is straightforward.
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The strength of an operator X̂ to an ex-
cited state at energy ~! is proportional to
the imaginary part of the RPA linear re-
sponse ⇧ to a perturbation by X̂. The re-
sponse function⇧ can be viewed as a bub-
ble sum, with the action of X̂ at each end,
as in the top line (a) of the figure above
(The dashed line between bubbles is the
Skyrme interaction.) From a related sum,
one can also extract a core-polarization

correction, represented by the series of di-
agrams in the second line (b), to the two-
body Skyrme interaction VSk. The squig-
gly line represents a “phonon-exchange
potential,” corresponding to the excita-
tion, propagation, and de-excitation of a
set of collective phonons. The TBA calcu-
lation of the response repeats the bubble
sum for ⇧ in the top line, but includes
within the bubbles all terms in which at
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Figure 1. Gamow-Teller strength
distributions of 208Pb calculated by
RPA and RPA+PVC model with
interaction SkM*, in comparison
with experimental data [17].
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Figure 2. The β-decay half-lives
of 132Sn, 68Ni, 34Si, and 78Ni cal-
culated by RPA and RPA+PVC
approaches with the interaction
SkM*, in comparison with experi-
mental values [18].

approaches with the interaction SkM*, respectively, in comparison with experimental values
[18]. The arrow denotes an infinite half-life. The RPA results overestimate the half-lives
systematically. In particular, the RPA model predicts an infinite half-life for for 132Sn. With the
inclusion of PVC, the half-lives get reduced systematically, and become in reasonable agreement
with experimental data. For more results and discussions on half-lives, one can refer to Ref.
[19].

In summary, the RPA+PVC model with interaction SkM* gives a good description both of
the spreading width and of β-decay half-lives in magic nuclei.

3. QRPA+QPVC model and its applications
In this section, we will first introduce briefly the formulas of QRPA+QPVC model, and then
we will present the results of GT resonance in the superfluid nucleus 120Sn.

3.1. Formulas of QRPA+QPVC model
In the case of QRPA+QPVC model, the QRPA+QPVC equation and the A matrices are the
same as Eq. (1) and Eq. (2) in the RPA+PVC model, except that the particle-hole configuration
ph is replaced by two-quasiparticle configuration ab. For nuclei not far from the stability line,
the BCS quasi-particle states represent a convenient and accurate approximation to the HFB
states. So we obtain the following expression for the spreading matrix elements.

W ↓J
1ab,a′b′ = δbb′δjaja′

1

ĵ2
a

∑

a′′,nL

⟨a||V ||a′′, nL⟩⟨a′||V ||a′′, nL⟩
E − [ωnL + Ea′′ + Eb ± (λn − λp)] + i∆

,

W ↓J
2ab,a′b′ = δaa′δjbjb′

1

ĵ2
b

∑

b′′,nL

⟨b||V ||b′′, nL⟩⟨b′||V ||b′′, nL⟩
E − [ωnL + Eb′′ + Ea ± (λn − λp)] + i∆

,

W ↓J
3ab,a′b′ = (−)ja+jb+J

{
ja jb J
jb′ ja′ L

}∑

nL

⟨a′||V ||a, nL⟩⟨b||V ||b′, nL⟩
E − [ωnL + Ea + Eb′ ± (λn − λp)] + i∆

,

W ↓J
4ab,a′b′ = (−)ja′+jb′+J

{
ja′ jb′ J
jb ja L

}∑

nL

⟨a||V ||a′, nL⟩⟨b′||V ||b, nL⟩
E − [ωnL + Ea′ + Eb ± (λn − λp)] + i∆

, (9)
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Deformed Time-Blocking QRPA
In progress: Qunqun Liu

A modified FAM is the best hope for a global calculation.

Xµν (ω) = −
δH20

µν (ω) + F20
µν + [W (ω)X (ω)]µν

Eµ + Eν + ω

Yµν (ω) = −
δH20

µν (ω) + F20
µν + [W∗(−ω)Y (ω)]µν
Eµ + Eν + ω

,

where W is the phonon propagator, and, e.g.,

[W (ω)X (ω)]µν =
∑
µ′<ν′

Wµν,µ′ν′ (ω)Xµ′ν′ (ω)

Assemble W from qp-phonon vertices and qp energies on the fly.
The qp-phonon vertices come from like-particle FAM. Use
contour-integral technique of N. Hinohara and collaborators to
obtain them from residues of δH11. Litvinova and Zhang, PRC 104, 044303 (2021)

Too hard to find all relevant poles in all isotopes. Ultimately need
FAM to generate QRPA matrix. Avogadro and Nakatsukasa, PRC 87 014331 (2013)



Finally. . .

All these developments will require refitting and UQ. There’s still a
lot to do on the road to more realistic DFT-based β-decay rates!
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