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Description of collective motions based on the 
dynamical GCM with the Gogny force 



Theoretical motivation

What is a GCM?
How should we restrict the GCM?
What can the restricted GCM do?



What is GCM ?

n Generator Coordinate Method (GCM)

n Hill-Wheeler equation

D. L. Hill and J. A. Wheeler, Phys. Rev., 89, 1102 (1953). 

A standard explanation

1. Prepare wave functions parametrized with a generator coordinate !
2. Consider the superposition of these wave functions (path)
3. Solve the Hill-Wheeler equation



What is done in GCM?

n Generator Coordinate Method (GCM)

Black Box

input 
(closed) linear span

: Span

collective 
subspace

1. Prepare the path (manifold) ! as input, which is often generated empirically.
2. Generate the collective subspace with the (closed) linear span of the path.
3. Obtain eigenfunctions, eigenenergies, and etc…

J. M. Yao et al., Phys. Rev. C 89, 054306 (2014).
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e.g., Klein bottle



What should we do in GCM?

n Essential degree of freedom 

Black Box

input
uniquely 

determined

collective 
subspace

Essential degree of freedom is the collective subspace

Control the collective subspace with constraints on the path
However, the mapping from the path to the collective subspace is extremely complex

not uniquely 
determined

e.g., Klein bottle



What is necessary for the GCM is
not an extension but a restriction



Description of collective motions

The GCM is often used in microscopic descriptions of collective motions

! < 0 , ! = 0, ! > 0

ü An empirical method often do not work well

ü The double projection method solves this problem for collective motions 
associated with symmetries       R.E. Peierls and D.J. Thouless, Nucl. Phys. 31, 211 (1962). 

n What is an appropriate restriction on the description of the general 
collective motion?

translational motion                        rotational motion                                shape vibration

empirical

double projection



How to limit path?

Black Box

input collective 
subspace projection

& 
diagonalization

output

e.g., Klein bottle

We have decided what we want to describe with the GCM
However, the collective motion is not a rigorously defined object in general

What restrictions should be imposed on the path (manifold)?

?
collective motions

! < 0 , ! = 0, ! > 0

(closed) linear span

: Span



Structures

n “Structures” in the manifold

ü Riemannian structure

ü symplectic structure

ü etc…

e.g., distance

"#



Structures

n “Structures” in the manifold

ü Riemannian structure

ü symplectic structure

ü etc…

What structure should we consider?

Symplectic structure seems good for collective motions

e.g., analytical mechanics
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Berry curvature

Quantum states have some “natural” structures

n Berry curvature 

n Fubini-Study metric

(They are unified with a quantum geometric tensor   :   J. P. Provost and G. Vallee, Commun. Math. Phys., 76, 289 (1980). )

If the dimension of ! is even, " becomes symplectic structure

Berry curvature seems to be useful !



Dynamical GCM

two-dimensional case
(for simplicity)

n Dynamical GCM (DGCM)

ü conjugation condition

GCM with the symplectic structure in analytical mechanics

ü symplectic form  

In this sense, # is the conjugate momentum of the coordinate $
(The DGCM includes the double projection method)

K. Goeke and P.-G Reinhard, Ann. Phys. 124, 249 (1980).



What is done in DGCM?

Black Box

input collective 
subspace projection

& 
diagonalization

output

e.g., Klein bottle

conjugation condition : % = −() ∧ (+

What structure does the DGCM’s collective subspace has?

?
collective motions

! < 0 , ! = 0, ! > 0

(closed) linear span

: Span



Structure of collective subspace

n Boundary condition

n Collective operator

identity operator 
non-degenerated Hermitian operator 

N. Hizawa, arXiv:2205.13058 (2022).

Information about collective degrees of freedom must be given externally 

( $ is not determined uniequly, but the rough structure is determined)



Constrained variational method + DGCM

n Constrained variational method + DGCM

ü The collective motion is vibrational
ü Interaction between the collective part and the others is negligible
ü etc… 

Then, several conditions are needed

The collective subspace has the simple separable structure! 



What is done in constrained variational method + DGCM?

Black Box

input
projection

& 
diagonalization

output

(In this case, the Fubini-Study
metric is constant)

conjugation condition : % = −() ∧ (+
(+ several conditions)

We can see what we are doing!

collective motions

! < 0 , ! = 0, ! > 0

(closed) linear span

: Span



Constrained variational method + DGCM 

nSummary so far

ü Essential degrees of freedom in the GCM is the collective subspace 

ü DGCM is a GCM with the symplectic structure in analytical mechanics

ü Constrained variational method + DGCM yields the separable collective 
subspace for the vibrational motion (+ several conditions)



Numerical application

Quadrupole vibration of 16O
What differences appear when introducing momentum?

Can we see the separable structure?
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n Collective motion

Numerical application

! < 0 , ! = 0, ! > 0
n Collective operator

n Collective coordinates

quadrupole vibration

N. Hizawa, K. Hagino, and K. Yoshida, in press [arXiv:2204.01995 [nucl-th]]

constrained variational method              usual GCM basis                     dynamical path



effective interaction Gogny D1S [1] (exact Coulomb and CoM correction)

trial wave function Hartree Fock (3D,  no pairing)

single-particle basis 3D harmonic oscillator basis (up to 10ℏ2)

nuclide 16O

conventional GCM

DGCM

8/18

n Numerical details

Numerical detail

[1] J.F. Berger, M. Girod and D. Gogny, Comput. Phys. Commun. 63, 365 (1991). 
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n Energy surface and mean square radius

ü 3 = −0. 24, −0.22,⋯ , 0.24 +!/2: = −0.6, −0.55,⋯ , 0.6 (total : 625 points)
ü Symmetric with respect to the +!-axis due to the time reversal symmetry
ü The effect of internal excitations

Dynamical path

(fm)(MeV)
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n GCM vs DGCM (energies) 

ü DGCM can generate different states more efficiently

ü GCM  :  3 = −0. 24, −0.22,⋯ , 0.24 +!/2: = 0 (25 points)
ü DGCM  :   3 = −0. 2, −0.1,⋯ , 0.2 +!/2: = −0.6, −0.3 ⋯ , 0.6 (25 points)

GCM vs DGCM (energies)

'
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n Collective wave function
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ü In the DGCM, the wave 
functions also spread in the 
momentum direction

ü The collective wave functions 
behave like a harmonic 
oscillator
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Sum rule (GCM)

n Sum rule for the GCM

projection onto collective subspace (                                 )

For any Hermitian operator      , following sum rule is valid.

H. Flocard, D. Vautherin, Nucl. Phys. A 264. 197 (1976).



Sum rule (Q20)

n Quadrupole operator

n GCM vs DGCM     (left-hand side / right-hand side)

kinetic + CoM (1-body)

CoM (2-body)

( = 1
(ground state)

( = 2
(1st exited)

( = 3
(2nd exited)

( = 4
（3rd exited）

( = 5
（4th exited）

GCM 1.0005 0.6287 0.7309 0.6370 -0.5878

DGCM 1.0047 1.0162 1.0512 0.9414 0.6352

Better results 

for the DGCM



Why is the DGCM better?

n Why is the DGCM better? 

“collective subspace”   =   “collective part”  ⊗ “non-collective part”

Under several conditions, the constrained variational method + DGCM has the following structure,

(sum rule is satisfied)

It is expected that the separable structure could be obtained for the quadrupole oscillation.



n Summary

n Future perspective

ü Separable structure of the collective subspace in the constrained variational method + DGCM 

ü Comparison of the GCM and the DGCM for the quadrupole vibration

ü The DGCM can efficiently generate different basis functions

ü The remarkable difference is observed in the sum rule for >?"#

ü Application to heavy nuclei such as 238U

ü Application to other deformation modes

ü Classification of GCMs in terms of structures of manifolds.
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Thank you for listening
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