Directed flow of Λ from heavy-ion collisions and hyperon puzzle of neutron stars

Akira Ohnishi¹, A. Jinno², K. Murase¹, Y. Nara³ 1. YITP, Kyoto U., 2. Dept. Phys., Kyoto U., 3. Akita International U.

Mean-field and Cluster Dynamics in Nuclear Systems 2022 (MCD2022), May 9-June 17, 2022, Hybrid (YITP, Kyoto, Japan/Online)

- Introduction Hyperon puzzle
- Directed flow of protons
- **Directed flow of A using U**_A from chiral EFT
- Summary

Y.Nara, A. Jinno, K. Murase, AO, in prep.

Hyperon Puzzle of Neutron Stars

- Observation of massive neutron stars rules out hyperonic EOS ?
 - Attractive $U_{\Lambda}(\rho)$ causes hyperon mixing in NS at (2-4) ρ_0 , softens the EOS, and reduces $M_{max} = (1.3-1.6) M_{\odot}$
- Proposed solutions
 - Three-body ANN repulsion \rightarrow repulsive U_A(ρ) at high density
 - Transition to quark matter before Λ appears
 - General relativity → Modified gravity

Repulsive $U_{\Lambda}(\rho)$ at high density in chiral EFT

- Chiral effective field theory (chiral EFT) may cause repulsive Λ potential at high densities *Gerstung, Kaiser, Weise (2001.10563), Kohno (1802.05388)*
- **Yet unknown parameters are tuned to support 2** M_{\odot} **neutron stars.**
 - \rightarrow Repulsion at high densities needs to be verified !
 - \rightarrow E.g. Collective flows in heavy-ion collisions

Semi-Classical Nuclear Transport Theories

- Wigner(-Weyl) transform of TDHF = Vlasov equation
 - Wigner transform of density matrix=Wigner fn. (phase space dist.)
 - Wigner transform of commutator ~ i $\hbar \times$ Poisson bracket

$$i\hbar \frac{d\rho}{dt} = [h, \rho] \to \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} f - \boldsymbol{\nabla} U \cdot \boldsymbol{\nabla}_p f = 0$$
$$[f = \rho_W, [A, B]_W = i\hbar \{A_W, B_W\}_{PB} + \mathcal{O}(\hbar^2)]$$

• Test particle solution of the Vlasov equation \rightarrow Classical EOM

$$f(\boldsymbol{r}, \boldsymbol{p}) = \frac{(2\pi)^3}{N} \sum_{i=1, NA} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{p} - \boldsymbol{p}_i)$$
$$\rightarrow \frac{d\boldsymbol{r}_i}{dt} = \frac{\partial h}{\partial \boldsymbol{p}} \Big|_{\boldsymbol{p} = \boldsymbol{p}_i} = \frac{\boldsymbol{p}}{m} + \frac{\partial U}{\partial \boldsymbol{p}} \Big|_{\boldsymbol{p} = \boldsymbol{p}_i}, \ \frac{d\boldsymbol{p}_i}{dt} = -\frac{\partial U}{\partial \boldsymbol{r}} \Big|_{\boldsymbol{r} = \boldsymbol{r}_i}$$

- Relativistic Quantum Molecular Dynamics
 - Transport model applicable to high energies Sorge, Stoecker, Greiner ('89); Maruyama et al. ('96)
 - Stronger potential effects are necessary → Vector potential Nara et al. ('20), Nara, AO ('21)
 - Stochastic collisions are also included

Transport models and then (High-Energy) Heavy-Ion Collisions are RELEVANT to Mean Field Dynamics.

Let us Examine the Effects of U_^ at High Densities via Collective Flow(s) in Heavy-Ion Collisions !

Directed flow (v_1)

Directed flow (v₁ or <p_x>) has been utilized to constrain EOS

E.g. Sahu, Cassing, Mosel, AO (nucl-th/9907002), Snellings+(nucl-ex/9908001)

- Proton v₁ slope problem STAR (1401.3043)
 - Non-monotonic beam E. dep. of v₁ slope
 - Sign change of v_1 slope at $\sqrt{s_{NN}} \sim 10$ GeV
 - None of fluid and hybrid models explain the colliding energy dependence using a single EOS *Nara+(JAM, 1601.07692, 1611.08023, 1708.05617),*

Nara+(JAM, 1601.07692, 1611.08023, 1708.05617), Ivanov+(3FD, 1412.1669, 1601.03902), Konchakovski+ (PHSD, 1404.2765)

$$v_1 = \langle \cos \phi \rangle$$

Past tries

(There was a mistake...)

A. Ohnishi @ MCD 2022, June 8, 2022, Hybrid (YITP, Kyoto, Japan / Online) 8

PRC90('14)014903

An Explanation is found

Beam energy dependence of dv₁/dy can be explained with JAM2 in the RQMDv mode. Nara+('16,'17,'18); Y. Nara, AO, arXIv:2109.07594

Origin of Positive & Negative Flow Components

- Compression stage \rightarrow repulsive pot. at high ρ \rightarrow positive flow (dv₁/dy > 0)
- Expansion stage \rightarrow tilted matter formation \rightarrow negative flow (dv₁/dy < 0)

(E.g. 3FD, Tonnev+('03)

Balance of two contributions may cause non-monotonic colliding Time = 1,66 fm/c energy dep. of v₁ slope

18 GeV, 3-fluid *Toneev et al. ('03)* Nara, AO (PRC'('22), 2109.07594)

A. Ohnishi @ MCD 2022, June 8, 2022, Hybrid (YITP, Kyoto, Japan / Online) 9

36.2

27.1

18.1

9.

Positive and Negative Contributions

Nara, AO (PRC'('22), 2109.07594)

Can we access EOS by using flows ?

- **EOS from Flow is a Notorious problem!**
 - Momentum-dependent potential can simulate stiff EOS, and then we cannot extract stiffness. (1980s ~)
 - Directed flow value depends on the details of the theoretical treatment.
- A New (?) Hope (Episode IV)
 - After fixing momentum-dependent pot. from pA scattering data and explaining v₁ data, EOS dependence of v₂ (elliptic flow) remains ! (Global analysis of multiple observables will help.)
- **How about** Λ ?

Nara, AO (PRC'('22), 2109.07594)

Directed flow of A using U_{Λ} from chiral EFT

Why Directed flow (v_1) of p and Λ

- **Directed flow of** Λ
 - In the compression+tilted expansion mechanism, directed flow of Λ is expected to be smaller than p (Λs are produced during the compression stage).
 - Data show $v_1(\Lambda) \sim v_1(p)$ STAR, PRL120 ('18),062301 (1708.07132)

 \rightarrow Stronger repulsion for Λ at high densities ?

Let us examine Λ directed flow using $U_{\Lambda}(\rho)$ from chiral EFT !

U_{\wedge} from Chiral EFT

Chiral EFT with 3BF and hyperons

Gerstung+(2001.10563)(GKW, decouplet saturation model), Kohno (1802.05388)

ρ-dep. potential using Fermi mom. expansion Tews+(1611.07133)

$$U_{\rm sk}(\rho) = a(\rho/\rho_0) + b(\rho/\rho_0)^{4/3} + c(\rho/\rho_0)^{5/3}$$

Momentum dep. fit to Kohno('18)

A. Ohnishi @ MCD 2022, June 8, 2022, Hybrid (YITP, Kyoto, Japan / Online) 14

400

preliminary

√s_{NN}=4.5 GeV

Kohno+Kohno: p- and p-dep. from Kohno

Momentum dependence of U_{Λ}

Can we rely on U_{\Lambda} up to 2 GeV/c ?

The cutoff is 550 MeV/c ~ 2.75 fm⁻¹ in Kohno ('18)

Quark model YN interaction gives weaker p-dep.

Chiral EFT results at k < 1 fm⁻¹ are fitted and used (Kohno low-k)

$\int s_{NN} = 4.5 \text{ GeV}$ (with p-dep. of Kohno low-k)

Summary

- The directed flow (v₁) of Λ from HIC is studied by using the Λ potential from chiral EFT with 3-body potential, which can support 2 solar mass neutron stars.
 - U_A from chiral EFT is not inconsistent with the directed flow data from heavy-ion collisions.
 [Similar results for <px> at √sNN=3.0 GeV are obtained by D.C. Zhang+ (2107.00277)]
 - Momentum dependence may be weaker than the explicit results. (We should not rely on results at k > Λ/2)
 - v₁(Λ) is not very sensitive to the density dep. of U_Λ.
 (Λ produced from N in the compression stage succeeds the v₁ of N)
 - The forward and backward v_1 values seem to be sensitive to the Λ potential at high densities and/or high momentum.
- **How can we pin down U_{\Lambda} at high densities ?**
 - A-nucleus scattering (Emulsion or Femtoscopy) \rightarrow mom. dep.
 - Elliptic flow (v₂) and other observables
 - Hypernuclear spectroscopy

Nara, Jinno, Murase, AO, in prep.

Thank you for your attention !

Directed flow of Λ at $\int s_{NN} = (4.5 - 19.6) GeV$

Time dependence of v1

Courtesy of Y. Nara

Lambda position: 11.5GeV 20events

Red: nucleons Blue: Lambda + Sigma0

Courtesy of Y. Nara

V2 from Au + Au @ 3.0GeV

Collision order=collision time = (t1+t2)/2, L=0.5 fm²

$$CO=CT=min(t1,t2), L=1.0 \text{ fm}^2$$

Courtesy of Y. Nara

