Exotic nuclei at low and high spins in covariant density functional theory

Anatoli Afanasjev Mississippi State University (MSU), USA

1. Motivation and framework
2. Hyperheavy ($\mathrm{Z}>126$) nuclei: from ellipsoidal to toroidal shapes
3. Rotation in exotic very proton and neutron-rich nuclei: new mechanisms leading to extension of nuclear landscape.
4. Conclusions

In collaboration with S.E. Agbemava (MSU, now FRIB), A. Taninah, S. Teeti, D. Ray (all MSU) and N. Itagaki (Osaka Metropolitan U.)

Collective degrees of freedom (deformation, rotation, fission)

Covariant density functional theory (CDFT)

The nucleons interact via the exchange of effective mesons \rightarrow
\rightarrow effective Lagrangian

Long-range	Short-range	Isovector
attractive	repulsive vector	field
scalar field	field	

$E_{\mathrm{RMF}}\left[\hat{\rho}, \phi_{m}\right]=\operatorname{Tr}[(\alpha p+\beta m) \hat{\rho}] \pm \int\left[\frac{1}{2}\left(\nabla \phi_{m}\right)^{2}+U\left(\phi_{m}\right)\right] \mathrm{d}^{3} r+\operatorname{Tr}\left[\left(\Gamma_{m} \phi_{m}\right) \hat{\rho}\right]$
density matrix $\hat{\rho}$

$$
\phi_{m} \equiv\left\{\sigma, \omega^{\mu}, \vec{\rho}^{\mu}, A^{\mu}\right\} \text { - meson fields }
$$

$$
\hat{h}=\frac{\delta E}{\delta \hat{\rho}} \quad \begin{aligned}
& \text { Mean } \\
& \text { field }
\end{aligned} \quad \hat{h}\left|\varphi_{i}\right\rangle=\varepsilon_{i}\left|\varphi_{i}\right\rangle \text { Eigenfunctions }
$$

Dirac equation for fermions
$\{\vec{\alpha} \vec{p}+V+\beta(m+S)\} \Psi_{i}=\epsilon_{i} \Psi_{i}$
$\Psi_{i}=\binom{f_{i}(r)}{i g_{i}(r)}=\left(\begin{array}{ll}\text { large } & \text { components } \\ \text { small } & \text { components }\end{array}\right)$

Klein-Gordon equations for mesons

$$
\left\{-\Delta+m_{\sigma}^{2}\right\} \sigma=-g_{\sigma} \rho_{s}-g_{2} \sigma^{2}-g_{3} \sigma^{3}
$$

$$
\left\{-\Delta+m_{\omega}^{2}\right\} \omega_{0}=g_{\omega} \rho_{v}
$$

$$
\begin{aligned}
& \text { V ~ } 350 \mathrm{MeV} / \text { nucleon } \\
& \mathrm{S} \sim-400 \mathrm{MeV} / \text { nucleon } \\
& \mathrm{U} \sim-50 \mathrm{MeV} / \text { nucleon }
\end{aligned}
$$

Densities

Single-particle energies

-30	2
	$\mathrm{Is}_{1 / 2} \overline{{ }^{16} \mathrm{O} \text {-neutrons }}$

Relativistic Hartree-Bogoliubov (RHB) framework

$$
\left(\begin{array}{cc}
h_{D}-\lambda & \Delta \\
-\Delta^{*} & -h_{D}^{*}+\lambda
\end{array}\right)\binom{U}{V}_{k}=E_{k}\binom{U}{V}_{k}
$$

The separable version of the finite range Brink-Booker part of the Gogny D1S force is used in the particle-particle channel

$$
\begin{aligned}
& V\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}\right)= \\
& \quad=-f G \delta\left(\boldsymbol{R}-\boldsymbol{R}^{\prime}\right) P(r) P\left(r^{\prime}\right) \frac{1}{2}\left(1-P^{\sigma}\right)
\end{aligned}
$$

The NL3*, PC-PK1, DD-ME2, DD-PC1 and DD-ME δ covariant energy density functionals are used in order to assess the dependence of results on the functional and underlying single-particle structure and assess systematic theoretical uncertainties

The global results for even-even nuclei are available in tabulated form at:
S. Agbemava, AA, D, Ray, P.Ring, PRC 89, 054320 (2014)
includes complete DD-PC1 mass table as supplement
Mass Explorer at FRIB (the results for DD-PC1, NL3*, DD-ME2, and DD-ME)
http://massexplorer.frib.msu.edu/content/DFTMassTables.html
A.V.Afanasjev, P.Ring, J. Konig, PRC 60 (1999) R051303, Nucl. Phys. A 676(2000) 196

Cranked Relativistic Hartree-Bogoliubov Theory

The CRHB equations for the fermions in the rotating frame in the onedimensional cranking approximation

$$
\left(\begin{array}{cc}
h_{D}-\lambda-\Omega_{x} \hat{J}_{x} & \hat{\Delta} \\
-\hat{\Delta}^{*} & -h_{D}^{*}+\lambda+\Omega_{x} \hat{J}_{x}
\end{array}\right)\binom{U_{k}}{V_{k}}=E_{k}\binom{U_{k}}{V_{k}}
$$

Klein-Gordon equations
Coriolis term

$$
\begin{aligned}
\left\{-\Delta-\left(\Omega_{x} \hat{L}_{x}\right)^{2}+m_{\sigma}^{2}\right\} \sigma(\boldsymbol{r})=-g_{\sigma} \rho_{s}(\boldsymbol{r}) & -g_{2} \sigma^{2}(\boldsymbol{r})-g_{3} \sigma^{3}(\boldsymbol{r}) \\
\left\{-\Delta-\left(\Omega_{x} \hat{L}_{x}\right)^{2}+m_{\omega}^{2}\right\} \omega_{0}(\boldsymbol{r}) & =g_{\omega} i_{v}^{i s}(\boldsymbol{r}) \\
\left\{-\Delta-\left(\Omega_{x}\left(\hat{L}_{x}+\hat{S}_{x}\right)\right)^{2}+m_{\omega}^{2}\right\} \boldsymbol{\omega}(\boldsymbol{r}) & =g_{\omega} \boldsymbol{j}^{i s}(\boldsymbol{r})
\end{aligned}
$$

Space-like components of vector mesons

Important in rotating nuclei: give ~ 20-30\% contr. to moments of inertia

Hyperheavy ($Z>126$) nuclei: from ellipsoidal to toroidal shapes

Agbemava, AA, Taninah, Gyawali, PLB 782, 533 (2018)
PRC 99, 034316 (2019)
PRC 103, 034323 (2021)
Acta Phys. Polonica B, 13, 347 (2020)

Deformation energy curve of the 466156 nucleus in axial RHB calculations

The density profiles reflect their relative sizes with respect of the spherical shape in the minimum D.

Extension of nuclear landscape to hyperheavy ($Z>126$) nuclei

Extension of proton drip line for ellipsoidal shapes

Agbemava, AA, Taninah, Gyawali, PRC 99, 034316 (2019) PLB 782, 533 (2018)
PRC 103, 034323 (2021)

Toroidal nuclei: the origin of the shift of two-proton drip line to more proton-rich nuclei

Global energy minimum

Fission barrier heights around "excited" spherical minimum

For the first time, we demonstrate the existence of three regions of spherical hyperheavy nuclei centered around (Z~138, N~230), (Z~156, N~310) and (Z~186, N~406)
which are expected to be relatively stable against spontaneous fission.

Neither octupole nor triaxial distortions significantly affect their stability

The toroidal shapes: distribution in nuclear chart and their stability with respect of breathing deformations

Toroidal nuclei are stable with respect of breathing deformations

The potential instabilities of toroidal shapes with

 respect of breathing deformations [shrinking instabilities]From B.D.Texier et al, Inertial collapse of liquid rings, J. Fluid. Mech 717, R3 (2013)

Fluid mechanics:
Plateau-Rayleigh instabilities

Shrinking instabilities

Figure 3. Top view of a collapsing liquid oxygen ring, of initial inner radius $R_{\rho}=4 \mathrm{~mm}$ and initial width $a_{o}=2 \mathrm{~mm}$. Time inter available as a supplemental material a

Because of being charged systems toroidal nuclei are stable with respect of breathing deformations

The potential instabilities of toroidal shapes with respect of sausage deformations.

From J.D.McGraw et al, Plateau-Rayleigh instability in a torus: formation and breakup of a polymer ring, Soft. Matter 6, 1258, (2010)

Fluid mechanics: Plateau-Rayleigh instabilities

Experiment: AFM topography images
In nuclear physics, this type of instability is called the instability with respect of sausage deformations (leads to multifragmentation)

The potential stability of toroidal shapes

 with $\beta_{2} \sim-2.5$ and $\beta_{4}>0$ in high- Z systems

Fission barrier at $\mathrm{E}=4.2 \mathrm{MeV}$

Fission barrier at $\mathrm{E}=8.5 \mathrm{MeV}$ in the 348138 nucleus

Shell structure of toroidal shapes in the 348138 nucleus

Orange arrow - the position of the minimum in potential energy curve Single-particle states: solid black lines - positive parity dashed red lines - negative parity

Large shell gap at $\mathrm{N}=210$ and low density of the single-particle states in the vicinity of the $Z=134-140$ explain the stability of toroidal shapes with respect to even-multipole sausage deformations

Possible observation of toroidal shapes at high spin in ${ }^{28} \mathrm{Si}$

X.G.Cao et al, PRC 99, 014606 (2019)

Examination of evidence for resonances at high excitation energy in the $7 \boldsymbol{\alpha}$ disassembly of ${ }^{28} \mathbf{S i}$

Going beyond known boundaries:

 rotation in very proton- and neutronrich nuclei

Particle-hole excitations:
The tool for creation of new type of rotational bands consisting of resonance and particle-bound parts

Resonance + particle-bound parts of bands are included. !!! Proper description of resonance parts requires the treatment of pairing in continuum

Only particle-bound parts of the bands are included. Fast rotation and multiply particle-hole excitations are expected to kill static pairing and thus the coupling with continuum.
${ }^{46} \mathrm{Mg}$ - last neutron bound nucleus
\quad at spin $\mathrm{I}=0$
$\quad=>$ defines spin zero neutron drip line

AA, N. Itagaki, D. Ray, PLB 794 (2019) 7

New phenomenon:

the birth of particle-bound rotational bands in neutron-rich nuclei

Modification of proton and neutron density distributions by means of particle-hole excitations

The birth of particle-bound rotational bands: a tool for an extension of nuclear landscape towards higher neutron number

The origin of new phenomenon: the birth of particle-bound rotational bands in proton-rich nuclei
${ }^{14} \mathrm{Ne}$, occupation block $\mathrm{N}=[1,1,1,1] * \mathrm{P}=[2,3,3,2]$

Fast rotation and multiply particle-hole excitations are expected to kill static pairing and thus the coupling with continuum.
S.Teeti, AA, A.Taninah, submitted to PRC

Intruder orbitals $I^{*}=$ extremely mixed wavefunctions. For example, at frequency 3.2 MeV the squared weights of the $\mathrm{N}=2,4,6$, and 8 shells in the structure of the wave function of the intruder orbital I2 of the configuration [0, M2] are $0.09,0.12,0.19$ and 0.21 , respectively.

New phenomenon: the birth of particle-bound rotational bands in proton-rich nuclei

Angular momentum I

Thin solid lines - proton unbound parts of rotational bands

Thick solid line - proton bound parts of rotational bands

Dashed lines connect these parts

Configuration labels:

- $[\mathrm{n}, \mathrm{p}]=\mathrm{n}(\mathrm{p})$ indicates the number of occupied neutron(proton) intruder orbitals. Depends on mass region: in ${ }^{14} \mathrm{Ne}$, intruders are from the $\mathrm{N}=2$ shell.
- the label "M\#" is used in shorthand label $[\mathrm{n}, \mathrm{p}]$ to indicate strongly mixed orbitals (M) and their number \#.

New phenomenon: rotation-induced giant proton halo

Mechanism of formation: occupation of strongly mixed M-orbitals
Completely different from the one in non-rotating nuclei in which proton halo is formed due to the occupation of loosely bound s and p orbitals

Ne isotopic chain:

from two-proton drip line to more proton-rich nuclei

${ }^{18} \mathrm{Ne}=$ last proton bound nucleus at spin $\mathrm{I}=0$

Giant proton halos in the high-spin configurations of the nuclei bound at spin $\mathrm{I}=0$

Some samples of exotic nuclear shapes in proton-bound parts of rotational bands

Proton

S.Teeti, AA, A.Taninah, in preparation

The absence of giant proton halos in high-\$Z\$ ($Z>20$) nuclei

S.Teeti, AA, A.Taninah, submitted to PRC

Configurations are labeled by shorthand labels [n; p1p2] where $n(p 1 p 2)$ indicate the number of the occupied $\mathrm{N}=4$ neutron (n) orbitals and $N=4$ (p1) and $N=5$ (p2) proton orbitals. The label p2 is omitted when $\mathrm{p} 2=0$.

some excited configurations can be proton-bound at very low spin in contrast to the proton unbound ground state rotational bands.

The extension of particle-bound nuclear landscape beyond spin-zero proton drip line.

Dashed filling pattern - nuclei in which giant proton halos appear

For many nuclei located beyond spin zero proton-drip line the transition to proton-bound configurations is seen at relatively modest spin values.

With increasing proton excess the transition appear at higher spin values.

Giant proton halos are suppressed in high Z nuclei.

Color symbols - the lowest spins at which proton bound rotational bands appear
Open squares - proton bound nuclei at spin $\mathrm{I}=0$
S.Teeti, AA, A.Taninah, submitted to PRC

conculuinn

1. The increase of proton number Z beyond $Z \sim 130$ triggers the demise of ellipsoidal/spheroidal nuclear shapes and transition to toroidal shapes. The only exception are three regions of "excited" spherical shapes which are potentially relatively stable; they become the ground states if respective toroidal shapes are unstable.
2. The birth of particle-bound rotational bands is predicted in the nuclei near drip lines. It manifest the transition to particle-bound part of rotational band from particle-unbound part [resonance part in neutron-rich nuclei or proton-emitting part in proton-rich nuclei] triggered by strong Coriolis force acting upon occupied orbitals. This allows to extend nuclear landscape at non-zero spin beyond the boundaries defined at spin zero.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037.

