Halo effects in the ¹¹Li(p,t)⁹Li reaction

P. Descouvemont

Université Libre de Bruxelles, Brussels, Belgium

- 1. Introduction
- 2. Three-body model of ¹¹Li and ³H
- 3. ¹¹Li+p and ⁹Li+t scattering states
- 4. ¹¹Li(p,t)⁹Li cross section
- 5. Conclusion

P. Descouvemont, Phys. Rev. C 104, 024613 (2021).

1. Introduction

• ¹¹Li is a well known halo nucleus: low separation energy of the 2 external neutrons (S_{2n} =0.34 MeV, τ =9 ms)

I. Tanihata et al. Phys. Rev. Lett. 55 (1985) 2676

- Many experimental data on ¹¹Li (reactions)
 - Elastic scattering
 - o Breakup
 - **2n transfer** ¹¹Li(p,t)⁹Li: I. Tanihata et al, Phys. Rev. Lett. **100**, 192502 (2008).
- Many calculations on ¹¹Li
 - Spectroscopy
 - \circ Reactions: breakup effects are important (low binding energy) \rightarrow CDCC well adapted

1. Introduction

Four-body model

- a) Description of ¹¹Li, ³H: three-body model in the hyperspherical formalism
- b) ¹¹Li+p and ⁹Li+t scattering states: CDCC (ground-state and breakup) \rightarrow equivalent potentials
- c) Transfer reaction ¹¹Li(p,t)⁹Li: DWBA

$$\frac{d\sigma}{d\Omega} \sim \left| < \Phi(^{11}\text{Li})\chi_i(E,R) |\Delta V| \Phi(^{3}\text{H})\chi_f(E-Q,R') > \right|^2$$

with $\chi_i(E, R) = {}^{11}Li + p$ scattering wave function

 $\chi_f(E-Q, R')$ =⁹Li+t scattering wave function

 \rightarrow sensitive to the ¹¹Li wave function

 \rightarrow 2 neutron transfer : more difficult than 1-neutron transfer

2. Three-body model of ^{11}Li and ^{3}H

2. Three-body model of ¹¹Li and ³H

Hyperspherical formalism: ¹¹Li=⁹Li+n+n

- Approximations on ⁹Li: structure neglected, spin=0
 H = T₁ + T₂ + T₃ + V₁₂ + V₁₃ + V₂₃
 Hyperradius ρ = √x² + y² with x = √μ_xr_x, y = √μr_y
 Hyperangle: tan α = ^y/_x
 → 1 length: ρ
 - \rightarrow 5 angles: $\Omega_5 = (\alpha, \Omega_x, \Omega_y)$

```
In hyperspherical coordinates: H = T_{\rho} + V(\rho, \alpha, \Omega_x, \Omega_y)

Eigenstates of T_{\rho}: hypersphercial functions \mathcal{Y}_{Kl_x l_y}^L(\alpha, \Omega_x, \Omega_y) = \mathcal{Y}_{K\gamma}^L(\Omega_5)

known functions (analytical)

extension of spherical harmonics Y_l^m(\Omega) in 2-body problems

K=hypermoment
```

2. Three-body model of ¹¹Li and ³H

Hyperspherical formalism

- Schrödinger equation : $H\Psi^{LM} = E\Psi^{LM}$
- The wave function is expanded in hyperspherical harmonics (with $\gamma = (\ell_x, \ell_y)$, $K = \ell_x + \ell_y + 2n, n \ge 0$) $\Psi^{LM}(\rho, \Omega_5) = \sum_{K=0}^{\infty} \sum_{\gamma} \mathcal{Y}_{K\gamma}^L(\Omega_5) \chi_{K\gamma}^L(\rho)$

Known functions

The radial functions are obtained from a set of coupled differential equations

$$-\frac{\hbar^2}{2m_N} \left(\frac{d^2}{d\rho^2} - \frac{K(K+4)}{\rho^2}\right) \chi^L_{K\gamma}(\rho) + \sum_{K',\gamma'} V_{K\gamma,K'\gamma'}(\rho) \chi^L_{K\gamma}(\rho) = E \chi^L_{K\gamma}(\rho)$$

To be determined

- Potentials $V_{K\gamma,K'\gamma'}(\rho)$ are determined from $V_{12} + V_{13} + V_{23}$
- Two-body potentials V_{ij} contains spurious Pauli forbidden states \rightarrow must be removed
- Equivalent to a standard coupled-channel problem (up to ~100-200 channels)
- In practice: summation over K is limited to K_{max}

 $\chi^L_{K\gamma}(\rho)$ are expanded over a basis (Lagrange basis here)

• For ³H=p+n+n: more complicated (3 spins 1/2)

2. Three-body model of ¹¹Li and ³H

- N-n and n-p interactions: Minnesota potential (reproduces the deuteron binding energy)
- ⁹Li+n: H. Esbensen, G. F. Bertsch, and K. Hencken, Phys. Rev. C 56, 3054 (1997) renormalized by 1.0051 Pauli forbidden states 0s_{1/2}, 0p_{3/2} removed by a supersymmetric transformation
- → S_{2n} (¹¹Li)=0.378 (fitted), $\sqrt{\langle r^2 \rangle}$ = 3.12 fm, exp=3.16 ± 0.11 fm

→ B(³H)=8.38 MeV, exp=8.48 MeV

Total hamiltonian: $H = H_0(\mathbf{x}, \mathbf{y}) + T_R + \sum_{ij} U_{i-t}(\mathbf{R}, \mathbf{x}, \mathbf{y})$

With

 H_0 =internal hamiltonian of ¹¹Li (or ³H) T_R =relative kinetic energy

 $U_{i-t}(s)$ =optical potential between fragments i and the target (⁹Li+p: KD03, n+p: Minnesota)

Then: standard CDCC procedure

Step 1: solve $H_0 \Phi_{0k}^{jm} = E_{0k}^j \Phi_{0k}^{jm}$ for ¹¹Li (hyperspherical coordinates)With Φ_{0k}^{jm} expanded on a basis (Lagrange functions: matrix elements are simple) \rightarrow negative energies = physical states
positive energies = pseudostates=(discrete) approximations of the continuum

Step 2: Define channel functions: $\varphi_c(\mathbf{x}, \mathbf{y}, \Omega_R) = \left[\left[\Phi_{0k}^j(\mathbf{x}, \mathbf{y}) \otimes \chi_p \right]^I \otimes Y_L(\Omega_R) \right]^{JM}$

with index c = (j, k, I, L)

- I =channel spin
- L =angular momentum between p and ¹¹Li

and expand the total wave function as $\Psi^{JM\pi} = \sum_{c} u_{c}^{J\pi}(R) \varphi_{c}(x, y, \Omega_{R})$ with $u_{c}^{J\pi}(R)$ to be determined (truncation parameters: jmax, Emax)

Step 3

Compute matrix elements of the potential $\sum_{ij} U_{ij}(\mathbf{R}, \mathbf{x}, \mathbf{y}, \mathbf{r})$

$$V_{cc'}^{J}(R) = \langle \varphi_{c} \mid \sum_{i} U_{i-t}(\boldsymbol{R}, \boldsymbol{x}, \boldsymbol{y}) \mid \varphi_{c'} \rangle$$

4	^	`
Τ	ι	J

4. Step 4: Solve the coupled-channel system

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2}\right) + E_c - E\right]u_c^{J\pi}(R) + \sum_{c'}V_{cc'}^{J\pi}(R)u_{c'}^{J\pi}(R) = 0$$

- Standard coupled-channel system (general form common to most scattering theories)
- At large distances (only Coulomb) : $u_c^{J\pi}(R) \rightarrow I_c(R)\delta_{c\omega} O_c(R)U_{c\omega}^{J\pi}$ (ω =entrance channel) $U_{c\omega}^{J\pi}$ = scattering matrix: provides the cross sections (elastic, inelastic, breakup, etc.)
- Solved with the R-matrix method (space divided in an internal and an external regions)
- The system must be solved for each $J\pi$
- Problems:
 - Many channels *c*
 - Many $J\pi$ values (depends on energy)
 - Long range of the potentials $V_{cc'}^{J\pi}(R)$ (due to Coulomb)
 - → Long calculations + many (convergence) tests

5. Step 5

Determing the cross sections from the scattering matrices (elastic scattering, breakup)

¹¹Li+p

- Calculation at E_{lab}(¹¹Li)=66 MeV
- Optical potential ⁹Li+p: Koning-Delaroche 2003
- j_{max}=3, E_{max}=10 MeV
- data from J. Tanaka et al., PLB **774**, 268 (2017).

⁹Li+t

- no data
- systematics from D. Y. Pang et al., Phys. Rev. C 79, 024615 (2009).

Cross section computed from the scattering matrices

Many terms, slow convergence of the integrals (PS)

→ simplification with equivalent potentials: replace the full CDCC problem by an equivalent single-channel problem

Equivalent potentials: I. Thompson, M. Nagarajan, J. Lilley, and M. Smithson, Nucl. Phys. A 505, 84 (1989)

The goal is to replace the multichannel system

$$[T_L + E_c - E]u_c^{J\pi}(R) + \sum_{c'} V_{cc'}^{J\pi}(R)u_{c'}^{J\pi}(R) = 0$$

By a simpler (single-channel) equation

$$\left[T_L + V_{eq}(R) - E\right] \tilde{u}_0^{J\pi}(R) = 0$$

- The equivalent potentials can be determined from the original potentials $V_{cc'}^{J\pi}(R)$ and wave functions $u_c^{J\pi}(R)$
- Not strictly equivalent \rightarrow tests with the scattering cross section

With this approximation

$$U_{if}^{J\pi} = -\frac{i}{\hbar} \sum_{\alpha\beta} \iint u_{\alpha i}^{J\pi}(R) K_{\alpha i,\beta f}^{J\pi}(R,R') u_{\beta f}^{J\pi}(R') dR dR'$$

becomes

$$U_{if}^{J\pi} \approx -\frac{i}{\hbar} \iint \tilde{u}_{0i}^{J\pi}(R) K_{0i,0f}^{J\pi}(R,R') \tilde{u}_{0f}^{J\pi}(R') dR dR'$$

(no more summation over the PS, only the ^{11}Li and ^{3}H ground states are involved) \rightarrow Tests with smaller j_{max}, E_{max}

E_{lab}=33 MeV (E_{cm}=2.75 MeV) Data: I. Tanihata et al, Phys. Rev. Lett. **100**, 192502 (2008).

Analysis of halo effects

Analysis of the scattering matrix for J=3/2 and 5/2

$$U_{if}^{J\pi} = -\frac{i}{\hbar} \iint \tilde{u}_{0i}^{J\pi}(R) K_{0i,0f}^{J\pi}(R,R') \tilde{u}_{0f}^{J\pi}(R') dR dR'$$

Depends on the ¹¹Li wave function \rightarrow depends on ρ \rightarrow Cut-off value ρ_{max}

- → Sensitive to large ρ values
- → Sensitive to the long-range part of the wave function

Convergence of the cross section with $ho_{
m max}$

5. Conclusion

5. Conclusion

- Description of ¹¹Li: ⁹Li+n+n in hyperspherical coordinates, ⁹Li+n Pauli forbidden states removed by a supersymmetry transformation
- ¹¹Li+p elastic scattering with CDCC (Elab=66 MeV, Ecm=5.5 MeV): sensitive to the ¹¹Li breakup at large angles
- ¹¹Li(p,t)⁹Li
 - Two-neutron transfer reaction
 - 3-body wave functions for ¹¹Li and ³H
 - Breakup effects are simulated through ¹¹Li+p and ⁹Li+t equivalent potentials

Open questions

- Influence of core excitations in ¹¹Li?
- ⁹Li+p low energy
- \rightarrow Optical potential valid?
- \rightarrow Possible resonances?
- \rightarrow Role of Pauli forbidden states?
- Need for experimental data on ⁹Li+t elastic scattering

¹¹Li(p,t)⁹Li at higher energies ¹¹Li(p,t)⁹Li and ¹¹Li+p elastic scattering at the same energy

Thank you!