Unified description of nuclear structure and reactions employing the dispersive optical model (DOM)

YKIS2022b workshop 5/23/2022

- •Motivation: essential for studying unstable nuclei and link to neutron stars
- Optical potentials 2022
- Removal probabilities puzzle(s)
- •Green's functions/propagator method
 - vehicle for ab initio calculations --> matter & finite nuclei
 - as a framework to link data at positive and negative energy (and to generate predictions for unstable nuclei as well as neutron skins)
- -> dispersive optical model (DOM <- started by Claude Mahaux)
- DOM with non-local potentials ¹²C, ¹⁶⁻¹⁸O, ^{40,48}Ca, ^{58,64}Ni, ^{112,124}Sn, ²⁰⁸Pb
- Revisit (e,e'p) data from NIKHEF ⁴⁰Ca and ⁴⁸Ca --> N-Z dependence
- Neutron skin in ⁴⁸Ca and ²⁰⁸Pb -> PREX II
- Conclusion and outlook
- Ground-state energy and EOS —> saturation properties

Optical potentials 2022

Reviews

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics J. Phys. G: Nucl. Part. Phys. 44 (2017) 033001 (57pp) https://doi.org/10.1088/1361-6471/44/3/033001

Topical Review

Novel applications of the dispersive optical model

W H Dickhoff^{1,4}, R J Charity² and M H Mahzoon^{1,3}

¹ Department of Physics, Washington University, St. Louis, MO 63130, USA ² Department of Chemistry, Washington University, St. Louis, MO 63130, USA ³ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Progress in Particle and Nuclear Physics 105 (2019) 252-299

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Recent developments for the optical model of nuclei

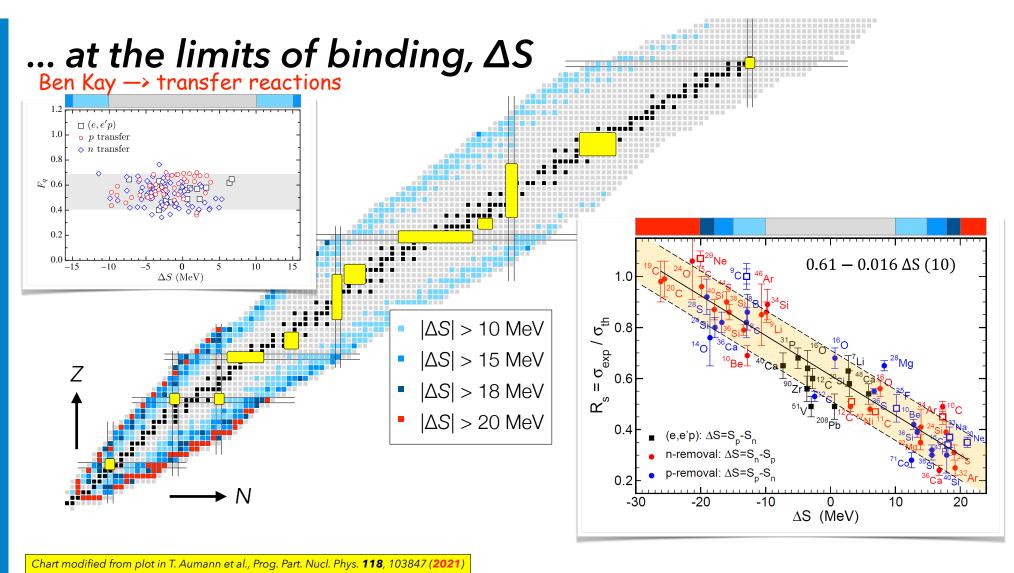
W.H. Dickhoff^{a,*}, R.J. Charity^b ^a Department of Physics, Washington University, St. Louis, MO 63130, USA ^b Department of Chemistry, Washington University, St. Louis, MO 63130, USA

Progress in Particle and Nuclear Physics 118 (2021) 103847

Review

Quenching of single-particle strength from direct reactions with stable and rare-isotope beams

T. Aumann^{a,b}, C. Barbieri^{c,d,e}, D. Bazin^{f,g}, C.A. Bertulani^h, A. Bonaccorsoⁱ, W.H. Dickhoff^j, A. Gade^{f,g}, M. Gómez-Ramos^{a,k}, B.P. Kay¹, A.M. Moro^{k,m}, T. Nakamuraⁿ, A. Obertelli^{a,*}, K. Ogata^{o,p}, S. Paschalis^q, T. Uesaka^r

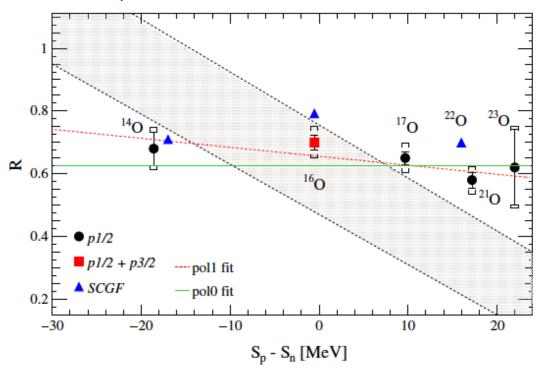

Unstable Nuclei and Optical Potentials

- Masses and electromagnetic properties -> unambiguous!
- All other properties depend on description of strongly interacting probe with target —> ambiguous! (or in other words model dependent)
- Optical potentials are an important ingredient in analyzing e.g. transfer reactions, knockout reactions like (e,e'p) and (p,2p), the latter available in inverse kinematics!

• Status 2022

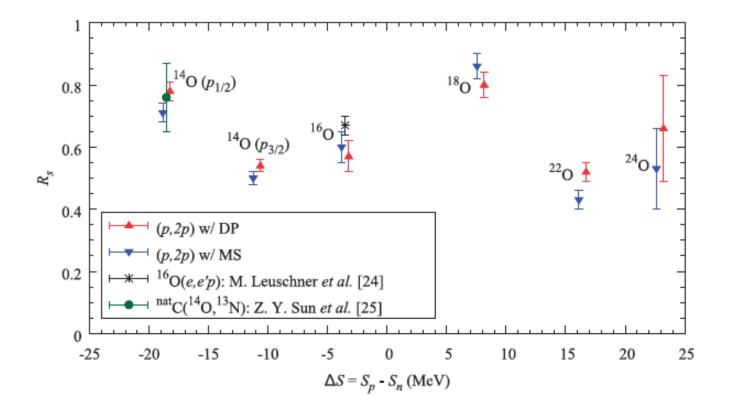
- Global potentials still local, non-dispersive and not constrained by scattering data for exotic nuclei
- Ab initio methods have as yet very limited relevance e.g. for FRIB physics
- DOM potentials available for a reasonable set of nuclei and can be extrapolated
- DOM potentials are nonlocal, dispersive, and describe structure and reaction domains simultaneously

Optical Potential



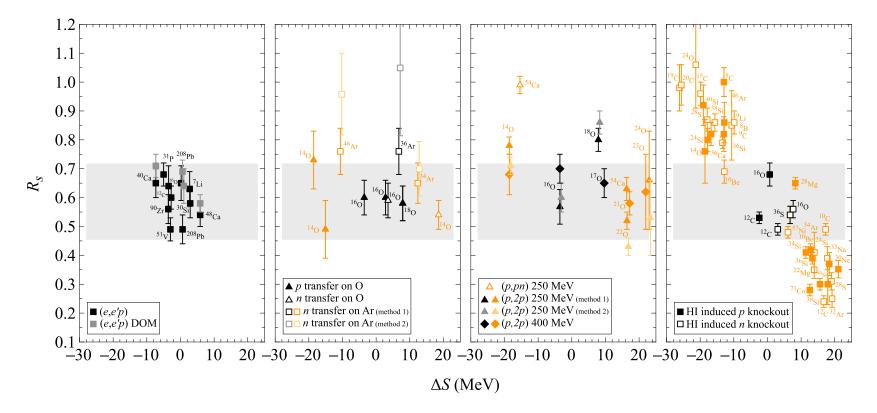
J. A. Tostevin and A. Gade, Phys. Rev. C **103**, 054610 (**2021**) [an update to Phys. Rev. C **90**, 057602 (**2014**)

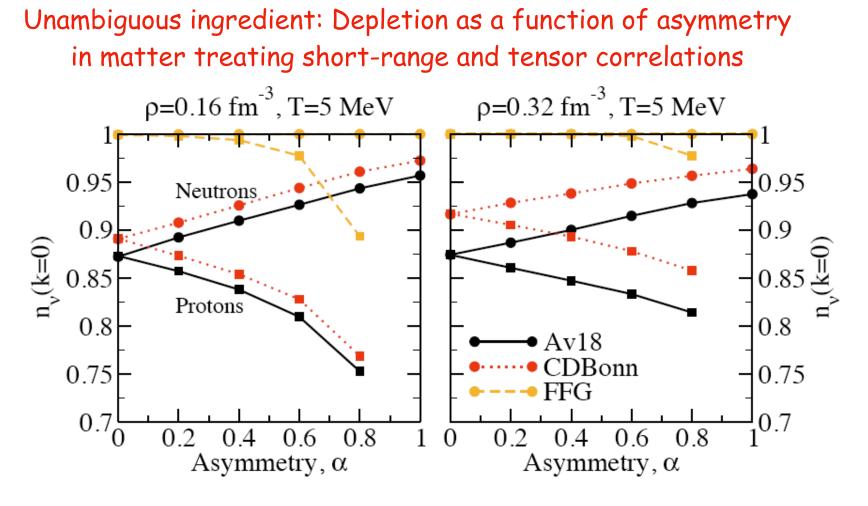
40


O(p,2p) L. Atar et al. Phys. Rev. Lett. 120, 052501 (2018)

- "Ab initio" interaction has "no" tensor force —> spectroscopic factors?
- Reaction model: distorted waves not constrained by experimental information as a function of nucleon asymmetry
- Inconsistent with np dominance observed in 2N knockout reactions (Or et al.)

O(p,2p)


- S. Kawase et al. Prog. Theor. Exp. Phys. 2018, 021D01
- DWIA uses optical potentials not constrained by scattering data for unstable nuclei


Status of "reduction" factors/spectroscopic factors

T. Aumann, C. Barbieri, D. Bazin et al.

Progress in Particle and Nuclear Physics 118 (2021) 103847

Fig. 56. The four panels of this plot show the quenching (reduction) factors for (a) electron-induced knockout reactions [87,172,237,376], (b) transfer reactions with radioactive ion beams [55,57,203], (c) quasifree (p, 2p) proton knockout on stable nuclei (from the compilation in [239]) and radioactive nuclei [58,59], and (d) the inclusive intermediate-energy knockout data [46]. The measurements are compared to predictions based on effective-interaction shell-model SFs while, in the case of (e, e'p), the integrated strength is compared to the independent-particle expectation.

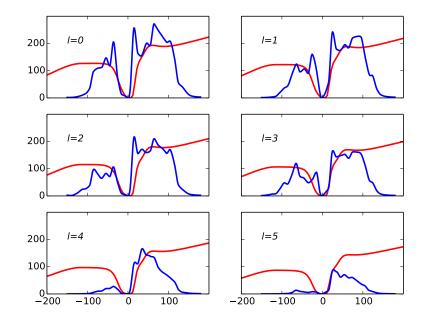
A. Rios, A. Polls, and W. H. Dickhoff Depletion of the nuclear Fermi sea. <u>Phys. Rev. C79, 064308 (2009)</u>.

Properties and relevance of optical potential or self-energy

- Describes all observables related to elastic scattering
- Generates wave functions inside the nucleus distorted waves used to describe other nuclear reactions aimed at extracting nuclear structure information
- Dispersive optical model describes additional observables related to the ground state
- · Can be extrapolated to exotic nuclei [but uncertain]
- Astrophysics: relevant for the description of rapid neutron capture
- · Lots of recent activity to generate the optical potential starting from the "NN" interaction
 - Nuclear matter approach [old and recent]
 - Multiple scattering using free NN interaction [T-matrix]
 - Green's function method for finite nuclei [old and recent]
 - Coupled cluster method
 - No core shell model [including symmetry-adapted version]
 - DFT + 2nd order/RPA contributions

Some problems with "ab initio" approaches

- Multiple scattering approaches useful at higher energy but hard to improve over spectator approximation (problems with polarization data)
- Methods that generate the propagator directly and then generate optical potential by inverting the Dyson equation
 - Coupled cluster
 - No core shell model
 - Both methods struggle with the $~\eta~$ infinitesimal


$$G_{\ell j}(r,r';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$
$$G_{\ell j}(r,r';E) = G_{\ell j}^{(0)}(r,r';E) + \int d\tilde{r} \; \tilde{r}^{2} \int d\tilde{r}' \; \tilde{r}'^{2} G_{\ell j}^{(0)}(r,\tilde{r};E) \Sigma_{\ell j}(\tilde{r},\tilde{r}';E) G_{\ell j}(\tilde{r}',r';E)$$

- Methods that use HO basis cannot describe density of states and higher angular momentum

Optical Potential

Illustrate: comparison with ab initio FRPA calculation

 Volume integrals of imaginary part of nonlocal ab initio (FRPA) self-energy compared with DOM result for ⁴⁰Ca

• Ab initio S. J. Waldecker, C. Barbieri and W. H. Dickhoff Microscopic self-energy calculations and dispersive-optical-model potentials. Phys. Rev. C84, 034616 (2011), 1-11.

DOM initiated by Mahaux

St. Louis extensions (nonlocality, energy domain, isotope chains)

Nonlocal and dispersive optical potential

$$\operatorname{Re} \Sigma_{\ell j}(r, r'; E) = \operatorname{Re} \Sigma_{\ell j}(r, r'; \varepsilon_{F})$$

$$- \mathcal{P} \int_{\varepsilon_{T}^{+}}^{\infty} \frac{dE'}{\pi} \operatorname{Im} \Sigma_{\ell j}(r, r'; E') \left[\frac{1}{E - E'} - \frac{1}{\varepsilon_{F} - E'} \right]$$

$$+ \mathcal{P} \int_{-\infty}^{\varepsilon_{T}^{-}} \frac{dE'}{\pi} \operatorname{Im} \Sigma_{\ell j}(r, r'; E') \left[\frac{1}{E - E'} - \frac{1}{\varepsilon_{F} - E'} \right]$$

- Allows consideration of negative energy experimental information [charge density]
- Subtracted dispersion relation emphasizes influence of energies close to the Fermi energy
- Empirical information constrains binding potential at the Fermi energy as well as volume integrals of the imaginary part at positive energy

Optical Potential

Dispersive Optical Model (St. Louis group)

2000 1800

1600

1400 [mp 1200

1000

400

200

10000

9000 8000

3000

2000

100 E_{lab} [MeV]

100 E_{lab} [MeV]

n+208PF

E<0 ->

ь 800 600

- Mahaux & Sartor 1991 -> Washington University group since 2006
- Use experimental data to constrain the nucleon self-energy while linking structure and reaction domain using dispersion relations

Indirectly:

 $\begin{array}{c} \mathrm{d}\sigma/\mathrm{d}\Omega \, \left[\mathrm{mb/sr}\right] \\ \mathrm{d}\sigma & \mathrm{d}\Omega \\ \mathrm{d} & \mathrm{d} \\ \mathrm{d} & \mathrm{d} \end{array}$

 $p+^{208}Ph$

 $E_{lab} > 100$

a bardana

 θ_{cm} [deg]

120 150 180

100

a ha a ha a ha a ha a ha

 θ_{cm} [deg]

30 60 90 120 150 180

Generates proton/neutron distorted waves

30

 $k_{-1} > 100$

 $40>E_{lab}>20$

60 90 120 150 180

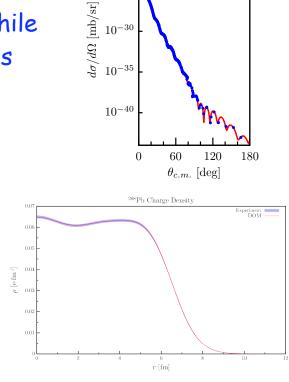
 $\theta_{c.m.}$ [deg]

20

30

60

 $\theta_{c.m.}$ [deg]


90 120 150 180

Overlap functions with their normalization (spectroscopic factors)

Mack Atkinson -> TRIUMF -> LLNL

DOM

 10^{-20}

 10^{-25}

DOM

Experiment •

Eur. Phys. J. A (2017) **53**: 178 DOI 10.1140/epja/i2017-12371-9

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Theoretical Physics

Toward a complete theory for predicting inclusive deuteron breakup away from stability

G. Potel^{1,a}, G. Perdikakis^{1,2,3,b}, B.V. Carlson^{4,c}, M.C. Atkinson⁵, W.H. Dickhoff⁵, J.E. Escher⁶, M.S. Hussein^{4,7,8}, J. Lei^{9,d}, W. Li¹, A.O. Macchiavelli¹⁰, A.M. Moro⁹, F.M. Nunes^{1,11}, S.D. Pain¹², and J. Rotureau¹

- State of the art inclusive (d,p)
- Employs local DOM potentials constrained for ⁴⁰Ca and ⁴⁸Ca and extrapolated to ⁶⁰Ca
- Explores link with (n,γ) process

Why DOM?

Compare standard optical potential with DOM

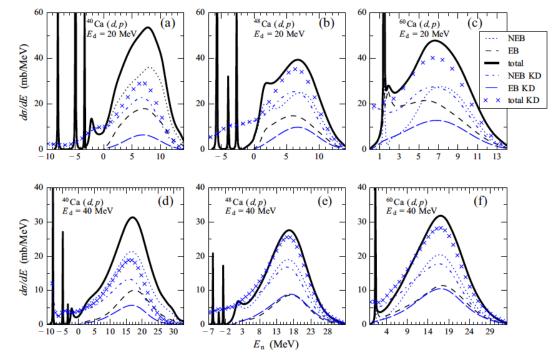
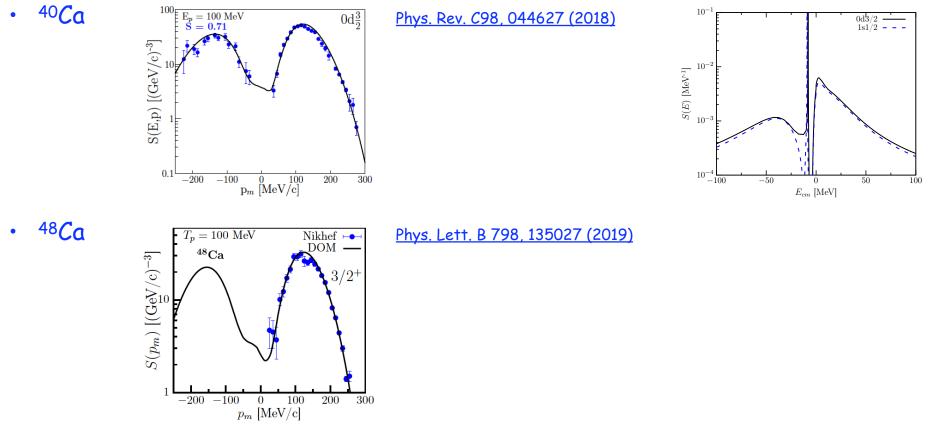


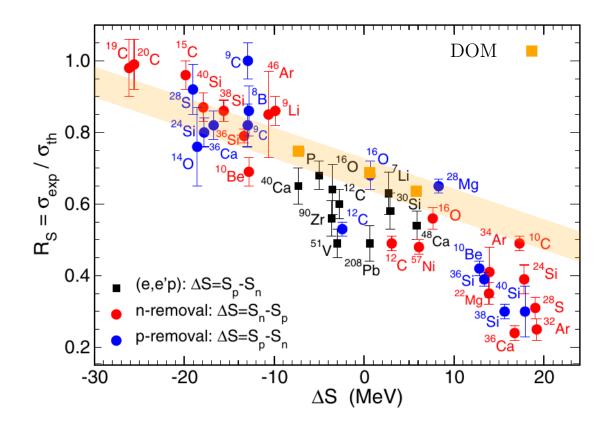
Fig. 8. Comparison of KD phenomenological optical potential and the DOM: elastic breakup (EB) and non-elastic breakup (NEB) proton spectra for the reactions ${}^{40}\text{Ca}(d, p)$, ${}^{48}\text{Ca}(d, p)$, and ${}^{60}\text{Ca}(d, p)$, at $E_d = 20$ MeV and $E_d = 40$ MeV.


 Global potentials do not generate relevant information at negative energies —> dispersive approach essential for unstable nuclei

Spectral function for bound states from DOM analysis

[0,200] MeV -> constrained by elastic scattering data

Check with (e,e'p) cross sections (Mack Atkinson)

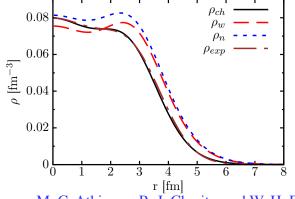


- No further adjustments!
- Both structure and reaction properties allowed to change when 8 n added

DOM

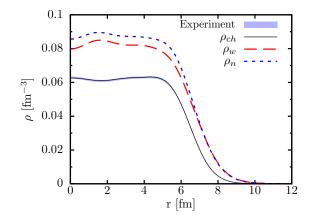
Compare with Gade plot

Very near the Fermi energy in ⁴⁰Ca and ⁴⁸Ca from (e,e'p) -> error band



Quenching sp strength review: Aumann et al, Prog. Part. Nucl. Phys. 118, 103847 (2021)

DOM


Neutron skins in ⁴⁸Ca and ²⁰⁸Pb from DOM predictions

• DOM 2017

M. H. Mahzoon, M. C. Atkinson, R. J. Charity, and W. H. Dickhoff Phys. Rev. Lett. **119**, 222503 (2017), 1-5.

• DOM 2020

M. C. Atkinson, M. H. Mahzoon, M. A. Keim, B. A. Bordelon, C. D. Pruitt, R. J. Charity, and W. H. Dickhoff Phys. Rev. C 101,044303 (2020), 1-15.

MCMC DOM prediction of neutron skins

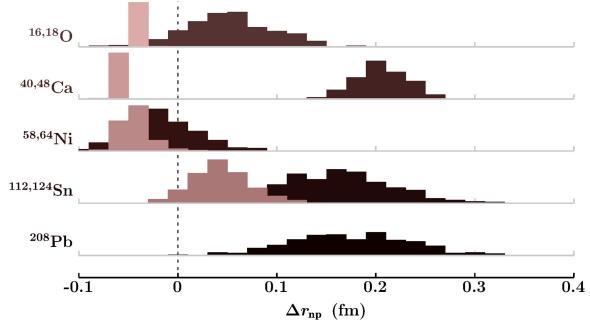
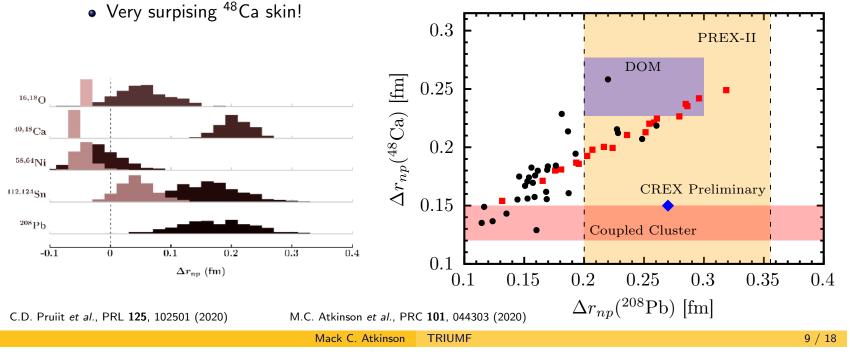


TABLE I. Neutron skins (Δr_{np}), in fm, from this work. The 16th, 50th, and 84th percentile values of the skin distribution are reported as 50_{16}^{84} .

¹⁶ O	¹⁸ O	⁴⁰ Ca	⁴⁸ Ca	⁵⁸ Ni	⁶⁴ Ni	¹¹² Sn	¹²⁴ Sn	²⁰⁸ Pb
$-0.025^{-0.023}_{-0.027}$	$0.06_{0.02}^{0.11}$	$-0.051^{-0.048}_{-0.055}$	$0.22_{0.19}^{0.24}$	$-0.03\substack{-0.02\\-0.05}$	$-0.01^{0.03}_{-0.04}$	$0.05_{0.02}^{0.08}$	$0.17_{0.12}^{0.23}$	$0.18_{0.12}^{0.25}$


C. D. Pruitt, R. J. Charity, L. G. Sobotka, M. C. Atkinson, and W. H. Dickhoff Phys. Rev. Lett. 125, 102501 (2020), 1-6.

DOM

Neutron skin puzzle & DOM (slide Mack Atkinson now at LLNL)

Neutron Skin: $\Delta r_{np} = r_n - r_p$

- r_n can be measured through parity-violating electron scattering (weak)
- PREX-II at Jefferson Lab measured ²⁰⁸Pb skin
 - Preliminary CREX results for ⁴⁸Ca released at DNP meeting 2021

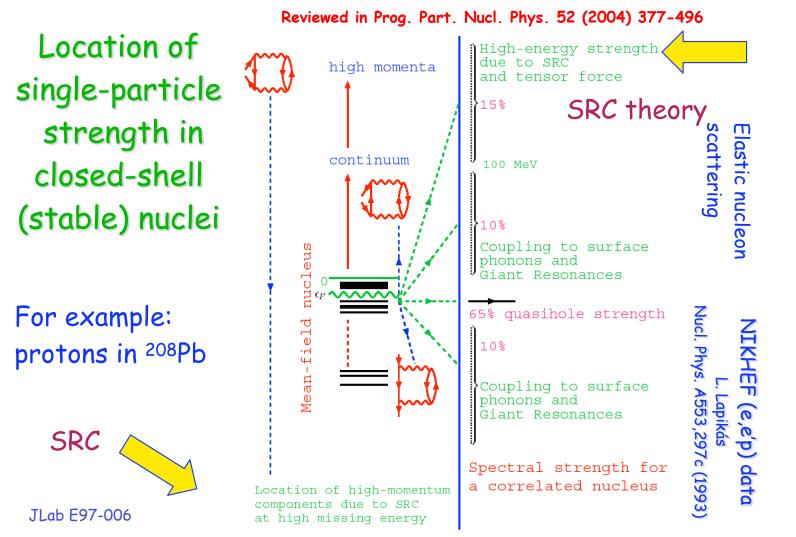
Optical Potentia

Outlook FRIB era

- Accurate global optical potential requires a lot of theoretical effort
 - Topical Collaboration: Holt, Dickhoff, Elster, Lovell, Nunes, Potel, Stroberg (DOE proposal)
- · Accurate global optical potential requires a lot of experimental effort as well!
- Removal probability puzzle only slow progress
- Neutron skins very interesting

Conceptual paradigm shift: need to treat reactions and structure simultaneously

• (p,2p) good starting point


PHYSICAL REVIEW C 105, 014622 (2022)

First DOM analysis -->

First application of the dispersive optical model to (p, 2p) reaction analysis within the distorted-wave impulse approximation framework

K. Yoshida^(D),^{1,*} M. C. Atkinson^(D),² K. Ogata^(D),^{3,4,5} and W. H. Dickhoff^(D)

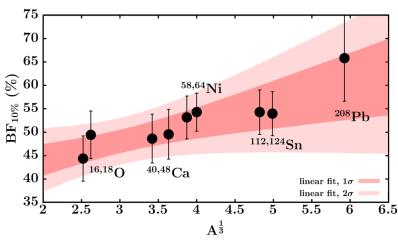
Optical Potential

Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

High-momentum predictions & relation to ground-state energy Ground-state energy can be included in the DOM

$$E/A = \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty \!\!\! dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty \!\!\! dk k^2 \int_{-\infty}^{\varepsilon_F} dE \; E \; S_{\ell j}(k;E)$$

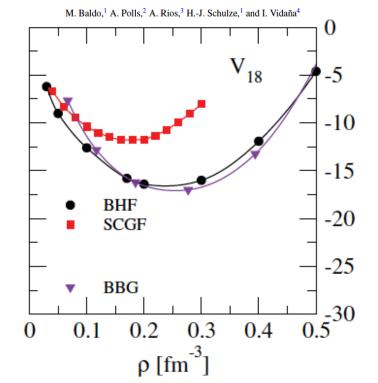
Succeeds	Α	DOM E_0^A/A	Mass equation	Expt. E_0^A/A
	¹² C	-7.85	-7.29	-7.68
	⁴⁰ Ca	-8.46	-8.50	-8.55
	⁴⁸ Ca	-8.66	-8.59	-8.66
	²⁰⁸ Pb	-7.76	-7.81	-7.87


Phys. Rev. C 102, 044333 (2020)

Because fraction of binding energy from 10% most deeply bound nucleons includes the

high-momentum contribution

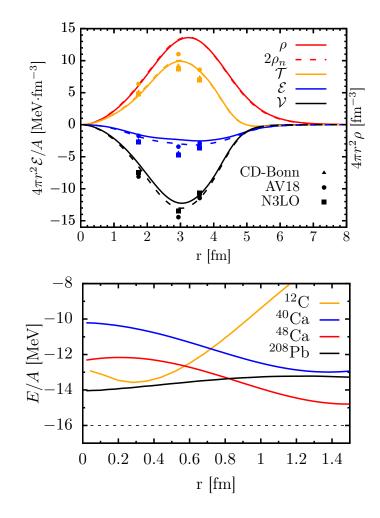
Phys. Rev. Lett. 125, 102501 (2020)

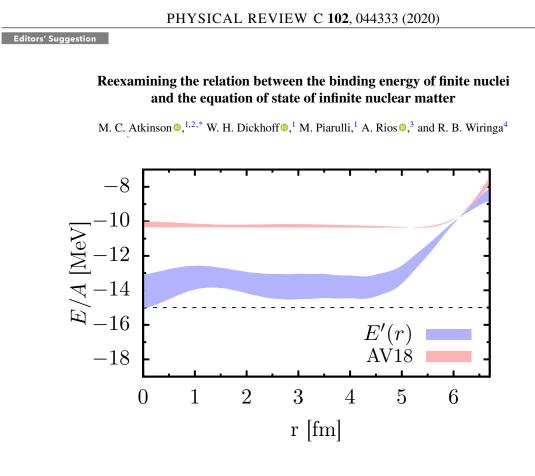

Predicted in Phys. Rev. C51, 3040 (1995)

SCGF & SRC compared to BHF and BBG

PHYSICAL REVIEW C 86, 064001 (2012)

Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials



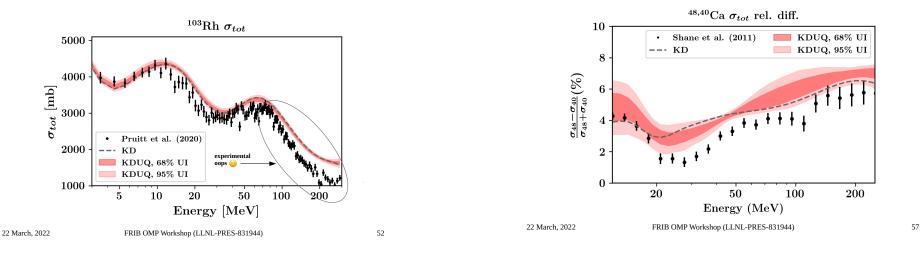

• BBG requires a repulsive NNN at high density to improve density

Neutron skins and EOS

Consequence

Maybe 16 MeV binding is not needed!

Neutron skins and EOS


Cole Pruitt (LLNL)

"OMP uncertainty - characterized empirically for KD and CH89 - is larger than assumed:

Global KD OMP has systematic over/underestimation for σ_{rxn}

Roughly 20% std. dev. for (n,*)/(p,*) cross sections on stable targets KDUQ/CHUQ help pinpoint where data and model are grossly inconsistent"

• Total neutron cross sections using an iterative procedure using KD potential

• Problem at high energy but relative OK —> another look at the neutron skin of ⁴⁸Ca?

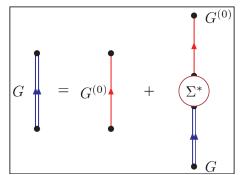
Optical Potential

Propagator / Green's function and spectral functions & spectroscopic factors

Lehmann representation

$$\begin{aligned} G_{\ell j}(k,k';E) &= \sum_{m} \frac{\langle \Psi_{0}^{A} | \, a_{k\ell j} \, | \Psi_{m}^{A+1} \rangle \, \langle \Psi_{m}^{A+1} | \, a_{k'\ell j}^{\dagger} \, | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} \\ &+ \sum_{n} \frac{\langle \Psi_{0}^{A} | \, a_{k'\ell j}^{\dagger} \, | \Psi_{n}^{A-1} \rangle \, \langle \Psi_{n}^{A-1} | \, a_{k\ell j} \, | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta} \end{aligned}$$

- Any other single-particle basis can be used & continuum integrals implied
- Overlap functions --> numerator
 Corresponding eigenvalues
 --> denominator
- Spectral function $S_{\ell j}(k; E) = \frac{1}{\pi} \operatorname{Im} G_{\ell j}(k, k; E) \qquad E \leq \varepsilon_F^ = \sum_n \left| \langle \Psi_n^{A-1} | a_{k\ell j} | \Psi_0^A \rangle \right|^2 \delta(E - (E_0^A - E_n^{A-1}))$
- Discrete transitions


 $\sqrt{S_{\ell j}^n} \phi_{\ell j}^n(k) = \langle \Psi_n^{A-1} | a_{k\ell j} | \Psi_0^A \rangle$

- Momentum distribution: integrate spectral function to ε_F^-
- Positive energy —> see later

DOM

Propagator from Dyson Equation and "experiment"

Equivalent to ...

 $G = G^{(0)} + \Sigma^{*}$ $F = G^{(0)} + \Sigma^{*}$ \Rightarrow as extracted from (e,e'p) reaction

$$\frac{k^2}{2m}\phi_{\ell j}^n(k) + \int dq \ q^2 \ \Sigma_{\ell j}^*(k,q;E_n^-) \ \phi_{\ell j}^n(q) = E_n^- \ \phi_{\ell j}^n(k)$$

Spectroscopic factor $\ \mathcal{Z}_{\ell j}^n = \int dk \ k^2 \ \left| \langle \Psi_n^{A-1} | \ a_{k\ell j} \ | \Psi_0^A \rangle \right|^2 < 1$

Dyson equation also yields $\left[\chi^{elE}_{\ell j}(r)\right]^* = \langle \Psi^{A+1}_{elE} | \, a^{\dagger}_{r\ell j} \, | \Psi^A_0 \rangle$ for positive energies

Elastic scattering wave function for protons or neutrons

Dyson equation therefore provides:

Link between scattering and structure data from dispersion relations