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I am going to talk about the theoretical description of superheavy elements using the Finite 
Range density dependent Gogny interaction and sophisticated microscopical approaches 
namely the symmetry conserving configuration mixing theories.

Outline of the talk: 

1.- Short description of the theory

2.- Ground state deformations & shape coexistence in the Flerovium isotopes. 

3.- Low-Energy excited states in the alpha decay chains of 292Lv & 294Og 
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Overview of calculations in SHN

Macro-Micro  (see, for example, the review of A. Sobiczewski & K. Pomorski
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 Theories: Mean field and Beyond
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to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like

∣ ( ) ∣ ( ) ( )� C H G C H: § � §T
C H

Tf K P P, , , 39M
N I

K

I N
MK
I

,
,

, ,

Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular
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 Fluctuations and the Generator Coordinate Method 
In the general case we consider as generator coordinates the 
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to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like

∣ ( ) ∣ ( ) ( )� C H G C H: § � §T
C H

Tf K P P, , , 39M
N I

K

I N
MK
I

,
,
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Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular

14

Phys. Scr. 91 (2016) 073003 Invited Comment

   AXIAL  APPROX:    =0º and 60º𝛾

TRIAXIAL  APPROX: 0º ≤    ≤ 60º𝛾 

   

   

The symmetry-conserving configuration mixing (SCCM)



 The symmetry-conserving configuration mixing (SCCM)

0

20

40

60

a

0 0.3 0.6 0.9
`

0

0.3

0.6

0.9

to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like

∣ ( ) ∣ ( ) ( )� C H G C H: § � §T
C H

Tf K P P, , , 39M
N I

K

I N
MK
I

,
,

, ,

Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular
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to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like

∣ ( ) ∣ ( ) ( )� C H G C H: § � §T
C H

Tf K P P, , , 39M
N I

K

I N
MK
I

,
,

, ,

Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular

14

Phys. Scr. 91 (2016) 073003 Invited Comment

     is determined in the 

       PNVAP approach

PNVAP-PES & PNAMP-PES



 The symmetry-conserving configuration mixing (SCCM)

0

20

40

60

a

0 0.3 0.6 0.9
`

0

0.3

0.6

0.9

to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like
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Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular
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to the self-consistent solution (see bullets in figure 6). The �02
state, panel (b), displays also a two bump structure, this time
with the maximum on the oblate side and soft in δ. The
maxima are located at δ values smaller than for the �01 state. It
presents a nodal line at xq 50 fm2 as it corresponds to a β
vibration in two-dimensions. The �03 state, panel (c), presents
a three-peak structure, two at large deformations and large
pairing correlations and a smaller one around 80 fm2 with
smaller pairing correlations. This situation is similar to the 1D
case where at similar q-values the same peaks are found. The
fact that the large deformation peaks do have strong pairing
correlations is due to the fact that the level density is very
high at these deformations and that the 2D calculations allow
that a given q value can take different pairing content for
different collective states. Looking at panels (d)–(f) of
figure 10 and taking into account the discussion above one
can very easily interpret the 2D w.f.s of the HFB+PNAMP
approach. The main difference with the former case is that the
beta vibration and the �03 state in this case are not as pure as in
the PN-VAP+PNAMP case. As it was the case with the
spectrum the HFB+AMP collective w.f.s look more different
than the ones of the two former approximations and will not
be discussed here, for more details see [66]. Interestingly,
though the PESs in the three cases are rather similar, see
panels (b), (e) and (f) of figure 6, the w.f.s of the HFB+AMP
and the spectrum are rather different from the other two. This
has obviously to do with the non-diagonal elements of the
Hamilton overlap and the norm overlap, the former through
the dynamical corrections and the latter through the linear
dependence of the basis states.

Though not discussed in this contribution the pairing
vibrations play an important role in many nuclear processes.
For instance, the consideration of the pairing degree of free-
dom in the calculation of the neutrinoless double β decay has
resulted in an increase of 10%–40% of the magnitude of the
corresponding matrix element [78]. We conclude this section
underlining the relevance of the PNP for a proper description
of the properties of atomic nuclei.

4. Triaxial calculations

In the previous sections we have seen applications of the
GCM to axially symmetric problems. However, many excit-
ing experimental and theoretical phenomena are closely
related to the triaxial degree of freedom, for instance: pre-
sence of γ-bands at low excitation energy and γ-softness,
shape coexistence and shape transitions in transitional regions
[79–85]; lowering of fission barriers along the triaxial path
[86–88]; influence of triaxial deformation in the ground state
for the mass models [89, 90]; triaxiality at high spin [91–93];
observation of K-bands and isomeric states in Os isotopes
[94–96]; or some other exotic excitation modes such as
wobbling motion, chiral bands [97–99].

From the theoretical point of view some approaches
beyond mean field have been proposed to study the triaxial
effects. In particular, one of the most widely used is the
collective Hamiltonian [10]. It can be derived in the adiabatic

approximation to the time-dependent HFB theory [100], and
in the GCM with the GOA [101–103]. These two approaches
differ in the collective masses and in the zero point energies.
The collective Hamiltonian has been applied with different
interactions used to define the collective potential, namely,
pairing-plus-quadrupole (PPQ) [104], interacting boson
model [105], Nilsson Woods–Saxon [91], Gogny [106–108]
or RMF [109], to describe some of the experimental features
listed above. It is however of a limitted scope because it does
not allow to include in a simple way additional degrees of
freedom, for example, to deal simultaneously with quadrupole
and octupole deformations within a symmetry conserving
framework. On a broader road, a more fundamental approach,
free from the approximations of the collective Hamiltonian,
using the full GCM and exact microscopic PNAMP has been
developed in the last years.

In the past, exact AM projection with triaxial intrinsic w.
f.s without GCM has been carried out only for schematic
forces and/or reduced configuration spaces. For instance,
projection of BCS [110] or Cranked Hartree–Fock–Bogoliu-
bov states [22] with the PPQ interaction; projection of
Cranked Hartree–Fock (CHF) states without pairing with
schematic [111] and full Skyrme interactions [112] or AM
projection before variation with PN and parity restoration in
limited shell model spaces [113, 114] have been performed
so far.

However, the increase of the current computational
capabilities has recently allowed the first implementations of
the AM projection of triaxial intrinsic w.f.s in the whole
( )C H, plane with effective forces. In particular, Bender and
Heenen reported GCM calculations with PNAMP with the
Skyrme SLy4 interaction [32]. In this work, the intrinsic w.f.s
were found by solving the LN equations. On the other hand,
Yao et al. showed the implementation of the triaxial AM
projection [115] and the extension to the GCM [116] for the
relativistic mean field (RMF) framework. In these calcula-
tions, there is no PN projection and the mean field states are
found by solving RMF+BCS instead of the full HFB or LN
equations. These two assumptions could lead to a poor
description of important pairing correlations, especially in the
weak pairing regime where even spurious phase transitions
appear in those cases [40, 76].

A detailled description of the GCM and the collective
Hamiltonian within the Relativistic approach can be found in
[117]. An interesting comparison of the full GCM and the
collective Hamiltonian has been performed in [118].

4.1. The β and γ coordinates

With the coordinates ( )C H, the GCM Ansatz of equation (13)
looks like

∣ ( ) ∣ ( ) ( )� C H G C H: § � §T
C H

Tf K P P, , , 39M
N I

K

I N
MK
I

,
,

, ,

Since we do not break the time reversal symmetry it is
sufficient [10] to consider one sextant of the ( )C H, plane. To
discretize the sextant - -Hn n0 60 we choose a triangular
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The weights                    are  determined solving

the Hill-Wheeler equation 



 The Gogny  Interaction

V (1, 2) =
2�

i=1

e�(⌥r1�⌥r2)
2/µ2

i (Wi + BiP
⇥ �HiP

⇤ �MiP
⇥P ⇤ ) central term

+iW0(⇥1 + ⇥2)⌥k ⇥ �(⌥r1 � ⌥r2)⌥k         Spin-orbit term

+t3(1 + x0P
⇥)�(�r1 � �r2)⇥�((�r1 + �r2)/2) density-dependent term

+VCoulomb(⌅r1,⌅r2) Coulomb term

1 0,7 -1720,3 1300 -1813,53 1397,6

2 1,2 103,638 -163,48 162,81 -223,93

J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

i µ(fm)2 W B H M

D1S  Parametrization (Berger et al. 1984)

W0=130 MeV fm5

x0=1.0,  α =1/3
t3=1390.6 MeV fm4

In the calculations we use large configuration spaces (13 Mayor Oscillator shells, 
tests have been done with 17).Therefore no effective charges are needed. We 
use the D1S parametrisation of the Gogny force:



The Flerovium Isotopes  
288-298Fl



M. Warda and J.L. Egido, Phys. Rev. C 86, 014322 (2012)

Fl (Z=114)

114

184

184

Similar MF studies using other interactions 

led to different predictions for the position of

shell gaps ! 

Shape coexistence ?

Several minima in potential energy curve:

Beyond-mean-field effects may be important !

The simplest approach:    Axial-symmetric mean-field studies

Lv



P.-H. Heenen, J. Skalski, A. Staszczak and D. Vretenar, Nucl. Phys. A 944, 415 (2015)

Projection on:

- particle number only

- angular momentum

Collective wave

functions of the

first three 0+ states

Low-lying excited 0+ states !

First axial beyond-mean-field (BMF) study of super-heavy nuclei



S. Cwiok, P.-H. Heenen and W. Nazarewicz

Nature 433, 705 (2005)

First triaxial mean-field study of super-heavy nuclei
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Prolate-oblate shape coexistence ?

Investigate γ degree of freedom !
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PNVAP
PNAMP

squared coll. w.f. 02+

Prolate-oblate shape coexistence ?

Investigate γ degree of freedom !

Example: Flerovium chain (Z=114)

squared coll. w.f. 01+
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Collective wave functions
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Axial-symmetric minima are 
saddle points in the β-γ plane !

From prolate-oblate to triaxial-triaxial shape coexistence



From prolate-oblate to triaxial-triaxial shape coexistence
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With the Gogny force also the triaxial calculations

predict a shell closure at N=184, but not at Z=114 ! 

Fl isotopes

Z=114 112Cn184

116Lv184

21
+ excitation energy as indicator for shell gaps 

114Fl184



 Low-Energy excited states in the 
alpha decay chains of 

292Lv & 294Og





Part II
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• State-of-the-art symmetry conserving configuration mixing 
calculations provide a rich variety of nuclear shapes in SHN.  We 
predict six different ground state deformations for the six Flerovium 
isotopes studied at variance with axial calculations. 

• We predict a new shape coexistence in 290Fl.  Two 0+ triaxial states 
are predicted to coexist within less than 500 keV.  

• We have calculated the first excited states for the decay chains of 
292Lv and 294Og.  The predicted values are in agreement with the  
experimental available values

• The comparison with the classical collective models shows the 
richness of shapes of the SHN.

Conclusions


