The variety of nuclear shapes in Super Heavy Nuclei

J. Luis Egido in collab. with Andrea Jungclaus

Aim of the talk

I am going to talk about the theoretical description of superheavy elements using the Finite Range density dependent Gogny interaction and sophisticated microscopical approaches namely the symmetry conserving configuration mixing theories.

Outline of the talk:

1.- Short description of the theory
2.- Ground state deformations \& shape coexistence in the Flerovium isotopes.
3.- Low-Energy excited states in the alpha decay chains of ${ }^{292} \mathrm{Lv} \&{ }^{294} \mathrm{Og}$

The upper end of the chart of nuclides

Overview of calculations in SHN

Macro-Micro (see, for example, the review of A. Sobiczewski \& K. Pomorski Prog. Part. Nucl. Phys. 58 (2007)292-349)

Self-Consistent Theories: With Skyrme, Gogny or relativistic interactions

Theories: Mean field and Beyond

The symmetry-conserving configuration mixing (SCCM)

$$
\begin{aligned}
\left|\Psi_{M, \sigma}^{N, I}\right\rangle & =\sum_{\beta, \gamma, K} f_{\sigma}^{I}(\beta, \gamma, K) P^{N} P_{M K}^{I}|\phi(\beta, \gamma)\rangle \\
& \left.=e]_{M}^{I}+\ldots+f[\because]_{M}^{I}+\ldots+g<\right]_{M}^{I}
\end{aligned}
$$

The symmetry-conserving configuration mixing (SCCM)

The symmetry-conserving configuration mixing (SCCM)

The weights $f_{\sigma}^{I}(\beta, \gamma, K)$ are determined solving the Hill-Wheeler equation

$$
\begin{aligned}
\left|\Psi_{M, \sigma}^{N, I}\right\rangle & =\sum_{\beta, \gamma, \mathrm{K}}\left(f_{\sigma}^{I}(\beta, \gamma, K) P^{N} P_{M K}^{I}|\phi(\beta, \gamma)\rangle\right. \\
& =e]_{M}^{I}+\ldots+f[]_{M}^{I}+\ldots+g<{ }_{M}^{I}
\end{aligned}
$$

The Gogny Interaction

```
J.Dechargé, D. Gogny, Phys. Rev. C 2I, I568 (I980)
```

In the calculations we use large configuration spaces (13 Mayor Oscillator shells, tests have been done with 17).Therefore no effective charges are needed. We use the D1S parametrisation of the Gogny force:

$$
\begin{aligned}
V(1,2)= & \sum_{i=1}^{2} e^{-\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2} / \mu_{i}^{2}}\left(W_{i}+B_{i} P^{\sigma}-H_{i} P^{\tau}-M_{i} P^{\sigma} P^{\tau}\right) \text { central term } \\
& +i W_{0}\left(\sigma_{1}+\sigma_{2}\right) \vec{k} \times \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \vec{k} \\
& +t_{3}\left(1+x_{0} P^{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho^{\alpha}\left(\left(\vec{r}_{1}+\vec{r}_{2}\right) / 2\right) \quad \text { Spin-orbit term } \\
& +V_{\text {Coulomb }}\left(\vec{r}_{1}, \vec{r}_{2}\right) \\
& \text { D\|S Parametrization (Berger et al. l 984) }
\end{aligned}
$$

i	$\mu(\mathrm{fm})^{2}$	W	B	H	M
I	0,7	$-1720,3$	1300	$-\mathrm{I} 8 \mathrm{I} 3,53$	1397,6
2	$\mathrm{I}, 2$	103,638	$-163,48$	$162,8 \mathrm{I}$	$-223,93$

$$
\begin{aligned}
& W_{0}=130 \mathrm{MeV} \mathrm{fm} \\
& x_{0}=1.0, \mathrm{a}=1 / 3 \\
& t_{3}=1390.6 \mathrm{MeV} \mathrm{fm}
\end{aligned}
$$

The Flerovium Isotopes 288-298 |

M. Warda and J.L. Egido, Phys. Rev. C 86, 014322 (2012)

Similar MF studies using other interactions led to different predictions for the position of shell gaps !

Several minima in potential energy curve: Beyond-mean-field effects may be important !

First axial beyond-mean-field (BMF) study of super-heavy nuclei

P.-H. Heenen, J. Skalski, A. Staszczak and D. Vretenar, Nucl. Phys. A 944, 415 (2015)

First triaxial mean-field study of super-heavy nuclei

S. Cwiok, P.-H. Heenen and W. Nazarewicz Nature 433, 705 (2005)

Predominance of Triaxial Shapes in Transitional Super-Heavy Nuclei:
Ground-State Deformation and Shape Coexistence along the Flerovium ($Z=114$) Chain of Isotopes
J. Luis Egidc $e^{1, *}$ and Andrea Jungclaus ${ }^{2+}$
${ }^{1}$ Departamento de Fisica Teórica and CIAFF, Universidad Autónoma de Maàrid, E-28049 Madrid, Spain ${ }^{2}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
(4) (Received 9 September 2020; revised 30 September 2020; accepted 12 October 2020; published 6 November 2020)

Example: Flerovium chain $(Z=114)$

$----\quad$ PNVAP

Prolate-oblate shape coexistence ?
Investigate γ degree of freedom !

Example: Flerovium chain ($\mathrm{Z}=114$)

--- PNVAP
- PNAMP

Prolate-oblate shape coexistence?

Investigate γ degree of freedom !

Example: Flerovium chain (Z=114)

--- PNVAP

- PNAMP
- squared coll. w.f. $0_{1}{ }^{+}$
- squared coll. w.f. $0_{2}{ }^{+}$

Prolate-oblate shape coexistence?

Investigate γ degree of freedom!

Excitation energies of the $0^{+} 2$ states and their shapes (AXIAL)

PNVAP

PNAMP

Collective wave functions

J.L. Egido and A. Jungclaus,

Phys. Rev. Lett. 125, 192504 (2020)

Collective wave functions

$$
\mathrm{N}=174 \quad \mathrm{~N}=176 \quad \mathrm{~N}=178 \quad \mathrm{~N}=180 \quad \mathrm{~N}=182 \quad \mathrm{~N}=184
$$

J.L. Egido and A. Jungclaus,

Phys. Rev. Lett. 125, 192504 (2020)

From prolate-oblate to triaxial-triaxial shape coexistence

Axial-symmetric minima are saddle points in the $\beta-\gamma$ plane!

From prolate-oblate to triaxial-triaxial shape coexistence

Excitation energies of the $0^{+} 2$ states and their shapes (AXIAL \& TRIAXIAL)

21^{+}excitation energy as indicator for shell gaps

With the Gogny force also the triaxial calculations predict a shell closure at $\mathrm{N}=184$, but not at $\mathrm{Z}=114$!

Low-Energy excited states in the alpha decay chains of ${ }^{292} \mathrm{Lv}$ \& ${ }^{294} \mathrm{Og}$

PHYSICAL REVIEW LETTERS 126, 132503 (2021)

Spectroscopy along Flerovium Decay Chains:

Discovery of ${ }^{2911} \mathrm{Ds}$ and an Excited State in ${ }^{282} \mathrm{Cn}$

D. A. Shauginessy, "P Tborle-Pcoppich, "N Traulcam, and J. Uusitalo"

${ }^{3}$ fastitae fur Kemplysit, Emiversides za Kiha 50937 Koin, Gennuex

Low-Energy Nuclear Excitations along the α-Decay Chains of Superheavy ${ }^{292} \mathbf{L v}$ and ${ }^{294} \mathrm{Og}$

Departanento de Física Teórica and CIAFF, Universidad Autónoma de Madrid, E-28049 Madrid, Spain ${ }^{2}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
(0) (Received 8 February 2021; revised 5 April 2021; accepted 15 April 2021; published 10 May 2021)

Band structures along the ${ }^{292} \mathrm{Lv}$ and ${ }^{294} \mathrm{Og}$ decay chains

Excited bands in 288Fl

$\gamma \sim 0{ }^{\circ}$
$\gamma \sim 17{ }^{\circ}$
$\gamma \sim 42^{\circ}$

Conclusions

- State-of-the-art symmetry conserving configuration mixing calculations provide a rich variety of nuclear shapes in SHN. We predict six different ground state deformations for the six Flerovium isotopes studied at variance with axial calculations.
- We predict a new shape coexistence in ${ }^{290} \mathrm{FI}$. Two 0^{+}triaxial states are predicted to coexist within less than 500 keV .
- We have calculated the first excited states for the decay chains of 292 Lv and 294 Og . The predicted values are in agreement with the experimental available values
- The comparison with the classical collective models shows the richness of shapes of the SHN.

