Shell model study of chiral three-nucleon force

Tokuro Fukui

RIKEN Nishina Center

Acknowledgement to collaborators

INFN-Napoli & Univ. Campania "Luigi Vanvitelli"

Peking Univ. & South China Normal Univ.

Dicette 'o pappice 'n faccia a' noce, damme 'o tiempo ca te spertoso! **Target** 3NF in many-nucleon systems

Shell model + state-of-the-art nuclear force

What's New:

Proper treatment of 3NF for shell model

Theoretical framework | Realistic shell model

Valence-space diagonalization

Realistic shell model (RSM)

= Shell model (valence space) with a realistic force

Applicable to heavier systems

Theoretical framework | Shell-model Hamiltonian

Realistic Hamiltonian

$$H = \frac{H_{1B}}{H_{1B}} + \frac{H_{2B}}{H_{2B}} + \frac{H_{3B}}{H_{3B}}$$

Single-particleChiral 2NFChiral 3NFenergyat N3LOat N2LO+ Coulomb+ Coulomb

Shell-model framework

RSM calculations Numerical details

Low-energy constants ($\Lambda = 500$ MeV)

2NF (N³LO): Determined from *NN* scattering up to 300 MeV

Entem & Machleidt, PRC 68, 041001(R) (2003)

3NF (N²LO): Determined from ³H- and ³He binding energies

Navrátil +, PRL 99, 042501 (2007)

Model space

Standard 1-major shell

(+ a lowest orbit of higher shell if necessary)

Many-body perturbation theory (degenerate)

 $H \to H_{\rm eff}$

2NF: Up to 3rd-order folded-diagram expansion **3NF**: Up to 1st-order (normal-order approx.)

Coraggio + AP **327**, 2125 (2012) Roth +, PRL **109**, 052501 (2012)

Achievements

Ma +, PRC **100**, 034324 (2019)

26

28

30

texcitation energy (MeV)

°[†]∾

20

22

24

Ν

0L

Coraggio +, PRC **102**, 054326 (2020) Coraggio +, PRC **104**, 054304 (2021)

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Ma +, PLB **802**, 135257 (2020)

A

26 27 28

with 3N

25 26

20 21 22 23 24 25

19

Towards Ca/Ti-drip line

Towards drip line | Ca isotopes

Experimental and theoretical efforts

Tarasov +, PRL 121, 022501 (2018)

Neufcourt +, PRL 122, 062502 (2019)

Stroberg +, PRL 126, 022501 (2021)

Where is the Ca-drip line?

→ Our RSM studies

Towards drip line | Ca isotopes

Ground and low-lying structure

Coraggio+, PRC **102**, 054326 (2020)

bound ⁷⁰Ti.

Coraggio+, Phys. Rev. C **104**, 054304 (2021) Kortelainen +, PRC **85**, 024304 (2012), Goriely +, PRC **88**, 024308 (2013), Wang +, PLB **734**, 215 (2014) Neufcourt +, PRL **122**, 062502 (2019), Stroberg +, PRL **126**, 022501 (2021) 10

Significant 3NF effect

Vital 3NF contributions to monopole interaction

Cf. Zuker, PRL 90, 042502 (2003)

Significant 3NF effect

Vital 3NF contributions to monopole interaction

Cf. Zuker, PRL 90, 042502 (2003)

Spin-orbit splitting and 3NF

Spin-orbit splitting | Microscopic origin

Courtesy: T. Uesaka

Closure property *p*-shell nuclei

Effective single-particle energies (ESPEs)

Fukui +, PRC 98, 044305 (2018)

= SPEs modified by average 2NF (+3NF)

Ni isotopes

Ma +, PRC 100, 034324 (2019)

2NF: Fails **3NF**: Consistent with **experimental** data.

Spin-orbit splitting and 3NF

Spin-orbit splitting stabilized by 3NF

Revisit Fujita & Miyazawa (1957)

Spin-orbit splitting and 3NF | Tensorial structure

Tensorial structure of chiral N²LO 3NF

New decomposition formalism!

Spin-orbit splitting and 3NF | p-shell nuclei

ESPEs

2π -exchange 3NF | Dominant contributions

3NF: 2π -exchange dominant

Iower order (NLO)

Machleidt & Entem, PR 503, 1 (2011)

Numerically confirmed (ground-state energies)

Fukui +, EPJWC 223, 01018 (2019)

Fujita-Miyazawa 3NF: Good approx. of chiral-3NF

Fujita & Miyazawa, PTP **17**, 360 (1957) Tsunoda +, Nature **587**, 66 (2020)

Summary Spin-orbit splitting and 3NF

Shell model + chiral EFT

