

Cluster formation in light neutron-rich nuclei

YKIS2022b @ YITP + Zoom

May 25, 2022

<u>Hideaki Motoki</u>, Yoshiki Suzuki*, Tsuyoshi Kawai, and Masaaki Kimura Hokkaido University *RCNP

Background

O Cluster formation is a universal phenomenon found in hierarchy layers of matter.

O α cluster plays an important role in both finite and infinite nuclear systems.

- In dilute nuclear matter,

 α cluster formation is related to the nuclear density and symmetry energy

S. Typel *et al.*, PRC **81**, 015803 (2010)
K. Hagel *et al.*, PRL **108**, 062702 (2012)
S Typel *et al.*, EPJA **50**(2), 1 (2014)
Zhao-Wen Zhang *et al.*, PRC **95**, 064330 (2017)

- In finite nuclei, the growth of neutron-skin hinders the α cluster formation

$\boldsymbol{\alpha}$ cluster formation in the finite nuclei

O (p, $p\alpha$) is a useful measure for the α cluster formation at the nuclear surface

– A negative correlation between the neutron-skin thickness and α cluster formation in Sn isotopes

O A negative correlation was also theoretically predicted in C isotopes

K. Yoshida *et al.*, PRC, **100**, 044601 (2019)

J. Tanaka et al., Science, 371(6526), 260 (2021)

Q. Zhao et al., EPJA 57, 157 (2021)

α cluster formation in Be and B isotopes

 α cluster formation is predicted to be enhanced toward the neutron drip-line \bigcirc based on the proton density and its radius

B isotopes

Be isotopes

$\boldsymbol{\alpha}$ cluster formation in Be and B isotopes

O α cluster formation is predicted to be enhanced toward the neutron drip-line based on the proton density and its radius

O In Be isotopes, the enhancement of clustering is explained by the **molecular orbit** occupied by the excess neutrons.

- π -orbit bonds the 2α core
- σ -orbit enhances the 2α core

Y. Kanada-En'yo, PRC **91**, 014315 (2015)

Motivation

O No direct evidence of the cluster development in Be and B isotopes has been found – Physical quantities that can directly probe the cluster structure are desirable

Purpose of this talk

O Investigate the cluster formation in Be and B isotopes with AMD.

– Not only α cluster but also ⁶He and ⁸He cluster formation probabilities

Antisymmetrized Molecular Dynamics (AMD)

Hamiltonian

$$\hat{H} = \sum_{i}^{A} \hat{t}_{i} - \hat{t}_{c.m.} + \sum_{i < j}^{A} \hat{v}_{ij}^{\text{Gogny D1S}} + \sum_{i < j \in \text{proton}}^{A} \hat{v}_{ij}^{\text{Coulomb}}$$
J. F. Berger, M. Girod and D. Gogny, CPC **63**, 365 (1991)

► Single nucleon wave function $\phi_i(\mathbf{r}) = \exp\left\{-\sum_{\sigma=x,y,z} \nu_\sigma (r_\sigma - Z_{i\sigma})^2\right\} (a_i \chi_\uparrow + b_i \chi_\downarrow) \tau_i$ ► Parity projected wave function $\Phi^\pi = \hat{P}^\pi \mathcal{A}\{\phi_1, \phi_2, \cdots, \phi_A\}$

Variational calculation

- The parameters $Z_{i\sigma}$, ν_{σ} , a_i , b_i are determined by variational calculation, minimizing the energy with a constraint on the nuclear quadrupole deformation parameters β
- We obtain the optimized intrinsic wave function $\Phi^{\pi}(\beta)$

Angular momentum projection

The eigenstate for total angular momentum J is described by projecting the basis wave function obtained by solving the variational calculation.

$$\Phi_{MK}^{J\pi}(\boldsymbol{\beta}) = \hat{P}_{MK}^{J} \Phi^{\pi}(\boldsymbol{\beta}) = \frac{2J+1}{8\pi^2} \int \mathrm{d}\Omega \, D_{MK}^{J*}(\Omega) R(\Omega) \Phi^{\pi}(\boldsymbol{\beta})$$

Generated Coordinate Method (GCM)

The coefficients $f_K(\beta_i)$ can be obtained by diagonalizing the Hamiltonian. The quadrupole deformation parameter β is a generator coordinate.

- GCM wave function
$$\Psi_{M,\alpha}^{J\pi} = \sum_{iK} f_{K,\alpha}(\beta_i) \hat{P}_{MK}^J \Phi^{\pi}(\beta_i)$$

$$\bullet \text{ Hill-Wheeler Eq.} \qquad \sum_{jK'} (H_{iKjK'} - E_{\alpha} N_{iKjK'}) f_{K',\alpha}(\beta_j) = 0 \\ H_{iKjK'} = \langle \hat{P}^J_{MK} \Phi^{\pi}(\beta_i) | \, \hat{H} | \hat{P}^J_{MK'} \Phi^{\pi}(\beta_j) \rangle, \qquad N_{iKjK'} = \langle \hat{P}^J_{MK} \Phi^{\pi}(\beta_i) | \, \hat{P}^J_{MK'} \Phi^{\pi}(\beta_j) \rangle$$

Evaluation of the cluster formation (e.g.: α cluster)

Reduced Width Amplitude (RWA)

Probability amplitude $\mathcal{Y}(a)$ at which α cluster Φ_{α} exists from the daughter nucleus Φ_{A-4}

αcl

Spectroscopic factor (S-factor)

$$S(\alpha) = \int_0^\infty \mathrm{d}a \, |a\mathcal{Y}(a)|^2$$

Y. Chiba at al., PTEP 2017, 053D01 (2017)

Evaluation of the cluster formation (e.g.: α cluster)

Reduced Width Amplitude (RWA)

Probability amplitude $\mathcal{Y}(a)$ at which α cluster Φ_{α} exists from the daughter nucleus Φ_{A-4}

O Be isotopes have the same molecular orbit configuration of previous AMD calculations Y. Kanada-En'yo, PRC 91, 014315 (2015)

+

 σ -orbit enhances the 2α core

α

π-orbit

1 Be-isotope

O Cluster distance reflects the molecular orbit picture.

O The α cluster formation is decreasing as the number of neutrons increases.

- S-factors of α cluster can not explain the enhancement of clustering.
- There would be some clustering of ⁶He.

1 Be-isotope

O The ⁶He cluster formation is also considered in ¹²Be and ¹⁴Be.

– S-factors of ⁶He are comparable or not negligible to that of α .

O S_{sum}: Summation of α and ⁶He S-factors

- The structures of $|\alpha + \Phi_{A-4}\rangle$ and $|^{6}He + \Phi_{A-6}\rangle$ are not very similar.

O Total S-factors of α and ⁶He look correlated with the enhancement of clustering.

2 B-isotope

O AMD reproduces the trend of the charge radius.

- Cluster formation is expected to be enhanced toward the neutron drip-line

O The α cluster formation is decreasing as the number of neutrons increases.

¹¹B: π^+ scattering

B. M. Barnett et al., Phys. Lett. 97B, 45 (1980)

¹³⁻¹⁷B: Charge-changing cross sections measurements

A. Estradé et al. PRL 113, 132501 (2014)

2 B-isotope

O The α , ⁶He, and ⁸He cluster formations are considered.

O Total S-factors of α , ⁶He, and ⁸He look correlated with the enhancement of clustering.

- ⁸He S-factor of ¹⁹B is not large due to its oblate deformation.

Summary

O Cluster formation in light neutron-rich nuclei

– α cluster formation decreases in C isotopes
 but is expected to be enhanced in Be and B isotopes

O Investigated the cluster formation in neutron-rich Be and B isotopes

- Not only α cluster but also ⁶He and ⁸He clusters were considered
- S_{sum} looks correlate to the enhancement of clustering

O Plan

 Relation between the cluster formation and neutron-skin thickness to investigate the cluster formation in the neutron matter