Toward *ab initio* charge symmetry breaking in nuclear energy density functionals

内藤 智也 (Tomoya Naito)

RIKEN iTHEMS Program, JAPAN Department of Physics, Graduate School of Science, The University of Tokyo, JAPAN

May 23, 2022

Symposium on "Developments of Physics of Unstable Nuclei (YKIS2022b)" Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, JAPAN

RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program

Ab initio CSB

Introduction

Nuclear Interaction and Isospin T

Nuclear interaction: *almost* isospin symmetric

 $v_{pp}^{T=1} \simeq v_{pn}^{T=1} \simeq v_{nn}^{T=1} \& v_{pn}^{T=0} \neq v^{T=1}$

- ISB terms of bare nuclear int. is 0.1–1 % of main (isospin sym.) part
- Atomic nuclei: also *almost* isospin symmetric
 - Atomic nuclei with the same T and A: almost the same properties
 - Nuclear properties: almost T_z-independent
- Most nuclear EDFs are constructred with assuming isospin symmetric
- Thanks to recent progress of precise measurements, isospin symmetry breaking (ISB) of atomic nuclei is highlighted

Introduction

An Example of Isospin Symmetry in Atomic Nuclei-Mirror Nuclei

- If neither Coulomb int. nor ISB terms of nuclear int. existed, the properties of mirror nuclei would be identical
 → In reality, the properties are not identical
- Mass difference of mirror nuclei ∆E_{tot} mainly originates from Coulomb int.
 → Coulomb int. is not enough "Okamoto-Nolen-Schiffer anomaly"
- Recently, differences of other properties have also been revealed NSCL G.S. of $^{73}_{38}$ Sr is $J^{\pi} = 5/2^-$, while G.S. of $^{73}_{35}$ Br is $J^{\pi} = 1/2^-$ RIBF $^{70}_{36}$ Kr has different shape to $^{70}_{34}$ Se

Okamoto. *Phys. Lett.* **11**, 150 (1964) Nolen and Schiffer. *Annu. Rev. Nucl. Sci.* **19**, 471 (1969) Hoff et al. *Nature* **580**, 52 (2020) Wimmer et al. *Phys. Rev. Lett.* **126**, 072501 (2001)

Wimmer et al. Phys. Rev. Lett. 126, 072501 (2021)

Introduction

Nuclear Interaction and Isospin T

• Nuclear interaction: *almost* isospin symmetric

 $v_{pp}^{T=1} \simeq v_{pn}^{T=1} \simeq v_{nn}^{T=1} \& v_{pn}^{T=0} \neq v^{T=1}$

- ISB terms of bare nuclear int. is 0.1–1 % of main (isospin sym.) part
- Atomic nuclei: also *almost* isospin symmetric
 - Atomic nuclei with the same T and A: almost the same properties
 - Nuclear properties: almost T_z-independent
- Most nuclear EDFs are constructred with assuming isospin symmetric
- Thanks to recent progress of precise measurements, isospin symmetry breaking of (ISB) atomic nuclei is highlighted
- To understand such isospin symmetry breaking systematically, isospin symmetry breaking should be considerd in EDF (effective int.)

Isospin Symmetry Breaking (ISB) Terms of Nuclear Inteaction

Charge symmetry breaking (CSB)

• Difference between *p*-*p* int. and *n*-*n* int.

$$v_{\text{CSB}} \equiv v_{nn}^{T=1} - v_{pp}^{T=1} \sim \tau_{zi} + \tau_{zj}$$

- Originates from mass difference of nucleons $(m_p \neq m_n)$ and $\pi^0 \cdot \eta \& \rho^0 \cdot \omega$ mixings in meson-exchange process
- Charge independence breaking (CIB)
 - Difference between like-particle int. and diff.-particle int.

$$v_{\text{CIB}} \equiv \frac{v_{nn}^{T=1} + v_{pp}^{T=1}}{2} - v_{np}^{T=1} \sim \tau_{zi} \tau_{zj}$$

- Originates from mass difference of pions $(m_{\pi^0} \neq m_{\pi^{\pm}})$
- In bare interaction, CIB is ≈ 10 times stronger than CSB

van Kolck. Few-Body Syst. Suppl. 9, 444 (1995) Wiringa et al. Phys. Rev. C 51, 38 (1995)

Miller, Opper, and Stephenson. Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

Skyrme-like s-wave ISB Interaction

$$v_{\text{Sky}}^{\text{CSB}}(\mathbf{r}) = s_0 \left(1 + y_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} + \tau_{2z}}{4}$$
$$v_{\text{Sky}}^{\text{CIB}}(\mathbf{r}) = u_0 \left(1 + z_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} \tau_{2z}}{2}$$
$$\mathcal{E}_{\text{CSB}}\left[\rho_p, \rho_n\right] = \frac{s_0 \left(1 - y_0\right)}{8} \left(\rho_n^2 - \rho_p^2\right)$$
$$\mathcal{E}_{\text{CIB}}\left[\rho_p, \rho_n\right] = \frac{u_0}{8} \left(1 - z_0\right) \left[\left(\rho_n^2 + \rho_p^2\right) - 2\left(2 + z_0\right)\rho_n\rho_p\right]$$

• Parameters: s_0 , u_0 , y_0 , and z_0

Sagawa, Van Giai, and Suzuki. *Phys. Lett. B* **353**, 7 (1995) Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Skyrme-like s-wave ISB Interaction

$$v_{\text{Sky}}^{\text{CSB}}(\mathbf{r}) = s_0 \left(1 + y_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} + \tau_{2z}}{4}$$
$$v_{\text{Sky}}^{\text{CIB}}(\mathbf{r}) = u_0 \left(1 + z_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} \tau_{2z}}{2}$$
$$\mathcal{E}_{\text{CSB}}\left[\rho_p, \rho_n\right] = \frac{s_0 \left(1 - y_0\right)}{8} \left(\rho_n^2 - \rho_p^2\right)$$
$$\mathcal{E}_{\text{CIB}}\left[\rho_p, \rho_n\right] = \frac{u_0}{8} \left(1 - z_0\right) \left[\left(\rho_n^2 + \rho_p^2\right) - 2\left(2 + z_0\right)\rho_n\rho_p\right]$$

- Parameters: s_0 , u_0 , y_0 , and z_0
- Since ISB terms are tiny compared to isospin symmetric (main) part, it is better if these parameters can be fixed theoretically

Sagawa, Van Giai, and Suzuki. *Phys. Lett. B* **353**, 7 (1995) Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018)

Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018)

SAMi-ISB Interaction

- All the parameters including the main part are fitted altoghether
- $y_0 = z_0 = -1$ to select the spin-singlet (S = 0) channel
- s_0 and u_0 are fitting parameters CSB $s_0 = -26.3 \text{ MeV fm}^3$ Isobaric analog energy of ²⁰⁸Pb Fitted to exp. value

CIB $u_0 = +25.8 \text{ MeV fm}^3$ CIB energy of symmetric nuclear matter Ab initio!

Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018)

SkM*-ISB, SLy4-ISB, and SV-ISB Interaction

- ISB parts are introduced on top of conventional Skyrme int.
- CSB $s_0 \simeq -10 \text{ MeV fm}^3$ and CIB u_0 are detemined to reproduce mirror displacement energy & triplet displacement energy

Fitted to exp. value

CIB operator is different from that SAMi-ISB used

Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018)

Tomoya Naito (RIKEN/U. Tokyo)

Can we determine CSB *s*₀ theoretically??

Can we determine CSB *s*₀ **theoretically??**

CSB is sensitive to ΔR_{np} and ΔE_{tot}

Isospin-Symmetric Term Dependence

• If different parameter set of v_{Sky}^{IS} is used, how s_0 -dependence on ΔR_{np} and ΔE_{tot} changes??

Isospin-Symmetric Term Dependence

 If different parameter set of v^{IS}_{Sky} is used, how s₀-dependence on ΔR_{np} and ΔE_{tot} changes??

 v^{IS}_{Sky} hardly affects the slope, although the absolute values are different Naito, Colò, Liang, Roca-Maza, and Sagawa. *Phys. Rev. C* 105, L021304 (2022)

• Calculate ΔR_{np} for various s_0 and fit to $\Delta R_{np} = a - bs_0$

1 Derive avaraged value \overline{b}

- Calculate ΔR_{np} for various s_0 and fit to $\Delta R_{np} = a - bs_0$
- 1 Derive avaraged value \overline{b}
- 2 Calculate ΔR_{np} w/o CSB terms: $\Delta R_{np}^{\text{w/o CSB}}$

- Calculate ΔR_{np} for various s_0 and fit to $\Delta R_{np} = a - bs_0$
- 1 Derive avaraged value \overline{b}
- 2 Calculate ΔR_{np} w/o CSB terms: $\Delta R_{np}^{\text{w/o CSB}}$
- 3 Calculate ΔR_{np} w/ CSB terms: $\Delta R_{np}^{\text{w/CSB}}$

- Calculate ΔR_{np} for various s_0 and fit to $\Delta R_{np} = a - bs_0$
- 1 Derive avaraged value \overline{b}
- 2 Calculate ΔR_{np} w/o CSB terms: $\Delta R_{np}^{\text{w/o CSB}}$
- 3 Calculate ΔR_{np} w/ CSB terms: $\Delta R_{np}^{\text{w/CSB}}$

- Calculate ΔR_{np} for various s_0 and fit to $\Delta R_{np} = a - bs_0$
- 1 Derive avaraged value \overline{b}
- 2 Calculate ΔR_{np} w/o CSB terms: $\Delta R_{np}^{\text{w/o CSB}}$
- 3 Calculate ΔR_{np} w/ CSB terms: $\Delta R_{np}^{\text{w/CSB}}$
- 4 s_0 can be determined by $s_0 = -\frac{\Delta R_{np}^{w/CSB} - \Delta R_{np}^{w/o CSB}}{\overline{b}}$

Mysterious of CSB Strength

• Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \,\mathrm{MeV} \,\mathrm{fm}^3 \ (\Delta E_{\mathrm{tot}} \,\mathrm{of}^{\,48}\mathrm{Ca}^{-48}\mathrm{Ni}, \,\mathrm{CC} \,\&\, \chi \mathrm{EFT})$
- $s_0 \simeq -3 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{10}\text{Be}{}^{-10}\text{C}$, VMC & AV18)
- Phenomenological determination—Referring experimental data

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

Mysterious of CSB Strength

• Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{48}\text{Ca}{}^{-48}\text{Ni}$, CC & χ EFT)
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be}{}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\;\mathrm{AV18})$
- Phenomenological determination—Referring experimental data

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

O(1) MeV fm³

Mysterious of CSB Strength

Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;^{48}\mathrm{Ca}^{-48}\mathrm{Ni}, \;\mathrm{CC} \;\& \;\chi \mathrm{EFT})$
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be}{}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\;\mathrm{AV18})$
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

O(1) MeV fm³

Mysterious of CSB Strength

• Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{48}\text{Ca}{}^{-48}\text{Ni}$, CC & χ EFT)
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be}{}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\;\mathrm{AV18})$
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

O(1) MeV fm³

O(10) MeV fm³

Mysterious of CSB Strength

• Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;^{48}\mathrm{Ca}^{-48}\mathrm{Ni}, \;\mathrm{CC} \;\& \chi \mathrm{EFT})$
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be}{}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\;\mathrm{AV18})$
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Theoretical value is ×0.1?!?!
- CSB effect in ab initio is ×0.1 of that in DFT?!?!

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

O(10) MeV fm³

O(1) MeV fm³

Mysterious of CSB Strength

• Ab initio determination

Combining with previous "slope" and theoretical calculation

- $s_0 \simeq -2 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;^{48}\mathrm{Ca}^{-48}\mathrm{Ni}, \;\mathrm{CC} \;\& \chi \mathrm{EFT})$
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be}{}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\;\mathrm{AV18})$
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Theoretical value is ×0.1?!?!
- CSB effect in ab initio is ×0.1 of that in DFT?!?!

Open problem

CC & χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. arXiv:2111.12775 [nucl-th] VMC & AV18: Wiringa. Private communication s_0 -value: Roca-Maza, Colò, and Sagawa. *Phys. Rev. Lett.* **120**, 202501 (2018) s_0 -value: Bączyk, Dobaczewski *et al. Phys. Lett. B* **778**, 178 (2018)

Discussion: Naito, Roca-Maza, Colò, Liang, and Sagawa. arXiv:2202.05035 [nucl-th]

 $O(10) \text{ MeV fm}^3$

O(1) MeV fm³

Conclusion

Conclusion

- Ab initio method to determine CSB strength is proposed
- Once ΔR_{np} or ΔE_{tot} with and without CSB are obtained, CSB strength can be determined
- Phenomenological value of s_0 is $\times 10$ of *ab initio* value
- CSB ctrb. to ΔR_{np} or ΔE_{tot} in DFT is $\times 10$ of those in *ab initio* calc Beyond MF Correction?? *p*-wave contribution??

Conclusion

Conclusion

- Ab initio method to determine CSB strength is proposed
- Once ΔR_{np} or ΔE_{tot} with and without CSB are obtained, CSB strength can be determined
- Phenomenological value of s_0 is $\times 10$ of *ab initio* value
- CSB ctrb. to ΔR_{np} or ΔE_{tot} in DFT is $\times 10$ of those in *ab initio* calc Beyond MF Correction?? *p*-wave contribution??

Thank you for attention!!