% TRIUMF

No-core shell model with continuum applications to nuclear astrophysics

SYMPOSIUM "Developments of Physics of Unstable Nuclei (YKIS2022b)" 23-27 May 2022

Petr Navratil

TRIUMF

1

e e

0

Nuclear reactions in astrophysics

- Nuclear reactions play important role in astrophysics and cosmology
 - Light nuclei synthesized in Big Bang
 - Heavier nuclei up to iron produced by fusion, transfer, radioactive capture in the stars
 - Still heavier nuclei produced by s-, i-, r-, rp-processes
- Thermonuclear reaction rate $r_{12} = \langle \sigma v \rangle n_1 n_2$

$$\langle \sigma v \rangle = \left(\frac{8}{\mu\pi}\right)^{1/2} (kT)^{-3/2} \int_0^\infty E\sigma(E) \exp(-E/kT) dE$$

S-factor

 $S(E) = \sigma(E) E \exp(2\pi\eta)$ Sommerfeld parameter $\eta = Z_1 Z_2 e^2/\hbar v$

$$\langle \sigma v \rangle = \left(\frac{8}{\mu\pi}\right)^{1/2} (kT)^{-3/2} \int_0^\infty S(E) \exp(-E/kT - d/E^{1/2}) dE \qquad d = (2\mu)^{1/2} \pi Z_1 Z_2 e^2/\hbar$$

Gamow window – narrow energy range; frequently inaccessible to experiments – theory important

First principles or ab initio nuclear theory

First principles or *ab initio* nuclear theory – what we do at present

Contents lists available at SciVerse ScienceDirect Progress in Particle and Nuclear Physics

Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

Review Ab initio no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

 $N = N_{\text{max}} +$

 $E = (2n + l + \frac{3}{2}) \mathfrak{h} \Omega$

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\mathbf{S} \Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

5

Ab Initio Calculations of Reactions Important for Astrophysics Unified approach to bound & continuum states: NCSMC

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonicoscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion, clusters described by NCSM
 - proper asymptotic behavior
 - Iong-range correlations
- Combine the above: *ab initio* no-core shell model with continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \begin{vmatrix} (A) & & & \\ & & \end{pmatrix}, \lambda + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \begin{vmatrix} & & & \\ & & & \\ & & & \\ & & & (A-a) \end{vmatrix}, \nu$$
Unknowns

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

NCSM

NCSM/RGM

NCSMC

Binary cluster basis

7

• Working in partial waves ($v = \{A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s\ell\}$)

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \hat{A}_{\nu} \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{g_{\nu}^{J^{\pi}T}(r_{A-a,a})}{r_{A-a,a}}$$
Target
Projectile

• Introduce a dummy variable \vec{r} with the help of the delta function

$$\psi^{J^{\pi}T} \rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi}T}(r)}{r} \hat{A}_{v} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \, r^{2} dr \, d\hat{r}$$

Allows to bring the wave function of the relative motion in front of the antisymmetrizer

$$\sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \bigg|_{\begin{pmatrix} \mathbf{a} \\ \mathbf{a} \\ (A-a) \end{pmatrix}} \overset{\vec{r}}{(a)} , \nu \bigg\rangle$$

Coupled NCSMC equations

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)} \bigotimes_{\nu} , \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} |_{(A-a)}^{\vec{r}} (a), \nu \rangle$$

$$E_{\lambda}^{NCSM} \delta_{\lambda\lambda'} \qquad \begin{pmatrix} (A) \bigotimes_{\nu} |H \hat{A}_{\nu}|_{(a)}^{\vec{r}} (a) \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} \\ \downarrow \\ I_{NCSM} \\ g \\ H_{NCSM} \end{pmatrix} \begin{pmatrix} (C) \\ (C) \\ g \\ g \\ I_{NCSM} \\ g \\ (C) \\$$

Physica Scripta doi:10.1088/0031-8949/91/5/053002 Royal Swedish Academy of Scie 053002 (38pp)

8

mment

d ab initio approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

Radiative capture calculations in NCSMC

Typically, E1 transitions the most important

$$\begin{array}{ll} \quad \text{Operator} \qquad \hat{D} = e \sum_{i=1}^{A} \frac{1 + \tau_{i}^{z}}{2} (\mathbf{r}_{i} - \mathbf{R}_{\text{c.m.}}^{(A)}) \\ \quad \text{NCSMC wave function} \qquad |\Psi_{A}^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda}^{J^{\pi}T} |AJ^{\pi}T\rangle + \sum_{\nu} \int drr^{2} \frac{\gamma_{\nu}^{J^{\pi}T}(r)}{r} \mathcal{A}_{\nu} |\Phi_{\nu r}^{J^{\pi}T}\rangle \\ \quad \text{Matrix element} \qquad \langle \Psi_{f}^{J^{\pi}f}T_{f} ||\hat{\mathcal{O}}_{\mu_{\tau}}^{(\kappa\tau)}||\Psi_{i}^{J^{\pi}iT_{i}}_{M_{T_{i}}}\rangle = \sum_{\lambda_{i}\lambda_{f}} \tilde{c}_{\lambda_{i}}^{*} \tilde{c}_{\lambda_{i}} \langle A\lambda_{f}J_{f}T_{f}M_{T_{f}}||\hat{\mathcal{O}}_{\mu_{\tau}}^{(\kappa\tau)}||A\lambda_{i}J_{i}T_{i}M_{T_{i}}\rangle \\ \quad + \sum_{\lambda_{f}\nu_{i}} \tilde{c}_{\lambda_{f}}^{*} \int_{0}^{\infty} drr^{2} \tilde{\chi}_{\nu_{i}}(r) \frac{1}{r} \langle A\lambda_{f}J_{f}T_{f}M_{T_{f}}||\hat{\mathcal{O}}_{\mu_{\tau}}^{(\kappa\tau)}\hat{\mathcal{A}}_{\nu_{i}}||\Phi_{\nu_{i}r}^{J_{i}T_{i}M_{T_{i}}}\rangle \\ \quad + \sum_{\lambda_{i}\nu_{f}} \tilde{c}_{\lambda_{i}} \int_{0}^{\infty} drr^{2} \tilde{\chi}_{\nu_{f}}^{*}(r) \frac{1}{r} \langle \Phi_{\nu_{f}r}^{J_{f}T_{f}M_{T_{f}}}||\hat{\mathcal{A}}_{\nu_{f}}\hat{\mathcal{O}}_{\mu_{\tau}}^{(\kappa\tau)}||A\lambda_{i}J_{i}T_{i}M_{T_{i}}\rangle \\ \quad + \sum_{\nu_{f}\nu_{i}} \int_{0}^{\infty} dr'r'^{2} \tilde{\chi}_{\nu_{f}}^{*}(r') \frac{1}{r'} \int_{0}^{\infty} drr^{2} \tilde{\chi}_{\nu_{i}}(r) \frac{1}{r} \langle \Phi_{\nu_{f}r'}^{J_{f}T_{f}M_{T_{f}}}||\hat{\mathcal{A}}_{\nu_{f}}\hat{\mathcal{O}}_{\mu_{\tau}}^{(\kappa\tau)}\hat{\mathcal{A}}_{\nu_{i}}||\Phi_{\nu_{i}r}^{J_{i}T_{i}M_{T_{i}}}\rangle \end{aligned}$$

Express operator as target, projectile, and relative motion parts

$$\hat{D} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^z}{2} (\mathbf{r}_i - \mathbf{R}_{\text{c.m.}}^{(A-a)}) + e \sum_{i=A-a+1}^{A} \frac{1 + \tau_i^z}{2} (\mathbf{r}_i - \mathbf{R}_{\text{c.m.}}^{(a)}) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \mathbf{r}_{A-a,a}$$

10

Input for NCSMC calculations:

Nuclear forces from chiral Effective Field Theory

- Approach taking advantage of the separation of scales
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,¶}

Binding energies of light and selected medium mass nuclei from chiral NN+3N forces

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,∥}

Binding energies of light and selected medium mass nuclei from chiral NN+3N forces

Quite reasonable description of binding energies across the nuclear charts becomes feasible

¹⁶O

- The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
- Light nuclei NCSM

-10

-20 -30

-40

-50

-60

-70

-80

-90

-100

-110 -120

-130

Egs [MeV]

 ${}^{3}\text{H} {}^{3}\text{He}$

Medium mass nuclei – Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

Big Bang Nucleosynthesis

- Primordial nucleosynthesis 10 s to 20 min after the Big Bang
 - Helium 25% of the mass of the Universe
 - Prediction depends on
 - Baryon-to-photon ratio CMB Planck data
 - Nuclear reaction rates

- D and ⁴He in agreement with observations
- ³He reliable measurements do not exist
- ⁷Li predictions three times higher than observations
- ⁶Li?

Rev. Mod. Phys. 88:015004 (2016)

Radiative capture of deuterons on ⁴**He**

- Reaction ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ responsible for ${}^{6}\text{Li}$ production in BBN
- Three orders of magnitude discrepancy between BBN predictions and observations
 - Problem with our understanding of the reaction rate?
 - New physics?
 - Problem with astronomical observations?

Ab initio prediction of the ${}^{4}\text{He}(d,\gamma) {}^{6}\text{Li}$ big-bang radiative capture

C. Hebborn,^{1, 2, *} G. Hupin,³ K. Kravvaris,² S. Quaglioni,² P. Navrátil,⁴ and P. Gysbers^{4, 5}

arXiv: 2203.15914

15

Radiative capture of deuterons on ⁴He

NCSMC calculations with chiral NN+3N interaction

Structure of ⁶Li

Ground state properties: Energy Asymptotic normalization constants Magnetic moment

	NN-only	NCSMC	NCSMC-pheno	Exp. or Eval.
$E_{\rm g.s.}$ [MeV]	-1.848	-1.778	-1.474	-1.4743
$\mathcal{C}_0 \; [\mathrm{fm}^{-1/2}]$	2.95	2.89	2.62	2.28(7)
$\mathcal{C}_2 \; [\mathrm{fm}^{-1/2}]$	-0.0369	-0.0642	-0.0554	-0.077(18)
$\mathcal{C}_2/\mathcal{C}_0$	-0.013	-0.022	-0.021	-0.025(6)(10)
$\mu \; [\mu_N]$	0.85	0.84	0.84	0.8220473(6)

⁴He+*d* threshold

Ab initio prediction of the ${}^{4}\text{He}(d,\gamma) {}^{6}\text{Li}$ big-bang radiative capture

C. Hebborn,^{1,2,*} G. Hupin,³ K. Kravvaris,² S. Quaglioni,² P. Navrátil,⁴ and P. Gysbers^{4,5}

arXiv: 2203.15914

16

Radiative capture of deuterons on 4He

NCSMC calculations with chiral NN+3N interaction

Structure of ⁶Li

Elastic scattering ${}^{4}\text{He}(d,d){}^{4}\text{He}$ cross section at the deuteron back scattered angle 164°

Ab initio prediction of the ${}^{4}\text{He}(d,\gamma) {}^{6}\text{Li}$ big-bang radiative capture

C. Hebborn,^{1, 2, *} G. Hupin,³ K. Kravvaris,² S. Quaglioni,² P. Navrátil,⁴ and P. Gysbers^{4, 5}

Radiative capture of deuterons on ⁴**He**

arXiv: 2203.15914

17

- NCSMC calculations with chiral NN+3N interaction
 - Capture S-factor

Dominated by E2 M1 significant at low energy E1 negligible – isospin supressed (T=0 \rightarrow T=0)

Low energy S-factor consistent with LUNA data, below the ⁶Li Coulomb breakup data

Low energy S-factor consistent with LUNA data, below the ⁶Li Coulomb breakup data

Radiative capture of deuterons on ⁴He

- NCSMC calculations with chiral NN+3N interaction
 - Capture S-factor

Convergence of the S-factor with $N_{\rm max}$

SRG renormalization of the M1 operator

Ab initio prediction of the ${}^{4}\text{He}(d,\gamma) {}^{6}\text{Li}$ big-bang radiative capture

C. Hebborn,^{1,2,*} G. Hupin,³ K. Kravvaris,² S. Quaglioni,² P. Navrátil,⁴ and P. Gysbers^{4,5}

arXiv: 2203.15914

18

Ab initio prediction of the ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ big-bang radiative capture

C. Hebborn,^{1, 2, *} G. Hupin,³ K. Kravvaris,² S. Quaglioni,² P. Navrátil,⁴ and P. Gysbers^{4, 5}

Radiative capture of deuterons on ⁴He

arXiv: 2203.15914 ₁₉

- NCSMC calculations with chiral NN+3N interaction
 - Thermonuclear reaction rate

Thermonuclear reaction rate smaller than NACRE II evaluation, agreement with LUNA result with less uncertainty

Ab initio prediction for the radiative capture of protons on ⁷Be

K. Kravvaris,¹ P. Navrátil,² S. Quaglioni,¹ C. Hebborn,^{3,1} and G. Hupin⁴

arXiv: 2202.11759

Radiative capture of protons on 7Be

- Solar pp chain reaction, solar ⁸B neutrinos
- NCSMC calculations with a set of chiral NN+3N interactions as input
- Example of ⁸B structure results

Radiative capture of protons on 7Be

NCSMC S-factor results

E1 non-resonant, M1/E2 at 1⁺ and 3⁺ resonances

	$C_{p_{1/2}}$	$C_{p_{3/2}}$	a_1	a_2	$S_{17}(0)$
N^2LO+3N_{lnl}	0.384	0.691	4.4(1)	-0.5(1)	23.9
$N^{3}LO + 3N_{lnl}$	0.390	0.678	1.3(1)	-4.7(1)	23.5
${ m N}^4{ m LO}{+}3{ m N}_{ m lnl}$	0.354	0.669	1.6(1)	-4.4(1)	22.0
$N^4LO+3N^*_{lnl}$	0.343	0.621	1.3(1)	-5.0(1)	19.3
$\rm N^3LO^*{+}3N_{\rm lnl}$	0.334	0.663	0.1(1)	-7.7(1)	21.1
$N^3LO^*{+}3N_{\rm loc}$	0.308	0.584	2.5(1)	-3.6(2)	16.8
Ref. [41]	0.315(9)	0.66(2)	$17.34^{+1.11}_{-1.33}$	$-3.18^{+0.55}_{-0.50}$	

Ab initio prediction for the radiative capture of protons on ⁷Be K. Kravvaris,¹ P. Navrátil,² S. Quaglioni,¹ C. Hebborn,^{3,1} and G. Hupin⁴ arXiv: 2202.11759

Radiative capture of protons on 7Be

NCSMC S-factor results

Ab initio prediction for the radiative capture of protons on ⁷Be K. Kravvaris,¹ P. Navrátil,² S. Quaglioni,¹ C. Hebborn,^{3,1} and G. Hupin⁴ arXiv: 2202.11759

	$C_{p_{1/2}}$	$C_{p_{3/2}}$	a_1	a_2	$S_{17}(0)$
N^2LO+3N_{lnl}	0.384	0.691	4.4(1)	-0.5(1)	23.9
$N^{3}LO + 3N_{lnl}$	0.390	0.678	1.3(1)	-4.7(1)	23.5
$N^4LO + 3N_{lnl}$	0.354	0.669	1.6(1)	-4.4(1)	22.0
$N^4LO+3N^*_{lnl}$	0.343	0.621	1.3(1)	-5.0(1)	19.3
$\rm N^{3}LO^{*}{+}3N_{\rm lnl}$	0.334	0.663	0.1(1)	-7.7(1)	21.1
$\rm N^3LO^*{+}3N_{\rm loc}$	0.308	0.584	2.5(1)	-3.6(2)	16.8
Ref. [41]	0.315(9)	0.66(2)	$17.34^{+1.11}_{-1.33}$	$-3.18^{+0.55}_{-0.50}$	

Radiative capture of protons on 7Be

NCSMC S-factor results

Recommended value $S_{17}(0) \sim 19.8(3) \text{ eV b}$

Latest evaluation in *Rev. Mod. Phys.* **83**,195–245 (2011): $S_{17}(0) = 20.8 \pm 0.7(expt) \pm 1.4(theory) eV b$

	$C_{p_{1/2}}$	$C_{p_{3/2}}$	a_1	a_2	$S_{17}(0)$
N^2LO+3N_{lnl}	0.384	0.691	4.4(1)	-0.5(1)	23.9
$\rm N^{3}LO{+}3N_{lnl}$	0.390	0.678	1.3(1)	-4.7(1)	23.5
$N^4LO + 3N_{lnl}$	0.354	0.669	1.6(1)	-4.4(1)	22.0
$N^4LO+3N^*_{lnl}$	0.343	0.621	1.3(1)	-5.0(1)	19.3
$\rm N^3LO^*{+}3N_{\rm lnl}$	0.334	0.663	0.1(1)	-7.7(1)	21.1
$N^3LO^*{+}3N_{\rm loc}$	0.308	0.584	2.5(1)	-3.6(2)	16.8
Ref. [41]	0.315(9)	0.66(2)	$17.34^{+1.11}_{-1.33}$	$-3.18^{+0.55}_{-0.50}$	

Conclusions

- Ab initio calculations of nuclear structure and reactions becoming feasible beyond the lightest nuclei
 - Make connections between the low-energy QCD, many-body systems, and nuclear astrophysics
- Applications of *ab initio* theory to nuclear reactions important for astrophysics
 - ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ importance of M1 contribution at very low energies
 - ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ new evaluation with significantly reduced uncertainty
- *Ab initio* nuclear theory essential for precision applications such as tests of fundamental symmetries
 - Quenching of g_A
 - Double beta decay matrix elements
 - Isospin mixing correction δ_c
 - Nuclear anapole moment, electric dipole moment
 - ...

In synergy with experiments, ab initio nuclear theory is the right approach to understand low-energy properties of atomic nuclei

% TRIUMF

Thank you! Merci! ありがとうございました

Discovery, accelerated