Progress of the r-process theory in the era of nuclear experiments and astronomical observations

Nobuya Nishimura

(西村 信哉)

Astrophysical Big-bang, CPR, RIKEN & Radioactive Isotope Physics, RNC, RIKEN

Nucleosynthesis beyond Iron

Evolution of r-process elements

Relative log

୍କ

log

<u>Contents</u>

Part 1: Astrophysics

- Overview of r-process astrophysical sites
- kilonovae (NS mergers) vs supernovae
- Observation of GW170817
- theoretical progresses on kilonova
- interpretation of galactic chemical evolution
- PART 2: Nuclear physics
 - overview: r-process nucleosynthesis
 - experiment: beta-decay
 - beta-decay vs n-capture
- Summary

PART 1: Astrophysics

"Observation of the NS merger and impacts on the r-process studies"

Astronomical site(s) of the r-process

Core-collapse supernova

more massive star has higher central T

Supernova explosion

explosive nucleosynthesis (radioactive iron-group nuclei) massive stars (>10 M_{sun})

- nuclear reactions supply
 energy (brightness)
- each burning process produces heavier elements as "ashes" $(H \rightarrow He \rightarrow C \rightarrow O \rightarrow \cdots \rightarrow Fe)$

radioactive decay

The kilonova with GW

- The electromagnetic transient associated with the NS merger
- "kilo"(1000)-nova: 1000 times brighter than nova (fainter than SNe)
- Energy source? —> <u>radioactive decays</u> (e.g, β , α & fission etc.) of neutron-rich nuclei made by r-process nucleosynthesis

GW170817 (17. Aug. 2017)

Electromagnetic counterpart = kilonova (AT2017gfo) was observed host galaxy: NGC4993 (39.5Mpc)

by Magellan telescope; Drout+2017, Science

The r-process in dynamical ejecta

the NS-NS merger scenario studied by hydrodynamical simulations

see a review, e.g., Shibata+2018 (many papers)

Kilonova remnant

60

50

40

30

offsets

5500

4000

cm-2 Å-1 + affset

A [10-20 Sc II

Sem

NS EOS and r-process?

Additional constraints via the r-process?

- the NS lifetime (collapse to BH)
- •r-process abundance patterns?

EOS dependence of the r-process stiff EOS

+ and also they depend on the NS mass ration

<u>NS-BH?</u> GW200105, GW200115

\rightarrow no kilonova event was observed

NS-BH must have different nucleosynthesis signatures: can be very strong r-process→ actinide boost stars? (see, Tsujimoto, NN, Kyutoku 2020, ApJ)

r-Process in metal-poor stars

Cowan+2021

Soar abundances

- "solar r-process"
- = "solar abundances"
 - "s-process calculation"

Galactic halo stars

r-Process-rich stars and GCE Cowan+2021

Galactic chemical evolution

- \cdot NS-NS mergers can be the main source
 - (many papers, e.g., Wanajo+2021)
- but, it needs alternative source? (e.g, Cote+2019)
 - \rightarrow Rare cc-SNe event?
 - GCE of dSph by Tsujimoto & NN (2015, 2018)
 - frequency: 0.5 % of CC-SNe; large mass: ~10⁻⁵ M_{sun}

Short summary

- Observation of NS-NS mergers in GWs and EM waves
 - kilonova was observed (identified) (GW170817)
 - distinction of "color" of kilonova
 a clue of r-process composition
 - $\cdot\,$ Sr in the remnant
 - = primary production by r-process
- Further theoretical studies are ongoing
 - more presice models
 - \cdot which is the dominant decay source (in each epoch)?
- \rightarrow these may be confirmed by future events??

(LIGO/Virgo/KAGRA 04, 2022?—)

other event? black hole—neutron star merger

- Observation of r-process abundances in metal-poor stars
 - \cdot galactic chemical evolution

PART 2: Nuclear Physics "Possible impacts of experimental

progresses on the r-process"

<u>a brief overview:</u> more details will be shown next week at RIKEN

Nuclear Reaction Networks

Nuclear reaction networks

- \cdot tools for bridging nuclear physics to astrophysics
- consider all relevant reaction and decay rates: (n,g)... and reverse reactions, α , β -decays, fission etc.

• "predict" r-process yields in astrophysical environments

r-process simulation

Theoretical Prediction

r-process path is beyond experimental accessible region

Impacts of the N = 126 β -decay half-lives on the r-process NN+2016, PLB

Beta-decay: BRIKEN Experiments

Collective uncertainties on the r-process

<u>Summary</u>

- NS-NS mergers may be the main site for the r-process
 - confirmed in the kilonova (GW170817)
 - $\cdot\,$ dispersion and event rates agree with Eu evolution
- But, some difficulties in the early galaxies
 - several "variations":

weak r-process and actinide-boost stars

- Multiple r-process sources in GCE
 - $\cdot\,$ rate types of SNe with r-process rich yields
 - $\cdot\,$ detection of Sr in the remnant?
- Nuclear-physics uncertainties are still significant
 - experiments are approaching r-process region
 - $\cdot\,$ but, most reaction and decay rates are rely on theory prediction

theoretical interpretation \leftrightarrows observational constraint

- merger, SN models abundances
- Galactic evolution
 kilonova