Progress of the r－process theory in the era of nuclear experiments and astronomical observations

Nobuya Nishimura

（西村信哉）
Astrophysical Big－bang，CPR，RIKEN \＆Radioactive Isotope Physics，RNC，RIKEN

Nucleosynthesis beyond Iron

Evolution of r-process elements

Dark Energy
Accelerated Expansion

Contents

- Part 1: Astrophysics
- Overview of r-process astrophysical sites
- kilonovae (NS mergers) vs supernovae
- Observation of GW170817
- theoretical progresses on kilonova
- interpretation of galactic chemical evolution
- PART 2: Nuclear physics
- overview: r-process nucleosynthesis
- experiment: beta-decay
- beta-decay vs n-capture
- Summary

PART $1:$

Astrophysics
"Observation of the NS merger and impacts on the r-process studies"

Astronomical site(s) of the r-process

Supernovae (cc-SNe)?

neutrino-driven wind

- no direct observation
- theoretical difficulty
- (no very n-rich matter)
r-process is observed in Kilonova/Macronova

Core-collapse supernova

more massive star massive stars (>10 Msun) has higher central T

Supernova explosion
explosive nucleosynthesis (radioactive iron-group nuclei)

"Kilonova" with NS merger

SN

explosion

Neutron star

The kilonova with GW

- The electromagnetic transient associated with the NS merger
- "kilo"(1000)-nova: 1000 times brighter than nova (fainter than SNe)
- Energy source? \rightarrow radioactive decays (e.g, $\beta, \alpha \&$ fission etc.) of neutron-rich nuclei made by r-process nucleosynthesis

GWI70817 (17. Aug. 2017)

Electromagnetic counterpart
= kilonova (AT2017gfo) was observed host galaxy: NGC4993 (39.5Mpc)

by Magellan telescope; Drout+2017, Science

The r-process in dynamical ejecta

Tidal disruption

Shock \& neutrino

Wanajo+NN+2014, ApJL
Ye changes (increase) by neutrino $\bar{\nu}_{e}+p \rightleftarrows e^{+}+n$ $\nu_{e}+n \rightleftarrows e^{-}+p$

kilonova (AT2017gfo) lightcurve

 the NS-NS merger scenario Fujibayashi+NN+2018 studied by hydrodynamical simulations

see a review,
e.g., Shibata +2018
(many papers)

Kilonova remnant

Possibility of other elements?
theoretical models (Domoto+2021)
$\mathrm{Sr}(\mathrm{Z}=38)$ observation in the remnant
\rightarrow primary production of trans-Fe nuclei

Watson+2019 Nature

Contribution to the lightcurve?

NS EOS and r-process?

Additional constraints via the r-process?
-the NS lifetime (collapse to BH)
$\cdot r$-process abundance patterns?

EOS dependence of the r-process stiff EOS

soft EOS

Fujibayashi+(2022)

NS-BH?
 GW200105, GW200115

\rightarrow no kilonova event was observed
Masses in the Stellar Graveyard
in Solar Masses

NS-BH must have different nucleosynthesis signatures: can be very strong r-process \rightarrow actinide boost stars? (see, Tsujimoto, NN, Kyutoku 2020, ApJ)

r-Process in metal-poor stars

Soar abundances

Cowan\&Thieleman(2004)

"solar r-process"
= "solar abundances"

- "s-process calculation"

Galactic halo stars solar-like r-process patten

r-Process-rich stars and GCE

Cowan+2021

Galactic halo stars

solar-like r-process patten

"weak" r-process patten

Galactic chemical evolution

- NS-NS mergers can be the main source (many papers, e.g., Wanajo+2021)
- but, it needs alternative source? (e.g, Cote+2019)
\rightarrow Rare cc-SNe event?
- GCE of dSph by Tsujimoto \& NN $(2015,2018)$
- frequency: 0.5% of CC-SNe; large mass: $\sim 10^{-5} \mathrm{M}$ sun

Short summary

- Observation of NS-NS mergers in GWs and EM waves
- kilonova was observed (identified) (GW170817)
- distinction of "color" of kilonova
= a clue of r-process composition
- Sr in the remnant
= primary production by r-process
- Further theoretical studies are ongoing
- more presice models
- which is the dominant decay source (in each epoch)?
\rightarrow these may be confirmed by future events??
(LIGO/Virgo/KAGRA O4, 2022?-)
other event? black hole—neutron star merger
- Observation of r-process abundances in metal-poor stars
- galactic chemical evolution

PART 2:

 Nuclear Physics "Possible impacts of experimental progresses on the r-process"
a brief overview:

more details will be shown next week at RIKEN

Nuclear Reaction Networks

Nuclear reaction networks

- tools for bridging nuclear physics to astrophysics
- consider all relevant reaction and decay rates: $(\mathrm{n}, \mathrm{g}) \cdots$ and reverse reactions, α, β-decays, fission etc.
- "predict" r-process yields in astrophysical environments r-process simulation

Theoretical Prediction

r-process path is beyond experimental accessible region

Theoretical Prediction

different theoretical masses (and decay rates)
Nishimura+2006, ApJ

Impacts of the $N=126 \beta$-decay half-lives on the r-process NN+2016, PLB

Beta-decay: BRIKEN Experiments

New results of BRIKEN ($\mathrm{P}_{\mathrm{n}} 20$ isotopes)
beta-decay half-life experiments at RIBF (led by S. Nishimura et al.)

Pong, S.Nishimura+NN+(2022), in prep. impacts on the r-process
(in very n-rich environment)

Collective uncertainties on the r-process

$\mathrm{NN}+2 \mathrm{2} 22$, in prep.
$(\mathrm{n}, \mathrm{g}) \times 50, \beta \times 10$ 10^{-2}

does not consider
Mass number, A heaviest nuclei (fission)

Individual impacts

Summary

- NS-NS mergers may be the main site for the r-process
- confirmed in the kilonova (GW170817)
- dispersion and event rates agree with Eu evolution
- But, some difficulties in the early galaxies
- several "variations":
weak r-process and actinide-boost stars
- Multiple r-process sources in GCE
- rate types of SNe with r-process rich yields
- detection of Sr in the remnant?
- Nuclear-physics uncertainties are still significant
- experiments are approaching r-process region
- but, most reaction and decay rates are rely on theory prediction theoretical interpretation \leftrightarrows observational constraint
- merger, SN models - abundances
- Galactic evolution - kilonova

