Symposium in: YIPQS long-term workshop (MCD2022) "Developments of Physics of Unstable Nuclei (YKIS2022b)"

Recent Developments in Microscopic Theories for Low-Energy Heavy-Ion Reactions: Towards Superheavy Element (SHE) synthesis

Kazuyuki Sekizawa

Department of Physics, School of Science Tokyo Institute of Technology

Voyage towards the limit of existence

The continent of stability has been well explored..

The Great Wall of China by Stacy Funderburke @shutterstock

Now we are sailing towards the edge of the nuclear landscape..

Stable nuclei: 288 Experiment: ~3200 Theory: ~7000

□ drip lines

- shell structure
- deformation
- skin, halo

- nuclear matter properties
- nucleosynthesis

"Flat Earth" by iStock; "Fanciful view of ship sailing over edge of Earth" by Georgia Studies Images

What is the heaviest element?

The north-east part of the nuclear map

Yuri Oganessian, Pure Appl. Chem. 78, 889 (2006)

The north-east part of the nuclear map

We do need theoretical predictions!

a few words about the theory..

 \checkmark There is no adjustable parameter on reaction dynamics

Microscopic Approaches for Low-Energy Heavy-Ion Reactions: Towards SHE synthesis

Complex Quantum Mechanical Processes

DHF

TP

Distribution of reaction outcomes

/sicsfun a fille

Let's see how it works

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

 64 Ni+ 238 U at E_{lab} =390 MeV

K. Sekizawa and K. Yabana, PRC93(2016)054616

Quasifission dynamics in TDHF

Tip collision

Shell effects of ²⁰⁸Pb

Side collision

More mass-symmetric

 64 Ni+ 238 U at E_{lab} =390 MeV

K. Sekizawa and K. Yabana, PRC93(2016)054616

TDHF provides quantitative description of quasifission dynamics

TKE-A distribution: Comparison with experimental data

Expt.: E.M. Kozulin et al., PLB686(2010)227

However, TDHF can not describe the process of the compound-nucleus formation

To study fusion reactions for SHE synthesis, we have proposed a "TDHF+Langevin" approach

<u>K. Sekizawa</u> and K. Hagino, PRC**99**(2019)051602(R) Rapid Comm. with Editors' Suggestion

Analytical formula can be derived:

$$P_{\rm CN} = \frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{\Delta V}{T}\right) \right]$$

We use fusion-by-diffusion model to describe the "up-hill diffusion" over the inner barrier

Fusion-by-diffusion model:

W.J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński,
Acta Phys. Pol. B 34(2003)2049; PRC71(2005)014602
K. Hagino, PRC98(2018)014607

The essence of the fusion-by-diffusion model: "Quick" equilibration of DoF and "slow" diffusion through a valley over a barrier

Quick equilibration of degrees of freedom

Fusion pocket

Photo: Dzukou Valley, on the border of Nagaland and Manipur,

Lowest energy valley

https://www.lostwithpurpose.com/dzukou-valley/

Magicity of ⁴⁸Ca affects the survival probability via the lower excitation energy

TDHF FBD

Exploring novel reaction dynamics: "Inverse" quasifission

Prediction by Langevin-model calculations

Production cross section for primary products in ²³⁸U+²⁴⁸Cm

V.I. Zagrebaev and W. Greiner, PRC87(2013)034608

Inverse quasifission (IQF) mechanisms in TDHF

D.J. Kedziora and C. Simenel, PRC81(2010)044613

Surface-vibration-induced IQF

Complex dynamics allows for developing a neck increasing mass asymmetry

Dynamics of neck evolution may be a key to produce exotic isotopes

 $^{238}\text{U}+^{124}\text{Sn}$ at $E_{\text{lab}}=9$ MeV/A

What we have learned?

 \checkmark QF dynamics depend strongly on shell effects and orientation

TDHF as numerical experiments

Super-preliminary

Inverse quasifission occurs forming a SHE with a peculiar shape

although reaction products are too much excited..

¹⁸⁶W+²⁴⁸Cm, b = 0.5 fm, $E-V_{\rm B} \sim 500$ MeV

K. Sekizawa

Microscopic Approaches for Low-Energy Heavy-Ion Reactions: Towards SHE synthesis

Let me show what happened in the simulations:

Let me show what happened in the simulations:

Let me show what happened in the simulations:

TDHF as numerical experiments

Super-preliminary

Tip-on-tip collisions of $^{160}Gd+^{248}Cm$

 $E-V_{\rm B} \sim 291 {
m MeV}$

 $E-V_{\rm B} \sim 295 {\rm ~MeV}$

 $(E \sim 797 \text{ MeV}, E/V_{B} \sim 1.57)$

 $(E \sim 801 \text{ MeV}, E/V_{B} \sim 1.58)$

TKEL ~ 372 MeV

TKEL ~ 507 MeV

K. Sekizawa

Microscopic Approaches for Low-Energy Heavy-Ion Reactions: Towards SHE synthesis

Fri., May 27, 2022

Extensions

TDHF+Langevin

uper eavy Element

SHE

TDRPA

SMF

TDHFB

ME: Microscopic thEory

TDHF

Kazuyuki Sekizawa Associate Professor Department of Physics, School of Science Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan sekizawa @ phys.titech.ac.jp About me: <u>http://sekizawa.fizyka.pw.edu.pl/english/</u> About us: <u>https://nuclphystitech.wordpress.com/</u>

See also:

