Shape coexistence in N=28 neutron-rich nuclei

arXiv:2201.05731, PTEP in print

Yoshiki Suzuki (RCNP)

Collaborators: Wataru Horiuchi (Osaka Metropolitan / NITEP) Masaaki Kimura (Hokkaido / RIKEN)

Introduction: Erosion of N=28 Shell Closure

○N=28 shell quenching causes degeneracy of p and f wave
 ⇒ Neutron excitations induces strong quadrupole correlations

○Mg, Si and S (Z=12, 14 and 16) are mid sd-shell (proton) nuclei
 ⇒ Protons also have strong quadrupole correlations

Various nuclear shapes will appear and coexist!

Abstract of this talk

We investigate the shapes of the low-lying states of the *N*=28 nuclei (⁴⁰Mg, ⁴²Si, ⁴⁴S) using the antisymmetrized molecular dynamics (AMD)

"What types of shapes coexist?"

⇒ Completely different shape coexistence occurs depending on the nuclide (proton number)

"What observables does this difference affect?"

 \Rightarrow Monopole transition between 0⁺ states

Framework: Antisymmetrized Molecular Dynamics (AMD)

Hamiltonian: Gogny D1S density functional J.F. Berger *et al.* CPC63, 365 (1991).

$$\hat{H} = \sum_{i}^{A} \hat{t}_{i} - \hat{t}_{cm} + \frac{1}{2} \sum_{ij \in \text{proton}}^{Z} \hat{v}_{ij}^{C} + \frac{1}{2} \sum_{ij}^{A} \hat{v}_{ij}^{NN}$$

Model wave function: antisymmetrized product of nucleon Gaussian wave packets

$$\Phi^{\pi} = \hat{P}^{\pi} \mathcal{A}\{\varphi_1, \varphi_2, \dots, \varphi_A\} \quad \varphi_i(\vec{r}) = \exp\{-\sum_{\sigma=x,y,z} \nu_{\sigma} \left(r_{\sigma} - Z_{i\sigma}\right)^2\} (a_i \chi_{\uparrow} + b_i \chi_{\downarrow}) \tau_i$$

Variational calculation

Minimize the sum of expectation energy and constraint potential putting constraint on the quadrupole deformation parameters β and γ $\widetilde{E}^{\pi}(\beta,\gamma) = \langle \Phi^{\pi}(\beta,\gamma) | \hat{H} | \Phi^{\pi}(\beta,\gamma) \rangle + v_{\beta}(\langle \beta \rangle - \beta)^{2} + v_{\gamma}(\langle \gamma \rangle - \gamma)^{2}$

Generator coordinate method (GCM)

The wave functions with various shapes are superposed The amplitude for each shape is determined by the diagonalization of Hamiltonian

$$\Psi_{M\alpha}^{J\pi} = \sum_{iK} g_{iK\alpha} P_{MK}^J \Phi^{\pi}(\beta_i, \gamma_i)$$

⁴⁰Mg (*Z*=12, *N*=28) **Prolate** rigid rotor ⁴²Si (Z=14, N=28) Oblate rigid rotor ⁴⁴S (Z=16, N=28)Deformed,but no rigid shape

⁴⁰Mg (*Z*=12, *N*=28) Prolate rigid rotor ⁴²Si (Z=14, N=28) Oblate rigid rotor ⁴⁴S (Z=16, N=28)
Deformed,
but no rigid shape

Minimum at prolate deformation

⁴⁰Mg (Z=12, N=28) Prolate rigid rotor ⁴²Si (*Z*=14, *N*=28) Oblate rigid rotor ⁴⁴S (Z=16, N=28)Deformed,but no rigid shape

Ocollective amplitude: probability to observe a definite nuclear shape

Shape Coexistence in ⁴⁰Mg, ⁴²Si and ⁴⁴S

Shape Coexistence in ⁴⁰Mg, ⁴²Si and ⁴⁴S Collective amp. suggests completely different shape coexistence!

H.L. Crawford et al. PRL122, 52501 (2019), S. Takeuchi et al. PRL109, 182501 (2012), D. Sohler et al. PRC66, 054302(2002).

Shape Coexistence in ⁴⁰Mg, ⁴²Si and ⁴⁴S Collective amp. suggests completely different shape coexistence! ⁴⁰Mg (Z=12, N=28) ⁴²Si (*Z*=14, *N*=28) ⁴⁴S (*Z*=16, *N*=28) 0_1^+ state : fluctuation 0_1^+ state : prolate 0_1^+ state : oblate 0_2^+ state : oblate 0_2^+ state : spherical 0_2^+ state : fluctuation ⁴²Si 0^{+} excitation energy [MeV excitation energy [MeV excitation energy [MeV 4^{+} 3 3 3 $\frac{3^+}{2^+}$ 4^{+} 4^{+} 2 2 2^{+} 0^{+} 0^{+} AMD AMD AMD exp. exp. exp.

H.L. Crawford et al. PRL122, 52501 (2019), S. Takeuchi et al. PRL109, 182501 (2012), D. Sohler et al. PRC66, 054302(2002).

Shape Coexistence in ⁴⁰Mg, ⁴²Si and ⁴⁴S

What observables does the different aspects of shape coexistence affect?

⇒ Monopole transition strengths between 0⁺ states!

H.L. Crawford et al. PRL122, 52501 (2019), S. Takeuchi et al. PRL109, 182501 (2012), D. Sohler et al. PRC66, 054302(2002).

Shape Coexistence and Monopole Transition

Shape Coexistence and Monopole Transition

J.L. Wood et al. NPA651, 323 (1999)

Suppose that there are two state vectors $|A\rangle$ and $|B\rangle$ with different nuclear shapes, and the 0_1^+ and 0_2^+ states are described by their linear combinations

$$|0_1^+\rangle = a|A\rangle + b|B\rangle, \quad |0_2^+\rangle = b|A\rangle - a|B\rangle.$$

The operator of the isoscalar monopole transition corresponds to the squared radius $\mathcal{M}(\mathrm{IS0}) = \sum_{i}^{A} \hat{r}_{i}^{2}.$ $\langle 0_{2}^{+} | \mathcal{M} | 0_{1}^{+} \rangle = ab(\langle A | \mathcal{M} | A \rangle - \langle B | \mathcal{M} | B \rangle) + (b^{2} - a^{2}) \langle A | \mathcal{M} | B \rangle.$

Shape Coexistence and Monopole Transition

J.L. Wood et al. NPA651, 323 (1999)

Suppose that there are two state vectors $|A\rangle$ and $|B\rangle$ with different nuclear shapes, and the 0_1^+ and 0_2^+ states are described by their linear combinations

$$|0_1^+\rangle = a|A\rangle + b|B\rangle, \quad |0_2^+\rangle = b|A\rangle - a|B\rangle.$$

The operator of the isoscalar monopole transition corresponds to the squared radius $\mathcal{M}(\mathrm{IS0}) = \sum_i^A \hat{r}_i^2.$

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = ab(\langle A | \mathcal{M} | A \rangle - \langle B | \mathcal{M} | B \rangle) + (b^2 - a^2) \langle A | \mathcal{M} | B \rangle.$

 \bigcirc 1st term becomes large when the radii of two shapes $|A\rangle$ and $|B\rangle$ are different and the mixing is strong ($a \approx b \approx 1/\sqrt{2}$)

 \bigcirc 2nd term vanishes when the particle-hole configurations of $|A\rangle$ and $|B\rangle$ differ by 2p2h or more than that because M is a one-body operator

The strength of the monopole transition varies depending on **the degree of mixing** and **the particle-hole configuration**

Comparison of rigid rotors (⁴⁰Mg v.s. ⁴²Si)

Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 40 Mg (very weak transition, B(ISO) = 0.0 W.u.)

The prolately- and oblately-deformed rigid rotors coexist, and their mixing is rather small

 $|A\rangle = |\text{prolate}\rangle, |B\rangle = |\text{oblate}\rangle, a = 1, b = 0$

The monopole transition matrix is given by the transition between the prolately- and oblately-deformed states

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{oblate} | \mathcal{M} | \text{prolate} \rangle$

Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 40 Mg (very weak transition, B(ISO) = 0.0 W.u.)

Neutron configuration is different between the 0_1^+ and 0_2^+ states

Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 40 Mg (very weak transition, B(ISO) = 0.0 W.u.)

Neutron configuration is different between the 0_1^+ and 0_2^+ states \Rightarrow Monopole transition is hindered and the matrix element becomes 0 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{oblate} | \mathcal{M} | \text{prolate} \rangle = 0$ Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 42 Si (very strong transition, B(ISO) = 2.3 W.u.)

The oblately-deformed rigid rotor and spherical state coexist, and their mixing is rather small

 $|A\rangle = |\text{oblate}\rangle, |B\rangle = |\text{spherical}\rangle, a = 1, b = 0$

The monopole transition matrix is given by the transition between the oblately-deformed state and spherical state

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{spherical} | \mathcal{M} | \text{oblate} \rangle$

Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 42 Si (very strong transition, B(ISO) = 2.3 W.u.)

Oblate and spherical states are nonorthogonal (although they are not identical)

Comparison of rigid rotors (40 Mg v.s. 42 Si) In the case of 42 Si (very strong transition, B(ISO) = 2.3 W.u.)

Oblate and spherical states are nonorthogonal (although they are not identical)

⇒ The matrix element has a finite value and increases when the overlap of two configurations is large! $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{spherical} | \mathcal{M} | \text{oblate} \rangle$

Comparison of rigid rotors (⁴⁰Mg v.s. ⁴²Si) Short Summary

⁴⁰Mg $\mathbf{0}_{1}^{+}$ state : prolate $|\Omega = \pm 1/2\rangle^{2}|\pm 3/2\rangle^{2}|\pm 5/2\rangle^{2}|\pm 1/2\rangle^{2}$ $\mathbf{0}_{2}^{+}$ state : oblate $|\Omega = \pm 1/2\rangle^{2}|\pm 3/2\rangle^{2}|\pm 5/2\rangle^{2}|\pm 7/2\rangle^{2}$

Transition is hindered!

⁴²Si 0_1^+ state : oblate $\boxed{|\Omega = \pm 1/2\rangle^2 |\pm 3/2\rangle^2 |\pm 5/2\rangle^2 |\pm 7/2\rangle^2}$ 0_2^+ state : spherical $|\Omega = \pm 1/2\rangle^2 |\pm 3/2\rangle^2 |\pm 5/2\rangle^2 |\pm 7/2\rangle^2$ Transition is **allowed!** ^{42}Si excitation energy [MeV] 3 4^{+} 2.3 W.u 2 2^{+} 2^{+}

AMD

0

exp.

Comparison of rigid rotor and fluctuating γ deformation

Comparison of rigid rotor and fluctuating γ deformation ${\rm ^{40}Mg}$ v.s. ${\rm ^{44}S}$

The energy and the collective amplitude (not squared) as functions of β and γ along the fan-shaped path on the β - γ plane

 $0^{\, +}_1$ and $0^{\, +}_2$ states have rigid shapes with small fluctuation

- The energy changes only 1 MeV as a function of γ , when β is fixed to 0.3
- 0_1^+ and 0_2^+ states show similar large fluctuations, while 0_2^+ state exhibits a node near γ =30 due to the orthogonality to 0_1^+ state

Comparison of rigid rotor and fluctuating γ deformation In the case of ⁴⁴S (strong transition, B(ISO) = 0.4 W.u.)

Assume that there is a mixture of prolately- and oblately-deformed shapes with equal amplitude

$$|A\rangle = |\text{prolate}\rangle, |B\rangle = |\text{oblate}\rangle, a = b = 1/\sqrt{2}$$

The matrix element is proportional to the size difference between the prolately- and oblately-deformed shapes 1

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \frac{1}{2} (\langle \text{prolate} | \mathcal{M} | \text{prolate} \rangle - \langle \text{oblate} | \mathcal{M} | \text{oblate} \rangle)$

Comparison of rigid rotor and fluctuating γ deformation In the case of ⁴⁴S (strong transition, B(ISO) = 0.4 W.u.)

Apply the AMD w.f. with $(\beta, \gamma) = (0.31, 16)$ and (0, 23, 49) as **|prolate**) and **|oblate**) \Rightarrow The above equation yields B(ISO) = 0.4 W.u., which corresponds to the GCM calc.

The mixture of the prolate and oblate shapes with different radii makes the monopole transitions stronger!

(even though the transition between two shapes is forbidden)

Summary

N=28 isotones show **different aspects of shape coexistence**, which can be **probed by the monopole transition strengths!**

⁴⁴S

The mixture of the prolate and oblate shapes with different radii makes the monopole transitions stronger

⁴²Si

Monopole transition is allowed because the neutron orbits have the same quantum numbers

⁴⁰Mg

 0_1^+ state : prolate

 0^+_2 state : oblate

Monopole transition is hindered because the neutron orbits have different quantum numbers