Shape coexistence in $N=28$ neutron-rich nuclei

arXiv:2201.05731, PTEP in print

Yoshiki Suzuki (RCNP)

Collaborators:
Wataru Horiuchi (Osaka Metropolitan / NITEP)
Masaaki Kimura (Hokkaido / RIKEN)

Introduction: Erosion of $N=28$ Shell Closure

neutron

stable nuclei

proton
quadrupole corr.

$$
-0 d_{3 / 2} L=2
$$

$$
\Delta L=2
$$

$$
\longrightarrow^{\infty}-1 s_{1 / 2} L=0
$$

——00000— $0 d_{5 / 2} L=2$
$\mathrm{O}=28$ shell quenching causes degeneracy of p and f wave
\Rightarrow Neutron excitations induces strong quadrupole correlations
$\bigcirc \mathrm{Mg}, \mathrm{Si}$ and $\mathrm{S}(\mathrm{Z}=12,14$ and 16$)$ are mid $s d$-shell (proton) nuclei
\Rightarrow Protons also have strong quadrupole correlations
Various nuclear shapes will appear and coexist!

Abstract of this talk

We investigate the shapes of the low-lying states of the $N=28$ nuclei (${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si},{ }^{44} \mathrm{~S}$)
using the antisymmetrized molecular dynamics (AMD)
"What types of shapes coexist?"
\Rightarrow Completely different shape coexistence occurs depending on the nuclide (proton number)
"What observables does this difference affect?"
\Rightarrow Monopole transition between 0^{+}states

Framework: Antisymmetrized Molecular Dynamics (AMD)

Hamiltonian: Gogny D1S density functional
J.F. Berger et al. CPC63, 365 (1991).

$$
\hat{H}=\sum_{i}^{A} \hat{t}_{i}-\hat{t}_{\mathrm{cm}}+\frac{1}{2} \sum_{i j \in \text { proton }}^{Z} \hat{v}_{i j}^{\mathrm{C}}+\frac{1}{2} \sum_{i j}^{A} \hat{v}_{i j}^{\mathrm{NN}}
$$

Model wave function: antisymmetrized product of nucleon Gaussian wave packets $\Phi^{\pi}=\hat{P}^{\pi} \mathcal{A}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{A}\right\} \quad \varphi_{i}(\vec{r})=\exp \left\{-\sum_{\sigma=x, y, z} \nu_{\sigma}\left(r_{\sigma}-Z_{i \sigma}\right)^{2}\right\}\left(a_{i} \chi_{\uparrow}+b_{i} \chi_{\downarrow}\right) \tau_{i}$

Variational calculation

Minimize the sum of expectation energy and constraint potential putting constraint on the quadrupole deformation parameters β and γ
$\widetilde{E}^{\pi}(\beta, \gamma)=\left\langle\Phi^{\pi}(\beta, \gamma)\right| \hat{H}\left|\Phi^{\pi}(\beta, \gamma)\right\rangle+v_{\beta}(\langle\beta\rangle-\beta)^{2}+v_{\gamma}(\langle\gamma\rangle-\gamma)^{2}$

Generator coordinate method (GCM)

The wave functions with various shapes are superposed The amplitude for each shape is determined by the diagonalization of Hamiltonian

$$
\Psi_{M \alpha}^{J \pi}=\sum_{i K} g_{i K \alpha} P_{M K}^{J} \Phi^{\pi}\left(\beta_{i}, \gamma_{i}\right)
$$

Shape of ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$ (ground state)

Shape of ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$ (ground state)
${ }^{40} \mathrm{Mg}(Z=12, N=28) \quad{ }^{42} \mathrm{Si}(Z=14, N=28)$

Prolate rigid rotor
Oblate rigid rotor
${ }^{44} \mathrm{~S}(Z=16, N=28)$
Deformed,
but no rigid shape

Shape of ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$ (ground state)
${ }^{40} \mathrm{Mg}(Z=12, N=28) \quad{ }^{42} \mathrm{Si}(Z=14, N=28)$
Prolate rigid rotor

Oblate rigid rotor
${ }^{44} \mathrm{~S}(Z=16, N=28)$
Deformed, but no rigid shape

Onergy surface: energy as a function of deformation parameters β and γ

$$
\left\langle\Phi_{M K}^{J \pi}(\beta, \gamma)\right| \hat{H}\left|\Phi_{M K}^{J \pi}(\beta, \gamma)\right\rangle_{M}^{J} \begin{aligned}
& \text { energy [MeV] } \\
& \left.\begin{array}{llllll}
0 & 2 & 4 & 6 & 8 & 10
\end{array}\right]
\end{aligned}
$$

Minimum at prolate deformation

Minimum at oblate deformation

γ-soft at
large β deformation

Shape of ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$ (ground state)
${ }^{40} \mathrm{Mg}(Z=12, N=28) \quad{ }^{42} \mathrm{Si}(Z=14, N=28)$
Prolate rigid rotor

Oblate rigid rotor
${ }^{44} \mathrm{~S}(Z=16, N=28)$
Deformed, but no rigid shape

Ocollective amplitude: probability to observe a definite nuclear shape

$$
\left\langle\Phi_{M K}^{J \pi}(\beta, \gamma) \mid \Psi_{M \alpha}^{J \pi}\right\rangle_{M}^{\text {squared collective amplitude }}
$$

Large probability of prolate deformation

Large probability of
oblate deformation

Broad distribution
\Rightarrow No rigid shape, Fluctuating γ def.

Shape Coexistence in ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$

Shape Coexistence in ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$

Collective amp. suggests completely different shape coexistence!

H.L. Crawford et al. PRL122, 52501 (2019), S. Takeuchi et al. PRL109, 182501 (2012), D. Sohler et al. PRC66, 054302(2002).

Shape Coexistence in ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$

Collective amp. suggests completely different shape coexistence!
${ }^{40} \mathrm{Mg}(Z=12, N=28)$
${ }^{42} \mathrm{Si}(Z=14, N=28)$
${ }^{44} \mathrm{~S}(Z=16, N=28)$
0_{1}^{+}state : oblate
0_{2}^{+}state : spherical
0_{2}^{+}state : fluctuation
0_{1}^{+}state : prolate
0_{2}^{+}state : oblate

Shape Coexistence in ${ }^{40} \mathrm{Mg},{ }^{42} \mathrm{Si}$ and ${ }^{44} \mathrm{~S}$

What observables does the different aspects of shape coexistence affect?
\Rightarrow Monopole transition strengths between 0^{+}states!

Shape Coexistence and Monopole Transition

Shape Coexistence and Monopole Transition

J.L. Wood et al. NPA651, 323 (1999)

Suppose that there are two state vectors $|A\rangle$ and $|B\rangle$ with different nuclear shapes, and the 0_{1}^{+}and 0_{2}^{+}states are described by their linear combinations

$$
\left|0_{1}^{+}\right\rangle=a|A\rangle+b|B\rangle, \quad\left|0_{2}^{+}\right\rangle=b|A\rangle-a|B\rangle
$$

The operator of the isoscalar monopole transition corresponds to the squared radius

$$
\begin{gathered}
\mathcal{M}(\mathrm{IS} 0)=\sum_{i}^{A} \hat{r}_{i}^{2} . \\
\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=a b(\langle A| \mathcal{M}|A\rangle-\langle B| \mathcal{M}|B\rangle)+\left(b^{2}-a^{2}\right)\langle A| \mathcal{M}|B\rangle .
\end{gathered}
$$

Shape Coexistence and Monopole Transition

J.L. Wood et al. NPA651, 323 (1999)

Suppose that there are two state vectors $|A\rangle$ and $|B\rangle$ with different nuclear shapes, and the 0_{1}^{+}and 0_{2}^{+}states are described by their linear combinations

$$
\left|0_{1}^{+}\right\rangle=a|A\rangle+b|B\rangle, \quad\left|0_{2}^{+}\right\rangle=b|A\rangle-a|B\rangle
$$

The operator of the isoscalar monopole transition corresponds to the squared radius

$$
\begin{gathered}
\mathcal{M}(\mathrm{IS} 0)=\sum_{i}^{A} \hat{r}_{i}^{2} . \\
\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=a b(\langle A| \mathcal{M}|A\rangle-\langle B| \mathcal{M}|B\rangle)+\left(b^{2}-a^{2}\right)\langle A| \mathcal{M}|B\rangle .
\end{gathered}
$$

$\bigcirc 1^{\text {st }}$ term becomes large when the radii of two shapes $|A\rangle$ and $|B\rangle$ are different and the mixing is strong ($a \approx b \approx 1 / \sqrt{2}$)
$\bigcirc 2^{\text {nd }}$ term vanishes when the particle-hole configurations of $|A\rangle$ and $|B\rangle$ differ by 2 p 2 h or more than that because M is a one-body operator

The strength of the monopole transition varies depending on the degree of mixing and the particle-hole configuration

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. ${ }^{42} \mathrm{Si}$)

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

In the case of ${ }^{40} \mathrm{Mg}$ (very weak transition, $B($ ISO $)=0.0 \mathrm{~W}$. u.)

The prolately- and oblately-deformed rigid rotors coexist, and their mixing is rather small

$$
|A\rangle=\mid \text { prolate }\rangle,|B\rangle=\mid \text { oblate }\rangle, a=1, b=0
$$

The monopole transition matrix is given by the transition between the prolately- and oblately-deformed states

$$
\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\langle\text {oblate }| \mathcal{M} \mid \text { prolate }\right\rangle
$$

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

 In the case of ${ }^{40} \mathrm{Mg}$ (very weak transition, $B($ IS0 $)=0.0 \mathrm{~W}$. u.)

Neutron configuration is different between the 0_{1}^{+}and 0_{2}^{+}states

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

 In the case of ${ }^{40} \mathrm{Mg}$ (very weak transition, $B($ IS0 $)=0.0 \mathrm{~W}$. u.)0_{1}^{+}state : prolate the s.p. configuration of 8 valence neutrons $|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 1 / 2\rangle^{2}$?

0_{2}^{+}state : oblate

the s.p. configuration of 8 valence neutrons
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$

Neutron configuration is different between the 0_{1}^{+}and 0_{2}^{+}states
\Rightarrow Monopole transition is hindered and the matrix element becomes 0

$$
\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\langle\text {oblate }| \mathcal{M} \mid \text { prolate }\right\rangle=0
$$

Comparison of rigid rotors $\left({ }^{40} \mathrm{Mg}\right.$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

In the case of ${ }^{42}$ Si (very strong transition, $B($ IS 0$)=2.3 \mathrm{~W}$. u.)

The oblately-deformed rigid rotor and spherical state coexist, and their mixing is rather small

$$
|A\rangle=\mid \text { oblate }\rangle,|B\rangle=\mid \text { spherical }\rangle, a=1, b=0
$$

The monopole transition matrix is given by the transition between the oblately-deformed state and spherical state

$$
\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\langle\text {spherical }| \mathcal{M} \mid \text { oblate }\right\rangle
$$

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

In the case of ${ }^{42} \mathrm{Si}$ (very strong transition, $B($ IS0 $)=2.3 \mathrm{~W} . \mathrm{u}^{\text {. }}$)
0_{1}^{+}state : oblate
the s.p. configuration of
8 valence neutrons
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$

Oblate and spherical states are nonorthogonal (although they are not identical)

Comparison of rigid rotors (${ }^{40} \mathrm{Mg}$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

In the case of ${ }^{42} \mathrm{Si}$ (very strong transition, $B($ IS0 $)=2.3 \mathrm{~W} . \mathrm{u}^{\text {. }}$)

0_{1}^{+}state : oblate

the s.p. configuration of 8 valence neutrons $|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$
0_{2}^{+}state : spherical the s.p. configuration of 8 valence neutrons
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$

Oblate and spherical states are nonorthogonal (although they are not identical)
\Rightarrow The matrix element has a finite value and increases when the overlap of two configurations is large!

$$
\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\langle\text {spherical }| \mathcal{M} \mid \text { oblate }\right\rangle
$$

Comparison of rigid rotors $\left({ }^{40} \mathrm{Mg}\right.$ v.s. $\left.{ }^{42} \mathrm{Si}\right)$

Short Summary

${ }^{40} \mathrm{Mg}$

0_{1}^{+}state : prolate
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 1 / 2\rangle^{2}$
0_{2}^{+}state : oblate
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$
Transition is hindered!

${ }^{42} \mathrm{Si}$
0_{1}^{+}state : oblate
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$
0_{2}^{+}state : spherical
$|\Omega= \pm 1 / 2\rangle^{2}| \pm 3 / 2\rangle^{2}| \pm 5 / 2\rangle^{2}| \pm 7 / 2\rangle^{2}$

Transition is allowed!

Comparison of rigid rotor and fluctuating γ deformation

Comparison of rigid rotor and fluctuating γ deformation ${ }^{40} \mathrm{Mg}$ v.s. ${ }^{44} \mathrm{~S}$

The energy and the collective amplitude (not squared) as functions of β and γ along the fan-shaped path on the $\beta-\gamma$ plane

- The energy changes only 1 MeV as a function of γ, when β is fixed to 0.3
- 0_{1}^{+}and 0_{2}^{+}states show similar large fluctuations, while 0_{2}^{+}state exhibits a node near $\gamma=30$ due to the orthogonality to 0_{1}^{+}state

Comparison of rigid rotor and fluctuating γ deformation

 In the case of ${ }^{44} \mathrm{~S}$ (strong transition, $B(\mathrm{ISO})=0.4 \mathrm{~W}$. u.)$0_{1}^{+}$state : fluctuation

$$
\left|0_{1}^{+}\right\rangle=a|A\rangle+b|B\rangle, \quad\left|0_{2}^{+}\right\rangle=b|A\rangle-a|B\rangle .
$$

Assume that there is a mixture of prolately- and oblately-deformed shapes with equal amplitude

$$
|A\rangle=\mid \text { prolate }\rangle,|B\rangle=\mid \text { oblate }\rangle, a=b=1 / \sqrt{2}
$$

The matrix element is proportional to the size difference between the prolately- and oblately-deformed shapes

$$
\left.\left.\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\frac{1}{2}(\langle\text { prolate }| \mathcal{M} \mid \text { prolate }\rangle-\langle\text { oblate }| \mathcal{M} \right\rvert\, \text { oblate }\right\rangle\right)
$$

Comparison of rigid rotor and fluctuating γ deformation

 In the case of ${ }^{44} \mathrm{~S}$ (strong transition, $B($ ISO $)=0.4 \mathrm{~W}$. u.)

$$
\left.\left.\left.\left\langle 0_{2}^{+}\right| \mathcal{M}\left|0_{1}^{+}\right\rangle=\frac{1}{2}(\langle\text { prolate }| \mathcal{M} \mid \text { prolate }\rangle-\langle\text { oblate }| \mathcal{M} \right\rvert\, \text { oblate }\right\rangle\right)
$$

Apply the AMD w.f. with $(\beta, \gamma)=(0.31,16)$ and $(0,23,49)$ as |prolate \rangle and |oblate \rangle
\Rightarrow The above equation yields $B($ ISO $)=0.4 \mathrm{~W}$. u., which corresponds to the GCM calc.
The mixture of the prolate and oblate shapes with different radii makes the monopole transitions stronger!
(even though the transition between two shapes is forbidden)

Summary

$N=28$ isotones show different aspects of shape coexistence, which can be probed by the monopole transition strengths!
${ }^{44} \mathrm{~S}$
$0_{1}^{+}, 0_{2}^{+}$states :
fluctuation
The mixture of the prolate and oblate shapes with different radii makes the monopole transitions stronger
${ }^{42} \mathrm{Si}$
0_{1}^{+}state : oblate
0_{2}^{+}state : spherical
Monopole transition is allowed because the neutron orbits have the same quantum numbers

Monopole transition is hindered because the neutron orbits have different quantum numbers

