Electric dipole excitation of nuclei studied by proton scattering

Atsushi Tamii

Institute of Radiation Science/ Research Center for Nuclear Physics (RCNP) Department of Physics Osaka University, Japan

> YKIS2022b May 23-27, 2022 at Kyoto

Outline

Dump-Q

Electric Dipole Response of Nuclei I.

II. Experimental Methods

- III.<u>Topics</u>
- Polarizability and Symmetry Energy
- Gamma Decay of GDR
- PANDORA project Ultra-High-Energy Cosmic Rays

I Electric Dipole Response of Nuclei

Electric Dipole Response of Nuclei

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_D = \frac{8\pi e^2}{9} \int \frac{dB(E1)}{E_x}$$

first order perturbation calc. A.B. Migdal: 1944

Static Electric Dipole Polarizability (α_D)

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_D = \frac{8\pi e^2}{9} \int \frac{dB(E1)}{E_x}$$

first order perturbation calc. A.B. Migdal: 1944

Nuclear Equation of State (EOS) at zero temperature

Nuclear EOS neglecting Coulomb

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + S(\rho)\delta^{2} + \cdots$$
$$\delta \equiv \frac{\rho_{n} - \rho_{p}}{\rho_{n} + \rho_{p}} \text{ Asymmetry parameter}$$
Symmetry energy
$$S(\rho) = J + \frac{L}{3\rho_{0}}(\rho - \rho_{0}) + \cdots$$

Density difference between n and p increases the system energy by the symmetry energy.

Symmetry Energy of the Nuclear EOS

is fundamental information for stellar processes

Nucleosynthesis

Neutron Star Merger Gravitational Wave

https://www.youtube.com/watch?v=IZhNWh_lFuI

Neutron star cooling

Lattimer and Prakash, Science 304, 536 (2004).

Neutron star mass vs radius

Neutron star structure

http://www.astro.umd.edu/~miller/nstar.html

II Experimental Methods

Probes for the Electric Dipole Response of Nuclei

- 1. Virtual photon excitation (Coulomb excitation)
 - proton inelastic scattering at 0 deg.

dominantly electric excitation: req. decomposition E_x distribution is obtained in one shot sensitive to the total strength

- 2. Real photon absorption
 - (γ,γ') Nuclear Resonance Fluorescence
 - $(\gamma,n), (\gamma,2n), (\gamma,p), \dots$ photodisintegrations

Real γ-beam at ELI-NP

pure EM probe by quasi-monoenergetic γ precise absolute strength partial strength for each decay channel including *n* clear selection of E1 and M1 (polarized-gamma)

AVF Cyclotron Facility

High-Resolution Spectrometer "Grand Raiden"

B(E1): continuum and GDR region Multipole Decomposition Analysis (MDA)

Included E1/M1/E2 or E1/M1/E3 (little difference)

Grazing Angle = 3.0 deg

Comparison with (γ, γ') and (γ, xn)

III Topics Polarizability and Symmetry Energy

Electric Dipole Polarizability: ²⁰⁸Pb, ¹²⁰Sn

E

Constraints on *J*-*L* from the EDP data

X. Roca-Maza et al., PRC92, 064304(2015)

- **RCNP** ²⁰⁸Pb: AT *et al.*, PRL**107**, 062502 (2011).
- **RCNP** ¹²⁰Sn: T. Hashimoto *et al.*, PRC**92**, 031305(R)(2015).
- **GSI** ⁶⁸Ni: D.M. Rossi *et al.*, PRL**111**, 242503 (2013).

Constraints on Symmetry Energy (J and L)

HIC: Heavy Ion Collision Analysis Tsang PRL2009

IAS: Isobaric Analog State Energy Danielewicz&Lee NPA2009

PDR: Pygmy Dipole Resonance in ¹³²Sn, ⁶⁸Ni, Carbone PRC2010

FRDM: Finite Range Droplet Model Moller PRL2012

n-star: Quiescent Low-Mass X-ray Binaries, Stainer PRL2012

 χ_{EFT} : Chiral Effective Field Theory, Tews PRL2013

QMC: Quantum Monte-Carlo Calc. Gandolfi, EPJA50, 10(2014).

DP: Dipole Polarizability ²⁰⁸Pb AT PRL2011 ¹⁸

Constraints on Symmetry Energy (J and L)

et al

B.T.Reed (PRL2021

fm.

 0.283 ± 0.071

Tsang PRC2012

HIC: Heavy Ion Collision Analysis Tsang PRL2009

IAS: Isobaric Analog State Energy Danielewicz&Lee NPA2009

PDR: Pygmy Dipole Resonance in ¹³²Sn, ⁶⁸Ni, Carbone PRC2010

FRDM: Finite Range Droplet Model Moller PRL2012

n-star: Quiescent Low-Mass X-ray Binaries, Stainer PRL2012

 χ_{EFT} : Chiral Effective Field Theory, Tews PRL2013

QMC: Quantum Monte-Carlo Calc. Gandolfi, EPJA50, 10(2014).

19

DP: Dipole Polarizability ²⁰⁸Pb AT PRL2011

where the EDF and ab-initio calculations meet

Theory: Darmstadt-Tennessee-TRIUMF

on Monday

A new measurement is planned for a smaller uncertainty.

ab-initio nuclear structure: plenary talk by S. Bacca on Friday

Gamma Decay of the GDR

Damping Mechanism of Collective Excitations (IVGDR)

Gamma Decay to the g.s from the GDR in ⁹⁰Zr

A part of the E498 collaborators in collaboration with ELI-NP

g.s. γ-Decay Branching Ratio

Preliminary

Effect of the Isospin Upper IVGDR Preliminary

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

(Ultra-)High-Energy Cosmic Rays

[PDG2018]

28

Ultra-High-Energy Cosmic Rays (UHECRs) [PDG2018]

Ultra-High-Energy Cosmic Rays (UHECRs) [PDG2018]

Observation of UHECRs

[mol18] [gor18]

The observed mass tends to become heavier as the energy increase at the highest energy.

31

Intergalactic Propagation of UHECR Nuclei

Photo-disintegration Pass of ⁵⁶Fe

 $(\gamma, xn), (\gamma, \alpha)$ reactions also take place. Several unstable nuclei also contribute.

Photo-disintegration Pass of ⁵⁶Fe

Systematic Measurement on Photo-Absorption C.S. and n,p, α , γ decays for light to A~56 stable nuclei

- E1 excitation strength distribution
- n, p, α , γ decay branching ratios
- from light to A~56 for stable nuclei

Systematic Measurement on Photo-Absorption C.S. and n,p,α,γ decays for light to A~56 stable nuclei

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics Systematic Measurement on E1 Strength Distribution and n,p,α,γ decays up to A~56

Experiment combining three complementary facilities

Virtual Photon Exp.

iThemba LABS 2022- ¹²C and ²⁷Al Total strength distribution up 24 MeV p,α,γ -decays multipole decomp. analysis RCNP 2022- (^{10,11}B), ^{12,13}C, ^{24,26}Mg, ²⁷Al Total strength distribution up 32 MeV p,α,γ -decays multipole decomp. analysis

Real Photon Exp.

ELI-NP 2023-

iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.

L. Pellegri, R. γ, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khumal, M. Wiedeking, K.C.W. Li, P. Adsley, L.M. Donaldson, E. Sideras-Haddado, K.L. Malatji, S. Jongile, A. Netshiya

Osaka Univ.

A. Tamii, N. Kobayashi, T. Sudo, M. Murata, A. Inoue, **R. Niina**, T. Kawabata, T. Furuno, S. Adachi, K. Sakanashi, K. Inaba, Y. Fujikawa, S. Okamoto, Y. Fujita, H. Fujita

ELI-NP **P.-A. Söderström**, D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y. Xu

absolute c.s. model independent separation of E1 and M1 n,p, α , γ -decays up to 20 MeV

PANDORA Project: Collaborator

Nuclear Experiments_{Osaka Univ.}

	E			
	RCNP	RCNP A. Tamii, N. Kobayashi, T. Sudo, M. Murata, A. Inoue, R. Niina, T. Kawabata, T.		
		Furuno, S. Adachi, K. Sakanashi, K. Inaba, Y. Fujikawa, S. Okamoto, Y. Fujita, H. Fujita FLI-NP		
	ELI-NP	PA. Söderström , D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y. Xu		
	iThemba LABS	iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.		
		L. Pellegri, R. Neveling, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khumal, M. Wiedeking, P. Adsley, I. M. Donaldson, F. Sideras-Haddado, K.L. Malatii, S. Jongile		
A. No		A. Netshiya		
	TU-Darmstadt	P. von Neumann-Cosel, N. Pietralla, J. Isaak, J. Kleemann, M. Spall		
	U. Milano/INFN	A. Bracco, F. Camera, F. Crespi, O. Wieland		
Shanghai		H. Utsunomiya		
Ų. Oslo		K.C.W. Li, S. Siem,		
NU	iclear Theory			
	AMD	M. Kimura, Y. Taniguchi , H. Motoki	Large Scale	
			Shell Modle	
	NRFT	E. Litvinova , P. Ring, H. Wibowo		
		Y. Utsuno, N. Shimizu		
	RPA/DFT	RPA by T. Inakura, QPM by N. Tsoneva		
	TAIVS	S Coriely F Khan		
	IALIS	5. Gonery, E. Khan		
UHECR Theory				

Propagation and production D. Allard, B. Baret, I. Deloncle, J. Kiener, E. Parizot, V. Tatischeff

S. Nagataki, E. Kido, J. Oliver, H. Haoning

Features of this scattering chamber

Summary

I. <u>Electric Dipole Response of Nuclei</u>

II. Experimental Methods

- III.<u>Topics</u>
- Polarizability and Symmetry Energy
- Gamma Decay of GDR
- PANDORA project Ultra-High-Energy Cosmic Rays

Milky Way Galaxy

Observation

Ultra High Energy Cosmic Rays (UHECRs

Propagation

nother Galaxy

Production

