

Alexander Volya

Florida State University

Supported by the US Department of Energy Award number: DE-SC0009883

MCD2022, 2022

Clustering in light nuclei

Configuration interaction approach (shell model)

A powerful tool in studies of nuclear many-body problems

- Well-established many-body technique
- Excellent predictive power
- New computational techniques broaden applicability to nearly all nuclei
- Extensions to continuum and reaction physics.
- Clustering

The Nuclear Shell Model

The Hamiltonian

$$H = \sum_{a} \frac{\mathbf{p}_{a}^{2}}{2M} + \frac{1}{2} \sum_{a \neq b} U_{ab}$$

Translational invariance tells us

sus
$$H = \frac{\mathbf{P}^2}{2MA} + H_{\text{int}}$$
 $\mathbf{P} = \sum_a \mathbf{p}_a$

$$\begin{aligned} H_{\text{int}} &= \frac{1}{2A} \sum_{a,b} \frac{(\mathbf{p}_a - \mathbf{p}_b)^2}{2M} + \frac{1}{2} \sum_{a \neq b} U_{ab} \\ \Psi &= e^{i\mathbf{PR}} \Psi' \end{aligned}$$

The Nuclear Shell Model

$$H = \frac{\mathbf{P}^{2}}{2MA} + H_{\text{int}} \quad H(\omega_{0}) = H + \frac{AM\omega_{0}^{2}}{2}\mathbf{R}^{2} = H_{\text{cm}}(\omega_{0}) + H_{\text{int}}$$

$$H_{\text{cm}}(\omega_{0}) = \frac{\mathbf{P}^{2}}{2MA} + \frac{AM\omega_{0}^{2}}{2}\mathbf{R}^{2} \qquad \Psi_{n\ell m} = \phi_{n\ell m}(\mathbf{R}) \Psi'$$

$$E(\omega_{0}) = \hbar\omega_{0}(N_{\text{cm}} + 3/2) + E'$$

$$N_{\text{cm}} = 2n + \ell |$$

$$1p, 0f$$

$$1s, 0d$$

$$0p$$

$$0s$$

Configuration interactions (variational principle)

Configurations (Slater determinants or more)

Second quantization Full antisymmetry Fast numeric strategies Selection of basis and truncation

Configuration interactions (variational principle)

Alpha particle in no-core shell model

JISP-16 interaction

Code at http://www.volya.net [cosmo]

Translational invariance and Center of Mass (CM)

Shell model, Glockner-Lawson procedure

Center-of-Mass boosts

 $\Psi_{n\ell m} = \phi_{n\ell m}(\mathbf{R}) \Psi'$ $\mathcal{B}^{\dagger}_{and} \mathcal{B}^{CM}$ quanta creation and annihilation (vectors) $\Psi_{n+1\ell m} \propto \mathcal{B}^{\dagger} \cdot \mathcal{B}^{\dagger} \Psi_{n\ell m}$ $\mathcal{B}^{\dagger} \times \mathcal{B}^{CM}$ CM angular momentum operator

$$N=2n+\ell$$

Select configuration content of NCSM wave functions for ⁴He with $h\Omega = 20$ MeV boosted by 8 quanta (L = 0).

Configuration	$N_{\rm max}=0$	$N_{\rm max}=4$
$(sd)^4$	0.038	0.035
$(p)(sd)^2(pf)$	0.308	0.282
$(p)^2 (pf)^2$	0.103	0.094
$(p)^2(sd)(sdg)$	0.154	0.141
(p)(sd)(sdg)(pfh)	0.000	0.005
(p)(sd)(pf)(sdg)	0.000	0.009

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

CM-boosted configuration from shell model perspective

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

CM-boosted configuration from shell model perspective

Configuration Interaction

State, equivalent to operator (polymorphism)

$$|\Psi\rangle \equiv \hat{\Psi}^{\dagger}|0\rangle = \sum_{\{1,2,3,\dots,A\}} \langle 1,2\dots A|\Psi\rangle \,\hat{a}_{1}^{\dagger}\hat{a}_{2}^{\dagger}\dots\hat{a}_{A}^{\dagger}|0\rangle$$

$$\begin{split} |\Psi_{\alpha}\rangle &= \Psi_{\alpha}^{\dagger}|\rangle = \sum_{\{m\}} X_{m}^{\alpha} a_{m_{1}}^{\dagger} a_{m_{2}}^{\dagger} a_{m_{3}}^{\dagger} a_{m_{4}}^{\dagger}|\rangle \\ |\Psi_{\mathrm{D}}\rangle &= \Psi_{\mathrm{D}}^{\dagger}|\rangle = \sum_{\{m\}} X_{m}^{\mathrm{D}} a_{m_{1}}^{\dagger} a_{m_{2}}^{\dagger} \dots a_{m_{\mathrm{A}_{\mathrm{D}}}}^{\dagger}|\rangle \end{split}$$

Anti-symmetrized channel wave function components are generated by acting with state creation operator and forward ordering.

$$|\Psi_{\rm C}\rangle = \Psi_{\alpha}^{\dagger}\Psi_{\rm D}^{\dagger}|\rangle$$

Code at http://www.volya.net [cosmo]

Configuration interaction approach and clustering

Traditional shell model configuration m-scheme

Cluster configuration

Recoil Recoupling

• Recoupling is done with Talmi-Moshinsky brackets

$$\Phi_{n\ell m} = \mathcal{A}\left\{\phi_{000}(\mathbf{R})\phi_{n\ell m}(\boldsymbol{\rho})\Psi^{\prime(1)}\Psi^{\prime(2)}\right\}$$

Clustering reaction basis channel

(basis states for clustering)

Resonating group method ⁸Be

 $\mathcal{H}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | H | \Phi_{n'\ell} \rangle \qquad \mathcal{N}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | \Phi_{n'\ell} \rangle$

Resonating group method and reactions

alpha+alpha scattering phase shifts

Resonating group method ⁸Be results

		Theory	Exp.
I=0	ev	8.7	5.6
I=2	MeV	1.3	1.5
I=4	MeV	2.1	3.5

Spectroscopic amplitudes

parent	J^{π}	channel	$ \langle \Psi \mathcal{F}_\ell angle $
⁸ Be[4]	0^+	$\alpha[0] + \alpha[0]$	0.905
$^{8}\text{Be}[4]$	$ 2^+ $	$\alpha[0] + \alpha[0]$	0.898
$^{8}\text{Be}[4]$	$ 4^+ $	$\alpha[0] + \alpha[0]$	0.874
$^{8}\text{Be}[4]$	$ 0^+ $	$\alpha[2] + \alpha[2]$	0.961
$^{8}\text{Be}[4]$	2^{+}	$\alpha[2] + \alpha[2]$	0.957
⁸ Be[4]	4^{+}	$\alpha[2] + \alpha[2]$	0.943
$^{10}\text{Be}[4]$	$ 0^+ $	$^{6}\text{He}[0] + \alpha[0]$	0.844
$^{10}\text{Be}[4]$	$ 0^+ $	6 He[4] + α [0]	0.820
$^{10}\text{Be}[4]$	$ 2^+ $	$^{6}\text{He}[0] + \alpha[0]$	0.834
$^{10}\text{Be}[4]$	2^+	$^{6}\text{He}[4] + \alpha[0]$	0.796
$^{12}C[4]$	0^{+}_{1}	$\alpha[0] + \alpha[0] + \alpha[0]$	0.841
$1^{2}C[4]$	0^+_2	$\alpha[0] + \alpha[0] + \alpha[0]$	0.229

Spectroscopic amplitudes.

Ttriple-alpha RGM

parent	channel	overlap
${}^{12}C[4](0_1^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.841
${}^{12}C[4](0_2^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.229

N_{max}(rel)=12

Molecular orbits ²¹Ne

Weak-Coupling Behavior

\mathbf{J}^{π}	$\mathcal{S}^{(new)}$		$\mathcal{S}^{(exp)}$			
	$\ell = 0$	$\ell = 2$	$\ell = 4$	$\ell = 0$	$\ell = 2$	$\ell = 4$
3/2+		1.0	0.18		1.0 ± 0.05	0.42 ± 0.04
5/2 +	0.78	0.02	0.44	1.04 ± 0.41		0.32 ± 0.18
7/2 +		0.9	0.14		0.91 ± 0.08	$0.23 \pm \ 0.04$
9/2+,1/2+		0.81	0.33		0.9 ± 0.05	0.29 ± 0.03

N. Anantaraman, J. P. Draayer, H. E. Gove, J. T⁻oke, and H. T. Fortune. Alpha-particle stripping to ²¹Ne. Phys.Rev. C18, 815 (1978); Phys.Lett. 74B, 199 (1978) A. K. Nurmukhanbetova, V. Z. Goldberg, D. K. Nauruzbayev, M. S. Golovkov, A. Volya, Phys. Rev. C 100 (2019) 062802.

Clustering in ²⁰Ne

Clustering in ²⁰Ne

Clustering in ²⁰Ne

Clustering and continuum

Searching for clustering strength

Distribution of dynamic spectroscopic factors for ²⁰ Ne \rightarrow ¹⁶ O(g.s.) + α . The dashed lines correspond to the RGM energies for each decay channel.

Clustering in light nuclei

 $\frac{0^{+}}{-160.6}$ $\frac{20}{10} \text{Ne}_{10}$

Channel coupling in ¹⁸0 I=1 channel

Channel coupling in ¹⁸0 I=1 channel

Channel coupling in ¹⁸0 I=1 channel

Thanks to all collaborators:

K Kravvaris and A. Volya, Phys. Rev. Lett, 119(6), 062501 (2017); Journal of Phys 863, 012016 (2017) K. Kravvaris, A. Volya, Phys. Rev. C 100 (2019) 034321.

K Kravvaris Doctoral dissertation, Florida State University (2018)

A. Volya, et al. Phys. Rev. C 105 (2022) 014614.

V. Z. Goldberg, et al., Phys. Rev. C 105 (2022) 014615.

A. K. Nurmukhanbetova, et al, Phys. Rev. C 100 (2019) 062802.

D. K. Nauruzbayev, et al, Phys. Rev. C 96 (2017) 014322.

A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015).

M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson, K. W. Kemper, Y. M. Tchuvil'sky, A. S. Volya, Phys. Rev. C 90 (2014) 024327.

A. M. Long, T. Adachi, M. Beard, G. P. A. Berg, Z. Buthelezi, J. Carter, M. Couder, R. J. Deboer, R. W. Fearick, S.
V. Förtsch, J. Görres, J. P. Mira, S. H. T. Murray, R. Neveling, P. Papka, F. D. Smit, E. Sideras-Haddad, J. A.
Swartz, R. Talwar, I. T. Usman, M. Wiescher, J. J. V. Zyl, A. Volya, Phys. Rev. C 95 (2017) 055803.

Resources: https://www.volya.net/ (see research, clustering)

Funding: U.S. DOE contract DE-SC0009883.

