Localization and Clustering in Nuclei

Dario Vretenar University of Zagreb

Localization and clustering in nucleonic matter

...quantality parameter: $\quad \Lambda_{\mathrm{Mot}} \hat{=} \frac{\hbar^{2}}{m \bar{r}^{2}\left|V_{0}\right|} \quad \begin{aligned} & \text { Instio ratio of the zero-point kinetic energy of the } \\ & \text { confined particle to its potential energy. }\end{aligned}$
B. Mottelson the transition between a solid phase (small kinetic energy compared to the potential at equilibrium) and a liquid (relatively large kinetic energy in comparison to the depth of the potential) occurs for \wedge Mot $\simeq 0.1$.

For nuclear matter: the inter-nucleon distance $\sim 1 \mathrm{fm}$, the strength of the nucleon-nucleon interaction $\left|\mathrm{V}_{0}\right|$ $\simeq 100 \mathrm{MeV}, \mathrm{mc}^{2} \simeq 940 \mathrm{MeV} \Rightarrow \wedge \mathrm{Mot} \simeq 0.4$ is a characteristic value for the nuclear quantum liquid phase.

Liquid-cluster transition in finite nuclei

...the de Broglie wavelength for the motion of nucleons: $\quad \lambda_{\mathrm{dB}}=2 \pi \hbar / \sqrt{2 m(E-V)}$.
\ldots for $\mathrm{E} \sim 0$ and $\mathrm{V}=-\mathrm{V}_{0} \Rightarrow \quad \lambda_{\mathrm{dB}}=\pi \bar{r} \sqrt{2 \Lambda_{\mathrm{Mot}}} \quad \ldots$ no nuclear mass or size dependence!

DEF. Localization parameter: $\quad \alpha_{\mathrm{loc}} \hat{=} \frac{\Delta r}{\bar{r}} \quad$...spatial dispersion of single-nucleon wave functions:

$$
\Delta r=\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}
$$

For $\alpha_{\text {loc }} \gg 1 \Rightarrow$ delocalised orbits of individual nucleons (Fermi liquid phase).
When $\alpha_{\text {Ioc }} \ll 1 \Rightarrow$ localised nucleons (crystal-like structure).
For $\alpha_{\text {loc }} \approx 1$ the spatial dispersion of the single-nucleon wave function \approx inter-nucleon distance \Rightarrow transition from the quantum liquid phase to a hybrid phase of cluster states.

Radial dispersions Δr of the single-neutron wave functions of 288Cf, obtained in a self-consistent relativistic mean-field (RMF) calculation based on the energy density functional DD-ME2.

For a spherical three-dimensional harmonic oscillator (3D HO) potential:

$$
\begin{gathered}
\left\langle r^{2}\right\rangle=b^{2}\left(N+\frac{3}{2}\right)=b^{2}\left(2 n^{\prime}+l+\frac{3}{2}\right), \\
N=2(n-1)+l \\
\frac{\langle r\rangle}{b}=\sum_{q=0}^{n^{\prime}} \frac{(-1)^{q}(l+q+1)!\Gamma\left(n^{\prime}-q-\frac{1}{2}\right)}{q!\left(n^{\prime}-q\right)!\Gamma\left(l+q+\frac{3}{2}\right) \Gamma\left(-q-\frac{1}{2}\right)}, \\
n^{\prime} \equiv n-1
\end{gathered}
$$

For a spherical three-dimensional harmonic oscillator (3D HO) potential:

$$
\alpha_{\mathrm{loc}}=\frac{2 \Delta r}{r_{0}} \simeq \frac{b}{r_{0}} \sqrt{2 n-1}=\frac{\sqrt{\hbar(2 n-1)}}{\left(2 m V_{0} r_{0}^{2}\right)^{1 / 4}} A^{1 / 6}
$$

For relatively light nuclei with $\mathrm{A} \leq 30$ and $\mathrm{n}=1$ states occupied, $\alpha_{\mathrm{loc}} \leq 1 \Rightarrow$ formation of α-like clusters.
...formation of individual α-like clusters from valence nucleons in heavy nuclei:

Microscopic RHB prediction of nuclei that have small radial dispersion of the singleparticle states of valence nucleons, plotted on the background of empirically known nuclides on the N -Z plane.

The single-nucleon dispersions are calculated for the functional DD-ME2 and separable pairing and assuming axial symmetry.
J.-P. EBRAN, E. KHAN, R.-D. LASSERI, AND D. VRETENAR

PHYSICAL REVIEW C 97, 061301(R) (2018)

Clusters in light alpha-conjugate nuclei

Self-consistent mean-field calculations based on nuclear energy density functionals (EDFs), with constraints on mass multipole moments.

${ }^{20} \mathrm{Ne}$

The confining potential determines the energy spacings between single-nucleon orbitals in deformed nuclei, the localization of the corresponding wave functions, and the degree of nucleonic density clustering.

Important role of nuclear shape deformation: removes the degeneracy of single- nucleon levels associated with spherical symmetry.

0
Cluster states cannot be isolated from the continuum of scattering states \Rightarrow open quantum systems.

How atomic nuclei cluster

J.-P. Ebran ${ }^{1}$, E. Khan ${ }^{2}$, T. Nikšic ${ }^{3}$ \& D. Vretenar ${ }^{3}$

19 JULY 2012 | VOL 487 | NATURE | 341

Nucleon localization functions:

$$
\begin{gathered}
\sigma(\uparrow \text { or } \downarrow) \\
q(n \text { or } p)
\end{gathered}
$$

$$
C_{q \sigma}(\vec{r})=\left[1+\left(\frac{\tau_{q \sigma} \rho_{q \sigma}-\frac{1}{4}\left|\vec{\nabla} \rho_{q \sigma}\right|^{2}-\vec{j}_{q \sigma}^{2}}{\rho_{q \sigma} \tau_{q \sigma}^{\mathrm{TF}}}\right)^{2}\right]^{\text {kinetic energy density }} \tau_{q \sigma}^{\mathrm{TF}}=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} \rho_{q \sigma}^{5 / 3}
$$

For homogeneous nuclear matter: $\left|C_{q \sigma}=1 / 2\right| \quad$ For the $\boldsymbol{\alpha}$-cluster (four particles): $\mid C_{q \sigma}(\vec{r}) \approx 1$

Role of nuclear saturation \Rightarrow spontaneous alpha-clustering at low density

\Rightarrow locally enhances the nucleonic density toward its saturation value, thus increasing the binding of the system.

160 - SCMF calculation with a constraint on the monopole moment:

R_rms=2.60fm
0.17
0.12
0.083
0.042

0

EBRAN, KHAN, NIKŠIĆ, AND VRETENAR
PHYSICAL REVIEW C 89, 031303(R) (2014) symmetry restoration and nuclear shape fluctuations

Quadrupole and octupole collectivity and cluster structures in neon isotopes

MAREVIĆ, EBRAN, KHAN, NIKŠIĆ, AND VRETENAR
PHYSICAL REVIEW C 97, 024334 (2018)

GCM configuration mixing of angular-momentum and parity projected SCMF states

MAREVIĆ, EBRAN, KHAN, NIKŠIĆ, AND VRETENAR
PHYSICAL REVIEW C 97, 024334 (2018)

${ }^{108} \mathrm{Xe}$ and ${ }^{104 \mathrm{Te} \boldsymbol{\alpha} \text {-decay chain }}$

lum lightest region of the nuclear mass table in which a-particle emission has been identified.

Deformation-energy surface of ${ }^{104}$ Te in the quadrupole-octupole axially symmetric plane. RHB model based on the DD-PC 1 functional.
... the action integral

$$
S(L)=\int_{s_{\text {in }}}^{s_{\text {out }}} \frac{1}{\hbar} \sqrt{2 \mathcal{M}_{\text {eff }}(s)\left[V_{\text {eff }}(s)-E_{0}\right]} d s
$$

From sin to the scission point: $\quad V_{e f f}=E_{R H B}\left(\beta_{2}, \beta_{3}\right)-E_{Z P E}$

$$
\mathcal{M}_{\mathrm{eff}}(s)=\sum_{i j} \mathcal{M}_{i j} \frac{d q_{i}}{d s} \frac{d q_{j}}{d s} \quad \text { perturbative cranking collective inertia }
$$

From the scission point to sout: Coulomb potential $V_{\text {eff }}\left(\beta_{3}\right)=e^{2} \frac{Z_{1} Z_{2}}{R}-Q$,
Exp. Q-value
... effective collective mass $\quad \mathcal{M}_{\text {eff }}=\frac{\mu}{9 Q_{30}^{4 / 3} f_{3}^{2 / 3}}$
... octupole moment $\quad Q_{30}=f_{3} R^{3} \quad f_{3}=\frac{A_{1} A_{2}}{A} \frac{\left(A_{1}-A_{2}\right)}{A}$
... barrier penetration probability

$$
P=\frac{1}{1+\exp [2 S(L)]}
$$

$$
T_{1 / 2}=\ln 2 /(\underbrace{}_{10^{20.38} \mathrm{~s}^{-1}}
$$

The scission point is determined by a discontinuity in $\beta 40$.

Deformation-energy surface of ${ }^{104}$ Te in the quadrupole-hexadecupole axially symmetric plane for selected values of the octupole deformation $\beta 30$.

Deformation-energy surface of ${ }^{108} \mathrm{Xe}$ in the quadrupole-octupole axially symmetric plane.

Experimental half-lives for superallowed a-decay of ${ }^{104} \mathrm{Te}$: $<18 \mathrm{~ns}$, and ${ }^{108 \mathrm{Xe}:} 58(+106-23) \mathrm{\mu s}$.

Microscopic Description of 2α Decay in ${ }^{212 P}$ and ${ }^{224 R a}$

F. MERCIER et al.

PHYSICAL REVIEW LETTERS 127, 012501 (2021)

Symmetric (back to back) 2α mode
... least action path

$$
S(L)=\int_{s_{\mathrm{in}}}^{s_{\mathrm{out}}} \frac{1}{\hbar} \sqrt{2 \mathcal{M}_{\mathrm{eff}}(s)\left[V_{\mathrm{eff}}(s)-E_{0}\right]} d s
$$

From sin to the scission point: $\quad V_{e f f}=E_{R H B}\left(\beta_{2}, \beta_{4}\right)-E_{Z P E}$

$$
\mathcal{M}_{\mathrm{eff}}(s)=\sum_{i j} \mathcal{M}_{i j} \frac{d q_{i}}{d s} \frac{d q_{j}}{d s} \quad \begin{aligned}
& \text { perturbative cranking inertia in the } \\
& \beta_{2} \text { and } \beta_{4} \text { collective space }
\end{aligned}
$$

$\log T_{2 a}[s]=14.24$

For the ${ }^{8} \mathrm{Be}-$ mode: $\log \mathrm{T}_{2 \mathrm{a}}[\mathrm{s}]=27.87$.

From the scission point to sout: superposition of two alpha+nucleus Coulomb potentials

$$
V_{\mathrm{eff}}\left(\beta_{2}\right)=2 e^{2} \frac{Z_{1} Z_{2}}{R}-Q_{2 \alpha}
$$

... effective collective mass

$$
\mathcal{M}_{\mathrm{eff}}=\frac{\mu}{8 A_{2} q_{20}}
$$

... quadrupole moment

$$
q_{20}=2 A_{2} R
$$

PHYSICAL REVIEW LETTERS 127, 012501 (2021)

$$
Q_{2 \alpha}=Q_{\alpha 1}+Q_{\alpha 2}+\Delta E
$$

Difference between excitation energies

$$
\mathrm{Q}_{2 \alpha}>0 \text { Nuclei }
$$ (= 0 for transitions between ground states)

... extremely low probability!

- • sequential single-a decays is energetically forbidden!

212 PO

$\left(\beta_{20}, \beta_{30}, \beta_{40}\right)$ collective space

For the ${ }^{8}$ Be decay channel: $\log \mathrm{T}_{2} a[\mathrm{~s}]=38.82$.

TDDFT fission trajectories

Density profiles at times immediately prior to the scission event.

Nucleon localization functions:

$$
\begin{gathered}
\sigma(\uparrow \text { or } \downarrow) \\
q(n \text { or } p)
\end{gathered}
$$

$$
C_{q \sigma}(\vec{r})=\left[1+\left(\frac{\tau_{q \sigma} \rho_{q \sigma}-\frac{1}{4}\left|\vec{\nabla} \rho_{q \sigma}\right|^{2}-\vec{j}_{q \sigma}^{2}}{\rho_{q \sigma} \tau_{q \sigma}^{\mathrm{TF}}}\right)^{\text {kinetic energy density }}\right]^{-1}
$$

$$
\tau_{q \sigma}^{\mathrm{TF}}=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} \rho_{q \sigma}^{5 / 3}
$$

For homogeneous nuclear matter: $\quad C_{q \sigma}=1 / 2$
For the a-cluster of four particles: $\quad C_{q \sigma}(\vec{r}) \approx 1$

Trajectory 2

When are these light clusters formed?

What is their structure?

What is their role in the scission mechanism?

Methods based on the framework of Energy Density Functionals

ح ...accurate microscopic description of universal collective phenomena that reflect the organisation of nucleonic matter in finite nuclei.
\checkmark
... nucleon localization and formation of light clusters at sub-saturation densities.
... cluster structure and dynamics in light $\mathrm{N}=\mathrm{Z}$ and neutron-rich nuclei (quasimolecular structures).

ح ... alpha-decay in medium-heavy and heavy nuclei.
... nuclear fission dynamics phase \Rightarrow ternary fission.

