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2. Localization and clustering in nucleonic matter

Neutrons and protons in finite nuclei and extended nucleonic matter exhibit several

phases. Symmetric nuclear matter, in particular, is an idealised infinite and

homogeneous medium of equal number of structureless protons and neutrons interacting

by low-energy nuclear forces, and no Coulomb force. At equilibrium nuclear matter

behaves like a quantum (Fermi) liquid characterised by a saturation density of ⇢0 ⇡ 0.16

nucleon/fm3 and binding energy EB ⇡ 16 MeV/nucleon. The quantum liquid nature

of nuclei and nuclear matter was discussed by B. Mottelson[20], who used a previously

introduced quantality parameter [21]:

⇤Mot=̂
~2

mr̄2|V0|
, (1)

The quantality ⇤Mot is defined as the ratio of the zero-point kinetic energy of the

confined particle to its potential energy. The kinetic energy ~2/mr̄
2 corresponds to

the momentum p = ~/r̄, and the reduced mass m/2. The equilibrium inter-particle

distance is r̄, and |V0| denotes the depth of the potential. The transition between a

solid phase (small kinetic energy compared to the potential at equlibrium) and a liquid

(relatively large kinetic energy in comparison to the depth of the potential) occurs for

⇤Mot ' 0.1. For small ⇤Mot the inter-particle interaction dominates and the equilibrium

state of the many-body system will be a configuration in which each particle is localized

with respect to its neighbours, whereas for ⇤Mot > 0.1 the ground state is a quantum

liquid in which the individual particles are delocalized and the low-energy excitations

(quasi-particles) have infinite mean free path [22]. In the case of nuclear matter r̄ is of

the order of 1 fm, the strength of the bare nucleon-nucleon interaction |V0| ⇠ 100 MeV,

mc
2
' 940 MeV is the nucleon mass and, therefore, ⇤Mot ' 0.4 is a characteristic value

for the nuclear quantum liquid phase.

At subsaturation densities correlations in strongly interacting matter lead to

clustering phenomena [23] and, eventually, to a gas phase with nucleons and light

clusters. As a result of strong correlations bound states are formed at low density and,

when nucleonic bound states can be considered as bosons, that is, when formed from an

even number of nucleons, Bose-Einstein condensation may occur at low temperatures

in nuclear matter. In the spin singlet (S = 0) channel the interaction is not attractive

enough to form a bound state. A bound proton-neutron pair, the deuteron, materializes

in the triplet (S = 1) channel. However, as shown in Ref. [24], in the low-density limit

the transition to triplet pairing does not take place because four-nucleon correlations

dominate. In chemical equilibrium, at low temperatures in the low-density limit nuclear

matter is characterised by condensation of ↵-particles (bound states of two protons and

two neutrons) that are much more strongly bound than deuterons. The formation of

well defined clusters is predicted at densities well below the saturation point. With

increasing density clusters dissolve because of a reduction of their binding caused by the

Pauli blocking that leads to the Mott e↵ect for vanishing binding [25, 26].

➠ ratio of the zero-point kinetic energy of the 
confined particle to its potential energy. 

inter-particle distance depth of the potential

B. Mottelson ➠ the transition between a solid phase (small kinetic energy compared to the potential at 
equilibrium) and a liquid (relatively large kinetic energy in comparison to the depth of the potential) 
occurs for ΛMot ≃ 0.1. 

For nuclear matter: the inter-nucleon distance ~ 1 fm, the strength of the nucleon-nucleon interaction |V0|
≃100 MeV, mc2 ≃ 940 MeV ⇒ ΛMot ≃ 0.4 is a characteristic value for the nuclear quantum liquid phase. 

J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, J. Phys. G 44, 103001 (2017)



Liquid-cluster transition in finite nuclei

…the de Broglie wavelength for the motion of nucleons: 

Localization and clustering in atomic nuclei 4

3. Liquid-cluster transition in finite nuclei

When temperature decreases and density increases, a system of particles interacting

through a short-range force undergoes a transition to a quantum liquid state [27].

Quantum e↵ects become important when the typical dispersion of the constituent

particles, that is, the thermal de Broglie wavelength of a particle � = h/p ' ~/
p
2mkT

becomes comparable to the average inter-particle spacing. In a transition to a

quantum liquid state the constituent particles are delocalized and the system reaches a

homogeneous density (mean-field phase). Both the bosonic/fermionic nature of a many-

body system and the inter-particle interaction determine characteristic properties of a

quantum liquid [27]. In a finite isolated system in which temperature cannot be assigned

unambiguously, the de Broglie wavelength can be defined for the motion of particles as

�dB = 2⇡~/
p

2m(E � V ). For E ⇠ 0 and V = �V0, the de Broglie wavelength can be

related to Mottelson’s quantality parameter [23]:

�dB = ⇡r̄

p
2⇤Mot (2)

The quantality parameter is defined for infinite homogeneous systems and, therefore, in

the nuclear case it does not include any mass or size dependence. To analyze localization

of single-nucleon wave functions in finite nuclei one needs to consider a quantity that is

sensitive to both the nucleon number and size of a nucleus. In Ref. [19] we introduced

the dimensionless parameter ↵loc:

↵loc=̂
�r

r̄
(3)

where r̄ is the average inter-nucleon distance, and �r the spatial dispersion of the wave

function:

�r =
q
hr2i � hri

2 (4)

For large values of ↵loc the orbits of individual nucleons will be delocalized and the

nucleus in the Fermi liquid phase. When ↵loc is very small nucleons can be localized on

the nodes of a crystal-like structure. For ↵loc ⇡ 1 the spatial dispersion of the single-

nucleon wave function is of the same size as the inter-nucleon distance and, therefore,

localization facilitates a transition from the quantum liquid phase to a hybrid phase of

cluster states. For finite systems like nuclei this transition, of course, cannot be sharp

and cluster states coexists with mean-field type states. The transition from the quantum

liquid to the cluster phase is controlled by the specific dynamics and length scale of the

system under consideration [19, 18] and, in particular, finite size e↵ects are important.

When the confining nuclear potential is approximated by a 3-dimensional isotropic

harmonic oscillator, the localization parameter ↵loc takes the form:

↵loc '
b

r0
=

p
~R

r0(2mV0)1/4
, (5)

… for E ~ 0 and V = − V0  ⇒
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nucleon wave function is of the same size as the inter-nucleon distance and, therefore,
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system under consideration [19, 18] and, in particular, finite size e↵ects are important.

When the confining nuclear potential is approximated by a 3-dimensional isotropic

harmonic oscillator, the localization parameter ↵loc takes the form:

↵loc '
b

r0
=

p
~R

r0(2mV0)1/4
, (5)

… no nuclear mass or size dependence!

DEF. Localization parameter:
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…spatial dispersion of single-nucleon wave functions: 

For 𝛼loc >>1 ⇒ delocalised orbits of individual nucleons (Fermi liquid phase).  

When 𝛼loc <<1 ⇒ localised nucleons (crystal-like structure).  

For 𝛼loc ≈ 1 the spatial dispersion of the single-nucleon wave function ≈ inter-nucleon distance ⇒ 
transition from the quantum liquid phase to a hybrid phase of cluster states. 
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FIG. 1. Radial dispersions !r of the single-neutron wave func-
tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
[18].

single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions !r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
!r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2(N + 3
2

)
= b2(2n′ + l + 3

2

)
, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the
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FIG. 2. Radial dispersions !r of the harmonic-oscillator wave
functions of 288Cf, evaluated numerically from Eqs. (2) and (3)
(filled symbols) and in the analytical approximation [Eqs. (5) and
(8) corresponding to the minimal and maximal values, respectively]
(open symbols).

following form:

〈r〉
b

=
n′∑

q=0

(−1)q(l + q + 1)!#
(
n′ − q − 1

2

)

q!(n′ − q)!#
(
l + q + 3

2

)
#

(
− q − 1

2

) , (3)

where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains

〈r〉
b

= 2√
π

(2n′ + 1)!!
(2n′)!!

' 2√
π

(
5n′

4
+ 1

)1/2

, (4)
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where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains
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FIG. 1. Radial dispersions !r of the single-neutron wave func-
tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
[18].

single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions !r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
!r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2(N + 3
2

)
= b2(2n′ + l + 3

2

)
, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the
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where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains
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tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
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single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions !r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
!r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2(N + 3
2

)
= b2(2n′ + l + 3
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)
, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the

0 2 4 6 8 10
orbital angular momentum 

0

1

2

3

4

5

D
isp

er
sio

n 
(fm

)

n=1

n=2
n=3
n=4
n=5
n=6

288Cf, HO

n=7
n=8
n=9

FIG. 2. Radial dispersions !r of the harmonic-oscillator wave
functions of 288Cf, evaluated numerically from Eqs. (2) and (3)
(filled symbols) and in the analytical approximation [Eqs. (5) and
(8) corresponding to the minimal and maximal values, respectively]
(open symbols).

following form:

〈r〉
b

=
n′∑

q=0

(−1)q(l + q + 1)!#
(
n′ − q − 1

2

)

q!(n′ − q)!#
(
l + q + 3

2

)
#

(
− q − 1

2

) , (3)

where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains
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(RMF) calculation based on the energy density functional DD-ME2
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single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions !r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
!r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2(N + 3
2

)
= b2(2n′ + l + 3
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)
, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the
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where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains
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where the right-hand side is an accurate approximation with a
<1% error for n′ = 20. Thus, using Eqs. (2) and (4), the l = 0
dispersion reads
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"
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)
" 0.4n′ + 0.23. (5)

Let us now consider the case of large angular momenta l in
Eq. (3). In this limit [21],
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and the expression Eq. (3) reduces to
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The corresponding dispersion for large l values reads
(

!r

b
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" n′

2
+ 1

4
. (8)

The close agreement of the expressions for l = 0 [Eq. (5)]
and in the large l limit [Eq. (8)] reflects the weak depen-
dence of the HO dispersion on orbital angular momentum.
The corresponding dispersions of occupied states of 288Cf:
Minimal values corresponding to Eq. (5) and maximal values
computed using Eq. (8) are indicated by open symbols in Fig. 2.
Both expressions, of course, yield very similar dispersions.
Equation (8) implies, as also shown in Fig. 2, that the occupa-
tion of an n = 2 state leads to a dispersion that is by a factor√

3 ∼ 1.7 larger than the one of n = 1 states. This corresponds
to the case of medium-heavy nuclei, typically above silicon, in
which there is no clear evidence of cluster states at low energies
and angular momenta.

From Eqs. (1) and (8) we finally derive the approximate
expression for the HO localization parameter,

αloc = 2!r

r0
" b

r0

√
2n − 1 =

√
h̄(2n − 1)

(
2mV0r

2
0

)1/4 A1/6. (9)

In nuclei the depth of the confining potential is rather constant
as well as the average internucleon distance, hence the two
key parameters that determine localization are A and the radial
quantum number n. For relatively light nuclei with A ! 30 and
n = 1 states occupied, αloc ! 1, and this favors the formation
of α-like clusters. In heavier nuclei levels that originate from
n > 1, spherical states are largely delocalized, and this explains
the predominant liquid drop nature of these systems.

An interesting possibility, however, is the formation of
individual α-like clusters from valence nucleons in heavy
nuclei. We have performed a systematic fully self-consistent
relativistic Hartree-Bogoliubov (RHB) [22] calculation of
single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart using the functional DD-ME2. Pairing
correlations have been taken into account by employing an
interaction that is separable in momentum space and is com-
pletely determined by two parameters adjusted to reproduce the
empirical bell-shaped pairing gap in symmetric nuclear matter
[23]. The Dirac-Hartree-Bogoliubov equations are solved by
expanding the nucleon spinors in a large axially symmetric HO
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FIG. 3. Microscopic axially symmetric RHB prediction of nuclei
that have small radial dispersion of the single-particle states of valence
nucleons (red circles), plotted on the background of empirically
known nuclides on the N -Z plane. The single-nucleon dispersions
have been calculated using the functional DD-ME2 and separable
pairing and assuming axial symmetry.

basis. The microscopic values of the dispersion !r have been
calculated for each single-particle state. Figure 3 indicates, on
the table of nuclides on the N -Z plane, those nuclei in the
RHB calculation for which both the neutron and the proton
valence states (having an occupation probability larger than
0.1) exhibit a significantly small dispersion on the order of 1 fm.
For deformed nuclei it can be shown that these Nilsson levels
do originate from n = 1 spherical states with the degeneracy
raised by deformation. One notices that pronounced localiza-
tion, as a precondition for the formation of cluster structures, is
present in light nuclei but also occurs among valence nucleons
in medium-heavy and heavy nuclei, in agreement with empir-
ically known α- and cluster-radioactive nuclei. For instance,
a favorable condition for clustering is predicted for 212Po, in
accordance with experimental evidence [16]. The EDF-based
approach used in this Rapid Communication provides a global
interpretation of the occurrence of cluster structures by means
of spatial dispersion of single-nucleon wave functions.

The role of deformation, which is known to favor cluster
formation [10,24,25], is illustrated in Fig. 4 where we show the
self-consistent mean-field results for 20Ne calculated using the
relativistic density functional DD-ME2 in the RMF approach.
Pairing does not play an important role for the effect that we
consider in this particular nucleus, and it has not been included
in the RMF calculation restricted to axial symmetry. Figure 4
displays the occupied single-neutron levels as functions of
the axial deformation parameter, the dispersion of the wave
function corresponding to the highest level occupied by the
two valence neutrons, and the partial intrinsic densities of the
valence neutrons for values of deformation that correspond to
the peaks and minima of dispersion. In general, the spatial
dispersion increases with deformation until a level crossing
occurs for the last occupied state. The largest and sharpest
increase in the spatial dispersion takes place at the deformation
at which a 1/2+ state (originating from the 2s1/2 spherical
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FIG. 1. Radial dispersions !r of the single-neutron wave func-
tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
[18].

single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions !r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
!r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2(N + 3
2

)
= b2(2n′ + l + 3
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, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the
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where # is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from the n = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains
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FIG. 1. Radial dispersions !r of the single-neutron wave func-
tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
[18].
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Clusters in light alpha-conjugate nuclei

Self-consistent mean-field calculations based on nuclear energy density functionals (EDFs), with constraints 
on mass multipole moments. 

The confining potential determines the energy spacings 
between single-nucleon orbitals in deformed nuclei, the 
localization of the corresponding wave functions, and 
the degree of nucleonic density clustering. 

Cluster states cannot be isolated from the continuum 
of scattering states ⇒ open quantum systems.  
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How atomic nuclei cluster
J.-P. Ebran1, E. Khan2, T. Nikšić3 & D. Vretenar3

Nucleonic matter displays a quantum-liquid structure, but in some
cases finite nuclei behave like molecules composed of clusters of
protons and neutrons. Clustering is a recurrent feature in light
nuclei, from beryllium to nickel1–3. Cluster structures are typically
observed as excited states close to the corresponding decay threshold;
the origin of this phenomenon lies in the effective nuclear interaction,
but the detailed mechanism of clustering in nuclei has not yet been
fully understood. Here we use the theoretical framework of energy-
density functionals4,5, encompassing both cluster and quantum
liquid-drop aspects of nuclei, to show that conditions for cluster
formation can in part be traced back to the depth of the confining
nuclear potential. For the illustrative example of neon-20, we show
that the depth of the potential determines the energy spacings
between single-nucleon orbitals in deformed nuclei, the localization
of the corresponding wavefunctions and, therefore, the degree of
nucleonic density clustering. Relativistic functionals, in particular,
are characterized by deep single-nucleon potentials. When com-
pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.

The occurrence of molecular states in atomic nuclei and the forma-
tion of clusters of nucleons were predicted in the 1930s (refs 1 and 2).
Subsequently, the description of nuclear dynamics came to be based
predominantly on the concept of independent nucleons in a mean-
field potential, but a renewed interest in clustering phenomena in the
1960s led to the development of theoretical methods dedicated to
considering clusters3. Numerous experimental studies have revealed
a wealth of data on clustering phenomena in light nuclei3, and modern
theoretical approaches use microscopic models that take single-
nucleon degrees of freedom fully into account6–8. Clustering gives rise
to nuclear molecules. For instance, in 12C the second 01 state—the
Hoyle state that has a key role in stellar nucleosynthesis—is predicted
to display a structure composed of three a-particles9,10. The binding
energy of the a-particle, formed from two protons and two neutrons, is
much larger than that of other light nuclei. Cluster radioactivity11,
discovered in the 1980s, is another manifestation of clustering in
atomic nuclei. Experimental signatures of clustering are usually indirect.
Quasi-molecular resonances are probed by scattering one cluster on
another, such as in the 12C112C system3,12, and cluster structures are
also discernible in the break-up of nuclei. Evidence has been reported
for the formation of clusters in ground and excited states of a number
of a-conjugate nuclei3; that is, nuclei with an equal, even number of
protons and neutrons, from 8Be to 56Ni.

The mechanism of cluster formation has not yet been fully
understood. As shown in Ikeda diagrams13, cluster structures are pre-
dicted to appear as excited states close to the corresponding decay
threshold. However, the origin of cluster formation lies in the effective
nuclear interaction, and signatures should also be present in the ground
state14–16. Deformation has an important role because it removes the
degeneracy of single-nucleon levels associated with spherical symmetry.

At specific deformations the shell structure can restore degeneracies
corresponding, for instance, to a 2:1 ratio of the large axis over the small
axis of a quadrupole deformed system3. Consequently, the restored
degeneracy of deformed shell closures facilitates the formation of
clusters. However, this may be a rather qualitative explanation, because
clustering phenomena cannot generally be explained by accidental
degeneracies. Clustering is an essential feature of many-nucleon
dynamics that coexists with the nuclear mean-field. Therefore,
although in most cluster models the existence of such structures is
assumed a priori and the corresponding effective interactions are
adjusted to the binding energies and scattering phase shifts of these
configurations, a fully microscopic understanding of cluster formation
necessitates a more general description that encompasses both cluster
and quantum liquid-drop aspects in light and heavier nuclei. It is
well known that deformation and closeness to the cluster-emission
threshold favour cluster formation. States close to the particle-
emission threshold cannot be isolated from the environment of
scattering states, so cluster states at the threshold belong to an open
quantum system17. The aim of this work is to further explore the origin
of clustering: to examine the conditions for cluster formation in
ground states of finite nuclei, starting from a fully microscopic descrip-
tion based on the framework of energy-density functionals (EDFs).

At present, the only comprehensive approach to nuclear structure is
based on the framework of EDFs. Nuclear EDFs enable a complete and
accurate description of ground-state properties and collective excita-
tions over the whole nuclide chart4,5. In practical implementations,
nuclear EDFs are analogous to Kohn2Sham Density Functional
Theory, the most widely used method for electronic-structure calcula-
tions in condensed-matter physics and quantum chemistry. In the
nuclear case, the many-body dynamics is represented by independent
nucleons moving in a local self-consistent mean-field potential that
corresponds to the actual density and current distribution of a given
nucleus. Both relativistic and non-relativistic realizations of EDFs are
used in studies of nuclear matter and finite nuclei. A nuclear EDF is
universal in the sense that, for a given inter-nucleon interaction, it has
the same functional form for all systems. Using a small set of global
parameters adjusted to empirical properties of homogeneous nuclear
matter and data on finite nuclei, a universal functional provides a
description of the structure of nuclei across the chart of nuclides.

A number of recent studies based on nuclear EDFs or the mean-field
approach have analysed cluster structures ina-conjugate nuclei14–16,18–20.
In Fig. 1 we display the self-consistent ground-state densities of 20Ne,
calculated with two widely used functionals that are representative of the
two classes of nuclear EDFs: the non-relativistic Skyrme SLy4 (ref. 21),
and the relativistic functional DD-ME2 (ref. 22). The equilibrium shape
of 20Ne is a prolate, axially symmetric quadrupole ellipsoid. Although
they have not been specifically adjusted to this mass region, both func-
tionals reproduce the empirical ground-state properties of this nucleus:
the experimental binding energy, 160.6 MeV; the radius of the proton
distribution, 2.90 fm (ref. 23); and the radius of the matter distribution,
2.85 fm (ref. 24), all with a typical accuracy to within roughly 1%. It is
remarkable that, although these functionals predict similar values for the
binding energy, charge and matter radii, and quadrupole deformation
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pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.
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Subsequently, the description of nuclear dynamics came to be based
predominantly on the concept of independent nucleons in a mean-
field potential, but a renewed interest in clustering phenomena in the
1960s led to the development of theoretical methods dedicated to
considering clusters3. Numerous experimental studies have revealed
a wealth of data on clustering phenomena in light nuclei3, and modern
theoretical approaches use microscopic models that take single-
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The mechanism of cluster formation has not yet been fully
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although in most cluster models the existence of such structures is
assumed a priori and the corresponding effective interactions are
adjusted to the binding energies and scattering phase shifts of these
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necessitates a more general description that encompasses both cluster
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Important role of nuclear shape deformation: removes 
the degeneracy of single- nucleon levels associated with 
spherical symmetry.



Nucleon localization functions:

2

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
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isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
q� = 3
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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Figure 2. Proton localization function (left) and total density (in nucleon/fm3, right)
in the x � z plane for 20Ne. The top and bottom panels correspond to the reflection
asymmetric (octupole) and reflection symmetric (quadrupole) shapes, respectively,
shown in Fig. 1.

momentum. Within this general framework a variety of models based on energy density

functionals or e↵ective nuclear interactions have been used to analyze the stability of

chain and ring configurations in relation to angular momentum. Among a number of

interesting recent studies, it has been shown that in a region of angular momentum

(13~ � 18~) the chain of four ↵ clusters is stabilized in 16O [45, 46]; the stability of

rod-shaped structures has been analyzed for 24Mg [47] and carbon isotopes [48]; and

a systematic investigation of extremely deformed structures in N ⇡ Z nuclei of the

A ⇡ 40 mass region has been performed [49].

Figs. 1 – 3 exhibit localized, crystal-like cluster structures, characteristic for

the self-consistent mean-field method used to calculate nuclear deformation energy

hypersurfaces. The corresponding self-consistent solutions contain the energy of spurious

center-of-mass motion of each cluster that needs to be subtracted from the total energy.

By restoring symmetries broken by the mean-field (translational, rotational, and parity

in the case of octupole deformations), and allowing for configuration mixing, solutions

that correspond to non-localized clusters are obtained. Non-localized clustering has

Proton localization function total density (in nucleon/fm3 )

20Ne

potential barrier confining the α-clusters gradually decreases and, at some critical value Nc,
the self-trapped system becomes unbound. In the phenomenological study of [61] it has been
shown that Na states with J 0= + in α-conjugate nuclei from 12C to 40Ca occur at excitation
energies below 20MeV, and the critical number of α bosons is N 10c » .

More generally, we emphasize the role of the saturation property of inter-nucleon
interactions in the mechanism of cluster formation in finite nuclei and in dilute nuclear matter.
In excited configurations of light, deformed nuclei the nucleon density is reduced along the
deformation axis with respect to the equilibrium. This favours the formation of clusters
because it locally enhances the nucleonic density toward its saturation value, therefore
increasing the binding of the system. For a relatively light nucleus, and especially for α-
conjugate systems, the most effective way of increasing the density locally is the clustering of
nucleons into α-particles. Because of saturation the interaction between α-clusters is weak
and excited states near the na threshold energy can be described as a gas of α-clusters. In fact,
when the density of nucleonic matter is reduced below its equilibrium values, saturation
causes a Mott-like transition to a hybrid phase composed of clusters of α-particles. This effect
has been investigated in self-consistent mean-field calculations of even–even N=Z nuclei,
with a restriction to spherically symmetric configurations [35, 62]. It has been shown that by
expanding an n–α nucleus the corresponding total energy as a function of the nuclear radius
goes over a maximum before reaching the asymptotic low-density limit of a gas of α-
particles.

This transition is illustrated in figure 4, where we display the result of a constrained self-
consistent mean-field calculation of 16O, using the relativistic functional DD-ME2. The
equilibrium mean-field solution reproduces the empirical binding energy and charge radius of
16O. A constraint on the nuclear radius is used to gradually reduce the nucleon density by
inflating the spherical nucleus. As the size of the nucleus becomes larger the total energy of
the system increases with respect to the equilibrium configuration. When the density is
reduced to 1 3eqr r » , the system undergoes a Mott-like phase transition [25, 35, 62] to a
configuration of four α-particles. As shown in figure 4, this transition occurs at a radius of rc
= 3.33 fm, with the corresponding ratio of the critical radius to the ground-state radius
r r 1.3c g.s. » . Experimental evidence for α-particle clustering (simultaneous emission) in
excited expanding Na source nuclei 16O, 20Ne and 24Mg, was recently reported in a study of
fragmentation of quasi-projectiles from the nuclear reaction 40Ca on 12C [63].

5. Clustering in neutron-rich nuclei

In addition to N=Z systems, a particularly interesting topic is the formation of clusters in
unstable neutron-rich nuclei. In a number of light N Z> nuclei, low-energy cluster structures
can be described by molecular bonding of α particles by excess neutrons [4, 5, 30, 31, 64].
The conditions for the formation of molecular states include the presence of strongly bound α
cores, a weakly attractive α–α potential, which becomes repulsive at small distances, and
additional weakly bound single-particle orbitals occupied by valence neutrons [65].
Decomposing the total nucleon density into the α-clusters and the density of additional
valence neutrons, one obtains a picture of nuclear molecular states. For covalent bonding, a
negative-parity neutron orbital perpendicular to the α–α axis is called a π-orbital, whereas a σ
orbital denotes a positive-parity orbital parallel to the α–α direction [5, 65, 66]. While
‘molecular orbits’ of valence neutrons characterize cluster structures at threshold energies
(covalent bonding), at higher excitation energies excess neutrons tend to form atomic orbits
around individual clusters (ionic bonding) [4, 5].
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I. INTRODUCTION

The formation of cluster states, a transitional phenomenon
between the quantum-liquid and solid phases in nucleonic
matter, stellar matter, and finite nuclei presents a very active
topic of experimental and theoretical research in nuclear
physics and astrophysics [1–8]. In addition to dedicated mi-
croscopic approaches that have been mainly applied to light
nuclei, more recently clustering phenomena have also been
analyzed using the universal framework of energy density
functionals (EDFs) [8]. Very interesting results have been
obtained but, although one can perform qualitative studies of
the formation and evolution of cluster structures already on
the mean-field level [9–12], for a quantitative analysis that
can be compared to experiment, the basic EDF framework
has to be extended by including collective correlations related
to symmetry restoration and nuclear shape fluctuations. In
the present study we develop an EDF-based framework that
includes configuration mixing of angular momentum- and
parity-projected axially symmetric and reflection-asymmetric
deformed mean-field states. The generator coordinate method
(GCM) is employed in a systematic calculation of low-energy
spectroscopic properties for the chain of neon isotopes, starting
from the self-conjugated 20Ne and extending to the drip-line
nucleus 34Ne. This analysis is entirely based on a universal
EDF, without any parameter of the interaction, basis states, or
method adjusted specifically to nuclei under consideration.

The self-conjugate nucleus 20Ne exhibits admixtures of
cluster configurations already in the ground state, that is, it is
characterized by a transition between homogeneous nucleonic
matter and cluster structures. Various theoretical approaches
have been used to analyze the low-energy structure of 20Ne:
the angular momentum projected Hartree-Fock model [13],
the resonating group method [14], the 5α generator coordinate

method [15], the antisymmetrized molecular dynamics (AMD)
model [16–18], and the generalized Tohsaki-Horiuchi-Schuck-
Röpke (THSR) wave function model [19]. An interesting
feature of this isotope is the dissolution of the reflection-
asymmetric α + 16O structure in higher angular-momentum
states by decreasing the equilibrium distance between two
clusters, α and 16O. This is unexpected because centrifugal
effects should in principle elongate the nucleus. Very recently
a beyond mean-field study of reflection-asymmetric molecular
structures and, in particular, of the antistretching mechanism in
20Ne was performed based on the relativistic EDF framework
[20]. It has been pointed out that a special deformation-
dependent moment of inertia, governed by the underlying shell
structure, could be responsible for the rotation-induced disso-
lution of the α + 16O cluster structure in the negative-parity
states. Furthermore, the formation of the cluster structures in
N != Z nuclei includes, in addition to the N = Z clusters,
quasi-molecular bonding by the valence neutrons. One such
example is the chain of even-even Ne isotopes that can be
described as an α + 16O + xn system. The structure of the
lightest isotope with such a structure, 22Ne, was previously
analyzed with the AMD model [21], and both the molecular
orbital bands and the α + 18O molecular bands were predicted.

This study is organized as follows. In Sec. II we briefly
outline the theoretical framework of symmetry-conserving
configuration mixing calculation based on nuclear EDFs.
Section III presents an extensive analysis of the structure
of low-energy positive- and negative-parity bands of 20–34Ne
isotopes, and Sec. IV summarizes the results.

II. THEORETICAL FRAMEWORK

Nuclear energy density functionals (NEDFs) provide a
global theoretical framework for studies of ground-state
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properties and collective excitations that is applicable across
the entire nuclide chart, from relatively light systems to super-
heavy nuclei, and from the valley of β stability to the nucleon
drip lines. Modern NEDFs are typically determined by about
ten to twelve phenomenological parameters that are adjusted
to a nuclear matter equation of state and to bulk properties
of finite nuclei. Based on this framework, various structure
models have been developed that go beyond the mean-field
approximation and include collective correlations related to
restoration of broken symmetries and fluctuations of collective
variables [22–24]. These models have become standard tools
for nuclear structure calculations, providing accurate micro-
scopic predictions for many low-energy nuclear phenomena.

The present study of cluster configurations in the Ne
isotopic chain is based on the relativistic functional DD-
PC1 [25]. Starting from microscopic nucleon self-energies in
nuclear matter and empirical global properties of the nuclear
matter equation of state, the coupling parameters of DD-
PC1 were fine-tuned to the experimental masses of a set of
64 deformed nuclei in the mass regions A ≈ 150–180 and
A ≈ 230–250. The DD-PC1 functional has been further tested
in calculations of ground-state properties of medium-heavy
and heavy nuclei, including binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant multipole resonances. Furthermore, a quan-
titative treatment of open-shell nuclei requires the inclusion
of pairing correlations. The relativistic Hartree-Bogoliubov
(RHB) framework [26,27], in particular, provides a unified
description of particle-hole (ph) and particle-particle (pp)
correlations on a mean-field level by combining two average
potentials: the self-consistent mean field that encloses all the
long-range ph correlations, and a pairing field that sums up
the pp correlations. The ph effective interaction is derived
from the DD-PC1 functional, while a pairing force separable
in momentum space [28,29]: 〈k| V 1S

0 |k′〉 = −Gp(k)p(k′) is
used in the pp channel. By assuming a simple Gaussian ansatz
p(k) = e−a2k2

, the two parameters G and a were adjusted to
reproduce the density dependence of the gap at the Fermi
surface in nuclear matter, as calculated with the Gogny D1S
parametrization [30]. The separable pairing force reproduces
pairing properties in spherical and deformed nuclei calculated
with the original Gogny D1S force, yet significantly reducing
the computational cost.

The Dirac-Hartree-Bogoliubov equations are solved by
expanding the nucleon spinors in the basis of an axially
symmetric harmonic oscillator. The map of the energy surface
as a function of quadrupole and octupole deformation is
obtained by imposing constraints on the quadrupole Q20 and
octupole Q30 moments. The method of quadratic constraint
uses an unrestricted variation of the function

〈H 〉 +
∑

λ=2,3

Cλ0(〈Q̂λ0〉 − qλ0)2, (1)

where 〈H 〉 is total energy, 〈Q̂λ0〉 denotes expectation val-
ues of the mass multipole operators Q̂λ0 ≡ rλYλ0, qλ0 are
the constrained values of multipole moments, and Cλ0 the
corresponding stiffness constants. In general, the values of
the multipole moments 〈Q̂λ0〉 coincide with the constrained

values qλ0 only at the stationary point. The difference between
a multipole moment 〈Q̂λ0〉 and the constrained qλ0 depends
on the stiffness constant. Smaller values of Cλ0 lead to larger
deviations of 〈Q̂λ0〉 from the corresponding constrained values
qλ0. Increasing the value of the stiffness constant, on the other
hand, often destroys the convergence of the self-consistent
procedure. This deficiency is resolved by implementing the
augmented Lagrangian method [31]. In addition, the position
of the center of mass coordinate is fixed at the origin to
decouple the spurious states. In the following we will also use
dimensionless deformation parameters βλ, defined as

βλ = 4π

3ARλ
qλ0, R = r0A

1/3. (2)

To obtain quantitative predictions that can be compared to
data, the self-consistent RHB approach has to be extended
to include symmetry restoration and allow for nuclear shape
fluctuations. This can be accomplished by configuration mix-
ing of symmetry-conserving wave functions. Starting from a
set of mean-field states |φ(q)〉 that depend on the collective
coordinate q, one can build approximate eigenstates of the
nuclear Hamiltonian. In the present study the basis states
|φ(q)〉 are obtained by solving deformation-constrained RHB
equations, that is, the generator coordinate q denotes the
discretized deformation parameters β2 and β3. Since the RHB
states |φ(q)〉 are not eigenstates of the angular momentum or
parity operators, it is necessary to construct basis states with
good angular momentum and parity that are used to diagonalize
the nuclear Hamiltonian:

|JMπ ; α〉 =
∑

j

∑

K

f JKπ
α (qj )P̂ J

MKP̂ π |φ(qj )〉 . (3)

P̂ J
MK denotes the angular momentum projection operator:

P̂ J
MK = 2J + 1

8π2

∫
d&DJ∗

MK (&)R̂(&), (4)

where the integral is carried out over the three Euler angles
& = (α,β,γ ), DJ

MK (&) = e−iMαdJ
MK (β)e−iKγ is the Wigner

D matrix [32], and the active rotation operator reads R̂(&) =
e−iαĴz e−iβĴy e−iγ Ĵz . Good parity quantum number is restored by
choosing the reflection-symmetric basis, that is, by ensuring
that for each (β2,β3) state the basis always contains the
corresponding (β2, − β3) state as well. Taking into account
axial symmetry imposed on the RHB basis states (Ĵz |φ(qj )〉 =
0,∀j ), the integral in Eq. (4) simplifies considerably, since
the integrals over the Euler angles α and γ can be carried
out analytically. This, in turn, restricts the angular momentum
projection to K = 0 and the states in Eq. (3) from now on
read |Jπ ; α〉. Additionally, an approximate particle number
correction is performed by applying the transformation of the
Hamiltonian kernel introduced in Refs. [33,34].

The weight functions f Jπ
α in Eq. (3) are determined by the

variational equation:

δEJπ = δ
〈Jπ ; α| Ĥ |Jπ ; α〉

〈Jπ ; α|Jπ ; α〉
= 0, (5)

that is, by requiring that the expectation value of the nuclear
Hamiltonian in the state (3) be stationary with respect to an

024334-2



0

2

4

6

8

10

12

14

16

18

20

E
X

 [
M

eV
]

0
+

4
+

6
+

1
-

2
+

3
-

5
-

7
-

54

89

85

20
Ne

156

177

181

1
6
6
2

3
2
8

3
3
2

K=0
1

+
K=0

1

-
0

+

2
+

4
+

6
+

8
+

1
-

3
-

5
-

7
-

65(3)

71(6)

64(10)

29(4)

164(26)

K=0
1

+
K=0

1

-

DD-PC1 Exp.

1
5
5

0
+

4
+

6
+

182.4

1
-

2
+

3
-

5
-

7
-

74

71

68

141.6

110

289

489

2
7
5

8
3
5

K=0
1

+
K=0

1

-

0
+

2
+

4
+

6
+

8
+

1
-

3
-

5
-

7
-

70.3

83.7

52.7

21.0
151.2

K=0
1

+
K=0

1

-

PC-PK1
AMD

4
6
3

6
9
688

87

68

146

167

175

2
7
7

2
2
9

3
5
3

1
1
1
2

+BCS

GCM configuration mixing of angular-momentum and parity projected SCMF states 

PHYSICAL REVIEW C 97, 024334 (2018)

Quadrupole and octupole collectivity and cluster structures in neon isotopes

P. Marević,1,2 J.-P. Ebran,1 E. Khan,2 T. Nikšić,3 and D. Vretenar3

1CEA, DAM, DIF, F-91297 Arpajon, France
2Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Université Paris-Saclay, F-91406 Orsay Cedex, France

3Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia

(Received 21 September 2017; revised manuscript received 28 November 2017; published 26 February 2018)
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using a theoretical framework based on energy density functionals. Starting from a self-consistent relativistic
Hartree-Bogoliubov calculation of axially symmetric and reflection-asymmetric deformation energy surfaces,
the collective symmetry-conserving states are built using projection techniques and the generator coordinate
method. Overall a good agreement with the experimental excitation energies and transition rates is obtained.
In particular, the model provides an accurate description of the excitation spectra and transition probabilities in
20Ne. The contribution of cluster configurations to the low-energy states is discussed, as well as the transitional
character of the ground state. The analysis is extended to 22Ne and the shape-coexisting isotope 24Ne, and to the
drip-line nuclei 32Ne and 34Ne. The role of valence neutrons in the formation of molecular-type bonds between
clusters is discussed.
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I. INTRODUCTION

The formation of cluster states, a transitional phenomenon
between the quantum-liquid and solid phases in nucleonic
matter, stellar matter, and finite nuclei presents a very active
topic of experimental and theoretical research in nuclear
physics and astrophysics [1–8]. In addition to dedicated mi-
croscopic approaches that have been mainly applied to light
nuclei, more recently clustering phenomena have also been
analyzed using the universal framework of energy density
functionals (EDFs) [8]. Very interesting results have been
obtained but, although one can perform qualitative studies of
the formation and evolution of cluster structures already on
the mean-field level [9–12], for a quantitative analysis that
can be compared to experiment, the basic EDF framework
has to be extended by including collective correlations related
to symmetry restoration and nuclear shape fluctuations. In
the present study we develop an EDF-based framework that
includes configuration mixing of angular momentum- and
parity-projected axially symmetric and reflection-asymmetric
deformed mean-field states. The generator coordinate method
(GCM) is employed in a systematic calculation of low-energy
spectroscopic properties for the chain of neon isotopes, starting
from the self-conjugated 20Ne and extending to the drip-line
nucleus 34Ne. This analysis is entirely based on a universal
EDF, without any parameter of the interaction, basis states, or
method adjusted specifically to nuclei under consideration.

The self-conjugate nucleus 20Ne exhibits admixtures of
cluster configurations already in the ground state, that is, it is
characterized by a transition between homogeneous nucleonic
matter and cluster structures. Various theoretical approaches
have been used to analyze the low-energy structure of 20Ne:
the angular momentum projected Hartree-Fock model [13],
the resonating group method [14], the 5α generator coordinate

method [15], the antisymmetrized molecular dynamics (AMD)
model [16–18], and the generalized Tohsaki-Horiuchi-Schuck-
Röpke (THSR) wave function model [19]. An interesting
feature of this isotope is the dissolution of the reflection-
asymmetric α + 16O structure in higher angular-momentum
states by decreasing the equilibrium distance between two
clusters, α and 16O. This is unexpected because centrifugal
effects should in principle elongate the nucleus. Very recently
a beyond mean-field study of reflection-asymmetric molecular
structures and, in particular, of the antistretching mechanism in
20Ne was performed based on the relativistic EDF framework
[20]. It has been pointed out that a special deformation-
dependent moment of inertia, governed by the underlying shell
structure, could be responsible for the rotation-induced disso-
lution of the α + 16O cluster structure in the negative-parity
states. Furthermore, the formation of the cluster structures in
N != Z nuclei includes, in addition to the N = Z clusters,
quasi-molecular bonding by the valence neutrons. One such
example is the chain of even-even Ne isotopes that can be
described as an α + 16O + xn system. The structure of the
lightest isotope with such a structure, 22Ne, was previously
analyzed with the AMD model [21], and both the molecular
orbital bands and the α + 18O molecular bands were predicted.

This study is organized as follows. In Sec. II we briefly
outline the theoretical framework of symmetry-conserving
configuration mixing calculation based on nuclear EDFs.
Section III presents an extensive analysis of the structure
of low-energy positive- and negative-parity bands of 20–34Ne
isotopes, and Sec. IV summarizes the results.

II. THEORETICAL FRAMEWORK

Nuclear energy density functionals (NEDFs) provide a
global theoretical framework for studies of ground-state
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properties and collective excitations that is applicable across
the entire nuclide chart, from relatively light systems to super-
heavy nuclei, and from the valley of β stability to the nucleon
drip lines. Modern NEDFs are typically determined by about
ten to twelve phenomenological parameters that are adjusted
to a nuclear matter equation of state and to bulk properties
of finite nuclei. Based on this framework, various structure
models have been developed that go beyond the mean-field
approximation and include collective correlations related to
restoration of broken symmetries and fluctuations of collective
variables [22–24]. These models have become standard tools
for nuclear structure calculations, providing accurate micro-
scopic predictions for many low-energy nuclear phenomena.

The present study of cluster configurations in the Ne
isotopic chain is based on the relativistic functional DD-
PC1 [25]. Starting from microscopic nucleon self-energies in
nuclear matter and empirical global properties of the nuclear
matter equation of state, the coupling parameters of DD-
PC1 were fine-tuned to the experimental masses of a set of
64 deformed nuclei in the mass regions A ≈ 150–180 and
A ≈ 230–250. The DD-PC1 functional has been further tested
in calculations of ground-state properties of medium-heavy
and heavy nuclei, including binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant multipole resonances. Furthermore, a quan-
titative treatment of open-shell nuclei requires the inclusion
of pairing correlations. The relativistic Hartree-Bogoliubov
(RHB) framework [26,27], in particular, provides a unified
description of particle-hole (ph) and particle-particle (pp)
correlations on a mean-field level by combining two average
potentials: the self-consistent mean field that encloses all the
long-range ph correlations, and a pairing field that sums up
the pp correlations. The ph effective interaction is derived
from the DD-PC1 functional, while a pairing force separable
in momentum space [28,29]: 〈k| V 1S

0 |k′〉 = −Gp(k)p(k′) is
used in the pp channel. By assuming a simple Gaussian ansatz
p(k) = e−a2k2

, the two parameters G and a were adjusted to
reproduce the density dependence of the gap at the Fermi
surface in nuclear matter, as calculated with the Gogny D1S
parametrization [30]. The separable pairing force reproduces
pairing properties in spherical and deformed nuclei calculated
with the original Gogny D1S force, yet significantly reducing
the computational cost.

The Dirac-Hartree-Bogoliubov equations are solved by
expanding the nucleon spinors in the basis of an axially
symmetric harmonic oscillator. The map of the energy surface
as a function of quadrupole and octupole deformation is
obtained by imposing constraints on the quadrupole Q20 and
octupole Q30 moments. The method of quadratic constraint
uses an unrestricted variation of the function

〈H 〉 +
∑

λ=2,3

Cλ0(〈Q̂λ0〉 − qλ0)2, (1)

where 〈H 〉 is total energy, 〈Q̂λ0〉 denotes expectation val-
ues of the mass multipole operators Q̂λ0 ≡ rλYλ0, qλ0 are
the constrained values of multipole moments, and Cλ0 the
corresponding stiffness constants. In general, the values of
the multipole moments 〈Q̂λ0〉 coincide with the constrained

values qλ0 only at the stationary point. The difference between
a multipole moment 〈Q̂λ0〉 and the constrained qλ0 depends
on the stiffness constant. Smaller values of Cλ0 lead to larger
deviations of 〈Q̂λ0〉 from the corresponding constrained values
qλ0. Increasing the value of the stiffness constant, on the other
hand, often destroys the convergence of the self-consistent
procedure. This deficiency is resolved by implementing the
augmented Lagrangian method [31]. In addition, the position
of the center of mass coordinate is fixed at the origin to
decouple the spurious states. In the following we will also use
dimensionless deformation parameters βλ, defined as

βλ = 4π

3ARλ
qλ0, R = r0A

1/3. (2)

To obtain quantitative predictions that can be compared to
data, the self-consistent RHB approach has to be extended
to include symmetry restoration and allow for nuclear shape
fluctuations. This can be accomplished by configuration mix-
ing of symmetry-conserving wave functions. Starting from a
set of mean-field states |φ(q)〉 that depend on the collective
coordinate q, one can build approximate eigenstates of the
nuclear Hamiltonian. In the present study the basis states
|φ(q)〉 are obtained by solving deformation-constrained RHB
equations, that is, the generator coordinate q denotes the
discretized deformation parameters β2 and β3. Since the RHB
states |φ(q)〉 are not eigenstates of the angular momentum or
parity operators, it is necessary to construct basis states with
good angular momentum and parity that are used to diagonalize
the nuclear Hamiltonian:

|JMπ ; α〉 =
∑

j

∑

K

f JKπ
α (qj )P̂ J

MKP̂ π |φ(qj )〉 . (3)

P̂ J
MK denotes the angular momentum projection operator:

P̂ J
MK = 2J + 1

8π2

∫
d&DJ∗

MK (&)R̂(&), (4)

where the integral is carried out over the three Euler angles
& = (α,β,γ ), DJ

MK (&) = e−iMαdJ
MK (β)e−iKγ is the Wigner

D matrix [32], and the active rotation operator reads R̂(&) =
e−iαĴz e−iβĴy e−iγ Ĵz . Good parity quantum number is restored by
choosing the reflection-symmetric basis, that is, by ensuring
that for each (β2,β3) state the basis always contains the
corresponding (β2, − β3) state as well. Taking into account
axial symmetry imposed on the RHB basis states (Ĵz |φ(qj )〉 =
0,∀j ), the integral in Eq. (4) simplifies considerably, since
the integrals over the Euler angles α and γ can be carried
out analytically. This, in turn, restricts the angular momentum
projection to K = 0 and the states in Eq. (3) from now on
read |Jπ ; α〉. Additionally, an approximate particle number
correction is performed by applying the transformation of the
Hamiltonian kernel introduced in Refs. [33,34].

The weight functions f Jπ
α in Eq. (3) are determined by the

variational equation:

δEJπ = δ
〈Jπ ; α| Ĥ |Jπ ; α〉

〈Jπ ; α|Jπ ; α〉
= 0, (5)

that is, by requiring that the expectation value of the nuclear
Hamiltonian in the state (3) be stationary with respect to an

024334-2



108Xe and 104Te 𝜶-decay chain 

F. MERCIER et al. PHYSICAL REVIEW C 102, 011301(R) (2020)

Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
∫ sout

sin

1
h̄

√
2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑

i j

Mi j
dqi

ds
dq j

ds
, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
(1)M(3)M−1

(1) , (3)

where

[M(k)]i j =
∑

µν

〈0|Q̂i|µν〉〈µν|Q̂ j |0〉
(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
− Q, (6)

FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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A microscopic calculation of half-lives for the recently observed 108Xe → 104Te → 100Sn α-decay chain is
performed by using a self-consistent framework based on energy density functionals. The relativistic density
functional DD-PC1 and a separable pairing interaction of finite range are used to compute axially symmetric
deformation-energy surfaces of 104Te and 108Xe as functions of quadrupole, octupole, and hexadecupole
collective coordinates. Dynamic least-action paths are determined that trace the α-particle emission from the
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are compared with recent experimental values of the half-lives of superallowed α decay of 104Te: <18 ns, and
108Xe: 58+106

−23 µs.
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A fully microscopic description of α-radioactivity
presents a complex and difficult quantum-mechanical
problem. A number of models of the α-decay process
have been developed over the past century, from semiclassical
approaches to microscopic ones. In fact, one of the first
successful models was the well-known Geiger-Nuttall law
[1] and its interpretation involving the tunneling effect by
Gamow [2], and the class of Wentzel, Kramers and Brillouin
(WKB) models [3]. From the experimental point of view,
even the identification of all α-emitting nuclei may have not
been achieved yet, as demonstrated by the discovery of α
emission from 209Bi in 2003 [4], or the remaining question of
possible α-radioactivity of 208Pb [5].

Several recent studies have been devoted to a more micro-
scopic description of this process, such as the α preformation
factor obtained from single-particle states calculated from a
complex-energy shell model [6]. Microscopic-macroscopic
approaches based on Woods-Saxon potentials have also been
developed that consider an additional pocket-like surface
potential [7], or a least-energy trajectory to describe α and
cluster emission, and fission of 222Ra [8]. Among fully
microscopic approaches, we note the description of cluster
emission from heavy nuclei using a self-consistent Hartree-
Fock-Bogoliubov method based on the Gogny energy density
functional (EDF) [9,10].

Nuclear energy density functionals and, in particular, rela-
tivistic EDFs provide a natural framework for α-decay studies.
They have been used to successfully describe the formation of
α-cluster states in light nuclei [11–16], including a quantita-
tive comparison with experimental spectra of cluster states in
Ne isotopes [17], and the Hoyle state in 12C [18]. Therefore, it
could be interesting to study α radioactivity by using models
based on relativistic EDFs. On the one hand this approach can

describe α-cluster formation, and its qualitative relation with
α emission [19]. On the other, it has already been successfully
applied to spontaneous and induced fission dynamics [20–24].

The present study of α radioactivity is focused on the re-
gion of self-conjugate nuclei northeast of 100Sn. It is the light-
est region of the nuclear mass table in which α-particle
emission has been identified. The recent determination of the
half-lives of superallowed α decay of 108Xe: 58+106

−23 µs, and
104Te: <18 ns [25] (see also Ref. [26]), has motivated inter-
esting theoretical studies [27,28]. From a conceptual point of
view, the lighter the nucleus the more localized the nucleonic
wave functions, an effect that arises both from the single-
nucleon potential and the radial quantum numbers [11,12,19].
Hence the 100Sn region that includes the lightest α emitters
presents the best case for a microscopic approach based on
the least-action integral on the potential-energy surface (PES).
In this work we will compute α-decay half-lives of 108Xe and
104Te using a model based on relativistic EDFs.

The relativistic Hartree-Bogoliubov (RHB) framework is
described in Refs. [29–31]. It provides a unified description
of particle-hole (ph) and particle-particle (pp) correlations
by combining two average potentials. Self-consistent calcula-
tions of deformation-energy surfaces are performed by using
the DD-PC1 [32] relativistic functional. In addition to the
particle-hole channel determined by the choice of the EDF,
a separable pairing interaction of finite-range [33,34] is used
that reproduces the pairing gap in nuclear matter as calculated
with the D1S parametrization of the Gogny force [34,35].
The PESs are calculated by using the quadrupole, octupole,
and hexadecupole deformations as collective degrees of free-
dom. Deformation-constrained calculations are performed by
using a method with linear constraints that has success-
fully been applied to fission (see Ref. [20] for details). The
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Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
∫ sout

sin

1
h̄

√
2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑

i j

Mi j
dqi

ds
dq j

ds
, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
(1)M(3)M−1

(1) , (3)

where

[M(k)]i j =
∑

µν

〈0|Q̂i|µν〉〈µν|Q̂ j |0〉
(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
− Q, (6)

FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
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2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑
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Mi j
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, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
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(1) , (3)

where

[M(k)]i j =
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(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
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FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
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and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
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, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]
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(1) , (3)

where

[M(k)]i j =
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|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
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The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
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FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
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A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
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3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with
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and β30 = 4πQ30/3AR3. The corresponding effective collec-
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where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
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P = 1
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. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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P = 1
1 + exp [2S(L)]
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We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
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The scission point is determined by a discontinuity in β40. 

Deformation-energy surface of 104Te in the quadrupole-hexadecupole axially symmetric plane for selected 
values of the octupole deformation β30. 
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Deformation-energy surface of 108Xe in the quadrupole-octupole axially symmetric plane.

Calculated half-lives: 197 ns for 104Te and 50 µs for 108Xe. 

Experimental half-lives for superallowed α-decay of 104Te: <18 ns, and 108Xe: 58 (+106 -23) µs. 
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A microscopic calculation of half-lives for the recently observed 108Xe → 104Te → 100Sn α-decay chain is
performed by using a self-consistent framework based on energy density functionals. The relativistic density
functional DD-PC1 and a separable pairing interaction of finite range are used to compute axially symmetric
deformation-energy surfaces of 104Te and 108Xe as functions of quadrupole, octupole, and hexadecupole
collective coordinates. Dynamic least-action paths are determined that trace the α-particle emission from the
equilibrium deformation to the point of scission. The calculated half-lives, 197 ns for 104Te and 50 µs for 108Xe,
are compared with recent experimental values of the half-lives of superallowed α decay of 104Te: <18 ns, and
108Xe: 58+106

−23 µs.
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A fully microscopic description of α-radioactivity
presents a complex and difficult quantum-mechanical
problem. A number of models of the α-decay process
have been developed over the past century, from semiclassical
approaches to microscopic ones. In fact, one of the first
successful models was the well-known Geiger-Nuttall law
[1] and its interpretation involving the tunneling effect by
Gamow [2], and the class of Wentzel, Kramers and Brillouin
(WKB) models [3]. From the experimental point of view,
even the identification of all α-emitting nuclei may have not
been achieved yet, as demonstrated by the discovery of α
emission from 209Bi in 2003 [4], or the remaining question of
possible α-radioactivity of 208Pb [5].

Several recent studies have been devoted to a more micro-
scopic description of this process, such as the α preformation
factor obtained from single-particle states calculated from a
complex-energy shell model [6]. Microscopic-macroscopic
approaches based on Woods-Saxon potentials have also been
developed that consider an additional pocket-like surface
potential [7], or a least-energy trajectory to describe α and
cluster emission, and fission of 222Ra [8]. Among fully
microscopic approaches, we note the description of cluster
emission from heavy nuclei using a self-consistent Hartree-
Fock-Bogoliubov method based on the Gogny energy density
functional (EDF) [9,10].

Nuclear energy density functionals and, in particular, rela-
tivistic EDFs provide a natural framework for α-decay studies.
They have been used to successfully describe the formation of
α-cluster states in light nuclei [11–16], including a quantita-
tive comparison with experimental spectra of cluster states in
Ne isotopes [17], and the Hoyle state in 12C [18]. Therefore, it
could be interesting to study α radioactivity by using models
based on relativistic EDFs. On the one hand this approach can

describe α-cluster formation, and its qualitative relation with
α emission [19]. On the other, it has already been successfully
applied to spontaneous and induced fission dynamics [20–24].

The present study of α radioactivity is focused on the re-
gion of self-conjugate nuclei northeast of 100Sn. It is the light-
est region of the nuclear mass table in which α-particle
emission has been identified. The recent determination of the
half-lives of superallowed α decay of 108Xe: 58+106

−23 µs, and
104Te: <18 ns [25] (see also Ref. [26]), has motivated inter-
esting theoretical studies [27,28]. From a conceptual point of
view, the lighter the nucleus the more localized the nucleonic
wave functions, an effect that arises both from the single-
nucleon potential and the radial quantum numbers [11,12,19].
Hence the 100Sn region that includes the lightest α emitters
presents the best case for a microscopic approach based on
the least-action integral on the potential-energy surface (PES).
In this work we will compute α-decay half-lives of 108Xe and
104Te using a model based on relativistic EDFs.

The relativistic Hartree-Bogoliubov (RHB) framework is
described in Refs. [29–31]. It provides a unified description
of particle-hole (ph) and particle-particle (pp) correlations
by combining two average potentials. Self-consistent calcula-
tions of deformation-energy surfaces are performed by using
the DD-PC1 [32] relativistic functional. In addition to the
particle-hole channel determined by the choice of the EDF,
a separable pairing interaction of finite-range [33,34] is used
that reproduces the pairing gap in nuclear matter as calculated
with the D1S parametrization of the Gogny force [34,35].
The PESs are calculated by using the quadrupole, octupole,
and hexadecupole deformations as collective degrees of free-
dom. Deformation-constrained calculations are performed by
using a method with linear constraints that has success-
fully been applied to fission (see Ref. [20] for details). The
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Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
∫ sout

sin

1
h̄

√
2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑

i j

Mi j
dqi

ds
dq j

ds
, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
(1)M(3)M−1

(1) , (3)

where

[M(k)]i j =
∑

µν

〈0|Q̂i|µν〉〈µν|Q̂ j |0〉
(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
− Q, (6)

FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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A new decay mode, the symmetric 2α emission, is predicted with half-lives of the order of those observed
for cluster emission.
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Radioactive decays driven by the strong interaction
present a difficult and long-standing nuclear physics prob-
lem [1]. Even though the field, initiated by the observation of
α decay, is more than hundred years old, not all possible
decaymodes have been identified. In addition to extensively
investigated phenomena, such as the α decay and fission
process, more exotic decay modes have been studied, both
experimentally and theoretically. For instance, cluster
decays [2] and two-proton radioactivity [3,4]. Another
intriguing possibility is the spontaneous and simultaneous
emission of 2α particles from a heavy nucleus. Although not
observed yet, this decay mode has been analyzed in a
semimicroscopic approach, in which the 2α decay is
considered as a 8Be-like mode [5,6]. The nucleus 8Be is,
of course, unstable and decays into two α particles with
T1=2 ≃ 10−16 s. The predicted half-lives for spontaneous 2α
decay of heavy nuclei, however, T1=2 ≃ 1033 years or more,
indicate that the experimental detection of this mode is very
unlikely.
Alpha, cluster, and fission decay processes have success-

fully been described with semimicroscopic methods [7,8].
Here, however, we aim to use a fully self-consistent micro-
scopic approach, based on deformation energy surfaces, to
analyze the possibility of 2α emission processes in heavy
nuclei. When used in the framework of energy density
functionals (EDF), such an approach can quantitatively
describe cluster decay as, for instance, in Hartree-Fock
Bogoliubov calculations with the Gogny energy functional
[9,10]. The model that we employ in the present study is
based on relativistic EDFs that have very successfully been
used to describe nuclear structure phenomena [11], cluster

states [12,13], spontaneous and induced fission [14–18], and
α decay [19–21].
In particular, in the recent study of Ref. [19], we

calculated the half-lives for the recently observed 108Xe →
104Te → 100Sn α-decay chain. The relativistic density func-
tional DD-PC1 [22] and a separable pairing interaction of
finite range were used to compute axially symmetric
deformation energy surfaces of 104Te and 108Xe as functions
of quadrupole and octupole collective coordinates.
Dynamical least-action paths were determined that trace
the α-particle emission from the equilibrium deformation to
the point of scission. Here, we use the same model to
explore α decays and possible 2α decays in the region of
heavier nuclei, specifically for the isotopes 212Po and 224Ra.
We will show that there is a possibility for the two α
particles to be emitted back to back, in a symmetric way,
rather than spatially correlated as in a 8Be-like mode. The
half-life of the symmetric 2α mode may then be signifi-
cantly reduced, in some cases to the order of half-lives
already observed for cluster decay.
A detailed description of the relativistic Hartree-

Bogoliubov (RHB) self-consistent model can be found
in Refs. [11,23,24]. Here, it is used to perform constrained
calculations of axially symmetric energy surfaces of α
emitters, as functions of intrinsic deformation parameters.
We then follow the α or 2α emission along a dynamical
path L embedded in a multidimensional collective space.
For the α emission process, the collective space is three
dimensional ðβ20; β30; β40Þ, while for the symmetric 2α
emission, because of reflection symmetry, the collective
space can be built from the coordinates β20 and β40.
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8Be
4He

4He T1/2 > 1033 years

Symmetric (back to back) 2𝛼 mode

… least action path

The path L is determined by minimizing the action
integral [25,26]:

SðLÞ ¼
Z

sout

sin

1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MeffðsÞ½VeffðsÞ − E0%

p
ds; ð1Þ

where MeffðsÞ and VeffðsÞ are the effective collective
inertia and potential, respectively. E0 is the collective
ground-state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points,
defined by VeffðsÞ ¼ E0. In practice the least-action path is
built from the inner turning point to the scission point,
whose position is determined by monitoring the integrated
density distribution, that is, the mass of the emerging
fragment. We select the point with emerging fragment mass
equal to the mass of the α particle or 2α particles. For the
single α emission process, beyond the scission point the
configuration with two well separated fragments becomes
the lowest energy solution and the energy can be approxi-
mated by the classical expression for two uniformly
charged spheres:

Veffðβ3Þ ¼ e2
Z1Z2

R
−Q; ð2Þ

where R denotes the distance between the centers of mass
of the fragments, and the second term is the experimentalQ
value. The relation between R and the octupole moment q30
is approximated following Eqs. (9) and (10) of Ref. [9]

q30 ¼ f3R3; ð3Þ

with

f3 ¼
A1A2

A
ðA1 − A2Þ

A
; ð4Þ

and β30 ¼ 4πq30=3AR3. The corresponding effective col-
lective mass reads

Meff ¼
μ

9q4=330 f2=33

; ð5Þ

where μ ¼ mnA1A2=ðA1 þ A2Þ is the reduced mass of the
two fragments, and mn denotes the nucleon mass [9]. Thus
the path involved in the action integral of Eq. (1) consists of
the least-action path from sin to scission, and the energy
surface is approximated by the Coulomb potential from
scission to sout [9]. The α-decay half-life is calculated as
T1=2 ¼ ln 2=ðnPÞ, where n is the number of assaults on the
potential barrier per unit time [27–30], and P is the barrier
penetration probability in the Wentzel–Kramers–Brillouin
approximation

P ¼ 1

1þ exp½2SðLÞ%
: ð6Þ

We choose E0 ¼ 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational fre-
quency ℏω ¼ 1 MeV, the corresponding value of n is
1020.38 s−1 [9,31].
The effective inertia in Eq. (1) is computed from the

multidimensional collective inertia tensor M [25,27–30]

MeffðsÞ ¼
X

ij

Mij
dqi
ds

dqj
ds

; ð7Þ

where qiðsÞ denotes the collective coordinate as a function
of the path’s length. The collective inertia tensor is
calculated in the perturbative cranking approximation
(see Ref. [14] and references cited therein)

M ¼ ℏ2M−1
ð1ÞMð3ÞM−1

ð1Þ; ð8Þ

where

½MðkÞ%ij ¼
X

μν

h0jq̂ijμνihμνjq̂jj0i
ðEμ þ EνÞk

: ð9Þ

The two-quasiparticle nucleon wave functions are denoted
by jμνi, and Eμ and Eν are the corresponding quasiparticle
energies. q̂ denotes the multipole operators that describe the
collective degrees of freedom. The effective collective
potential Veff is calculated by subtracting the vibrational
zero-point energy (ZPE) from the total RHB deformation
energy. The zero-point energy is computed using the
Gaussian overlap approximation [29,30,32,33],

EZPE ¼ 1

4
Tr½M−1

ð2ÞMð1Þ%: ð10Þ

The microscopic self-consistent solutions of the con-
strained RHB equations, that is, the single-quasiparticle
energies and wave functions on the entire energy surface,
provide the microscopic input for the calculation of both
the collective inertia and zero-point energy. In the present
study the RHB equations are solved by expanding the
nucleon spinors in the basis of an axially symmetric
harmonic oscillator with Nf ¼ 20 (Ng ¼ Nf þ 1) major
oscillator for the large (small) component of the Dirac
spinor. The technical details of the solution of the con-
strained RHB equations can be found in Refs. [14,34]. The
self-consistent calculations of deformation energy surfaces
are based on the DD-PC1 [22] relativistic functional in the
particle-hole channel, and a separable pairing interaction of
finite range [35]. The original strength parameters of the
pairing force were adjusted to reproduce the pairing gap in
nuclear matter as calculated with the D1S parametrization
of the Gogny force [35,36]. Here, we have fine-tuned the
neutron and proton pairing strengths to reproduce the
empirical pairing gaps of the isotope 224Ra. Compared to
the original values, this leads to an increase of the neutron
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Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
∫ sout

sin

1
h̄

√
2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑

i j

Mi j
dqi

ds
dq j

ds
, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
(1)M(3)M−1

(1) , (3)

where

[M(k)]i j =
∑

µν

〈0|Q̂i|µν〉〈µν|Q̂ j |0〉
(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
− Q, (6)

FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes
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A microscopic calculation of half-lives for both the α and 2α decays of 212Po and 224Ra is performed,
using a self-consistent framework based on energy density functionals. A relativistic density functional and
a separable pairing interaction of finite range are used to compute axially symmetric deformation energy
surfaces as functions of quadrupole, octupole, and hexadecapole collective coordinates. Dynamical least-
action paths are determined, that trace the α and 2α emission from the equilibrium deformation to the point
of scission. The calculated half-lives for the α decay of 212Po and 224Ra are in good agreement with data.
A new decay mode, the symmetric 2α emission, is predicted with half-lives of the order of those observed
for cluster emission.
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Radioactive decays driven by the strong interaction
present a difficult and long-standing nuclear physics prob-
lem [1]. Even though the field, initiated by the observation of
α decay, is more than hundred years old, not all possible
decaymodes have been identified. In addition to extensively
investigated phenomena, such as the α decay and fission
process, more exotic decay modes have been studied, both
experimentally and theoretically. For instance, cluster
decays [2] and two-proton radioactivity [3,4]. Another
intriguing possibility is the spontaneous and simultaneous
emission of 2α particles from a heavy nucleus. Although not
observed yet, this decay mode has been analyzed in a
semimicroscopic approach, in which the 2α decay is
considered as a 8Be-like mode [5,6]. The nucleus 8Be is,
of course, unstable and decays into two α particles with
T1=2 ≃ 10−16 s. The predicted half-lives for spontaneous 2α
decay of heavy nuclei, however, T1=2 ≃ 1033 years or more,
indicate that the experimental detection of this mode is very
unlikely.
Alpha, cluster, and fission decay processes have success-

fully been described with semimicroscopic methods [7,8].
Here, however, we aim to use a fully self-consistent micro-
scopic approach, based on deformation energy surfaces, to
analyze the possibility of 2α emission processes in heavy
nuclei. When used in the framework of energy density
functionals (EDF), such an approach can quantitatively
describe cluster decay as, for instance, in Hartree-Fock
Bogoliubov calculations with the Gogny energy functional
[9,10]. The model that we employ in the present study is
based on relativistic EDFs that have very successfully been
used to describe nuclear structure phenomena [11], cluster

states [12,13], spontaneous and induced fission [14–18], and
α decay [19–21].
In particular, in the recent study of Ref. [19], we

calculated the half-lives for the recently observed 108Xe →
104Te → 100Sn α-decay chain. The relativistic density func-
tional DD-PC1 [22] and a separable pairing interaction of
finite range were used to compute axially symmetric
deformation energy surfaces of 104Te and 108Xe as functions
of quadrupole and octupole collective coordinates.
Dynamical least-action paths were determined that trace
the α-particle emission from the equilibrium deformation to
the point of scission. Here, we use the same model to
explore α decays and possible 2α decays in the region of
heavier nuclei, specifically for the isotopes 212Po and 224Ra.
We will show that there is a possibility for the two α
particles to be emitted back to back, in a symmetric way,
rather than spatially correlated as in a 8Be-like mode. The
half-life of the symmetric 2α mode may then be signifi-
cantly reduced, in some cases to the order of half-lives
already observed for cluster decay.
A detailed description of the relativistic Hartree-

Bogoliubov (RHB) self-consistent model can be found
in Refs. [11,23,24]. Here, it is used to perform constrained
calculations of axially symmetric energy surfaces of α
emitters, as functions of intrinsic deformation parameters.
We then follow the α or 2α emission along a dynamical
path L embedded in a multidimensional collective space.
For the α emission process, the collective space is three
dimensional ðβ20; β30; β40Þ, while for the symmetric 2α
emission, because of reflection symmetry, the collective
space can be built from the coordinates β20 and β40.
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From the scission point to sout:   superposition of two 
alpha+nucleus Coulomb potentials

… effective collective mass

… quadrupole moment

nucleus is long enough, the risk of confusing sequential and
direct 2α decays is low [6]. Therefore, the main exper-
imental issue is the very long half-life (low probability) to
separate the 2α decay signals from the background. Note,
however, that this is also the case for observed cluster
radioactivity, with partial half-lives in the range from 1011

to 1026 seconds, and branching ratios with respect to the
dominant α decay between 10−9 and 10−16. The emission of
clusters ranging from 14C to 34Si has been observed in the
actinide region, from 221Fr to 242Cm [7].
In this study we describe the symmetric 2α decay using

the quadrupole and hexadecapole collective coordinates.
Figure 3 displays the axially symmetric energy surface of
224Ra, as a function of the quadrupole and hexadecapole
intrinsic deformations. The dynamic path for 2α emission
starting from the equilibrium deformation and up to the
scission point located at ðβ20; β40Þ ≃ ð0.28; 1.30Þ, is traced
by the dashed curve. The corresponding contribution to the
dimensionless action of Eq. (1) is ≈16. To calculate
the contribution of the action from the scission point to
the outer turning point sout, we consider the superposition
of each alphaþ nucleus Coulomb interaction system,
namely:

Veffðβ2Þ ¼ 2e2
Z1Z2

R
−Q2α; ð12Þ

where R represents the distance between the centers of
mass of the fragments (the index 1 refers to the heavy
fragment, and 2 to the α). The approximate relation
between R and the quadrupole moment is

q20 ¼ 2A2R: ð13Þ

The corresponding effective collective mass reads

Meff ¼
μ

8A2q20
; ð14Þ

where μ ¼ mnA2=2 is the reduced mass of the
(2αþ heavy) fragments. This yields a scission to 2α
emission action of 23.89. The predicted 2α half-life is
logT2α½s& ¼ 14.24, which is much shorter than the 8Be-like
emission half-life logT2α½s& ¼ 27.87, calculated using the
semiempirical model for cluster decay of Ref. [41]. We
have obtained a similar symmetric 2α decay half-life (to
within one order of magnitude) with few other standard
relativistic energy density functionals. It could, therefore,
be interesting to reconsider the cluster detection experiment
for this nucleus, aiming to detect two α clusters in
coincidence at 180°. The insets in Fig. 3 display the
intrinsic nucleon densities for three selected points on
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insets display the intrinsic nucleon densities for three selected
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nucleus is long enough, the risk of confusing sequential and
direct 2α decays is low [6]. Therefore, the main exper-
imental issue is the very long half-life (low probability) to
separate the 2α decay signals from the background. Note,
however, that this is also the case for observed cluster
radioactivity, with partial half-lives in the range from 1011

to 1026 seconds, and branching ratios with respect to the
dominant α decay between 10−9 and 10−16. The emission of
clusters ranging from 14C to 34Si has been observed in the
actinide region, from 221Fr to 242Cm [7].
In this study we describe the symmetric 2α decay using

the quadrupole and hexadecapole collective coordinates.
Figure 3 displays the axially symmetric energy surface of
224Ra, as a function of the quadrupole and hexadecapole
intrinsic deformations. The dynamic path for 2α emission
starting from the equilibrium deformation and up to the
scission point located at ðβ20; β40Þ ≃ ð0.28; 1.30Þ, is traced
by the dashed curve. The corresponding contribution to the
dimensionless action of Eq. (1) is ≈16. To calculate
the contribution of the action from the scission point to
the outer turning point sout, we consider the superposition
of each alphaþ nucleus Coulomb interaction system,
namely:

Veffðβ2Þ ¼ 2e2
Z1Z2

R
−Q2α; ð12Þ

where R represents the distance between the centers of
mass of the fragments (the index 1 refers to the heavy
fragment, and 2 to the α). The approximate relation
between R and the quadrupole moment is

q20 ¼ 2A2R: ð13Þ

The corresponding effective collective mass reads

Meff ¼
μ

8A2q20
; ð14Þ

where μ ¼ mnA2=2 is the reduced mass of the
(2αþ heavy) fragments. This yields a scission to 2α
emission action of 23.89. The predicted 2α half-life is
logT2α½s& ¼ 14.24, which is much shorter than the 8Be-like
emission half-life logT2α½s& ¼ 27.87, calculated using the
semiempirical model for cluster decay of Ref. [41]. We
have obtained a similar symmetric 2α decay half-life (to
within one order of magnitude) with few other standard
relativistic energy density functionals. It could, therefore,
be interesting to reconsider the cluster detection experiment
for this nucleus, aiming to detect two α clusters in
coincidence at 180°. The insets in Fig. 3 display the
intrinsic nucleon densities for three selected points on
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224Ra in the quadrupole-hexadecapole axially symmetric plane.
Calculations are carried out using the RHB model based on the
DD-PC1 functional, and separable pairing interaction. The black
and white dashed curve denotes the dynamical (least-action) path
for 2α emission from equilibrium deformation to scission, and the
insets display the intrinsic nucleon densities for three selected
points on the path.
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nucleus is long enough, the risk of confusing sequential and
direct 2α decays is low [6]. Therefore, the main exper-
imental issue is the very long half-life (low probability) to
separate the 2α decay signals from the background. Note,
however, that this is also the case for observed cluster
radioactivity, with partial half-lives in the range from 1011

to 1026 seconds, and branching ratios with respect to the
dominant α decay between 10−9 and 10−16. The emission of
clusters ranging from 14C to 34Si has been observed in the
actinide region, from 221Fr to 242Cm [7].
In this study we describe the symmetric 2α decay using

the quadrupole and hexadecapole collective coordinates.
Figure 3 displays the axially symmetric energy surface of
224Ra, as a function of the quadrupole and hexadecapole
intrinsic deformations. The dynamic path for 2α emission
starting from the equilibrium deformation and up to the
scission point located at ðβ20; β40Þ ≃ ð0.28; 1.30Þ, is traced
by the dashed curve. The corresponding contribution to the
dimensionless action of Eq. (1) is ≈16. To calculate
the contribution of the action from the scission point to
the outer turning point sout, we consider the superposition
of each alphaþ nucleus Coulomb interaction system,
namely:

Veffðβ2Þ ¼ 2e2
Z1Z2

R
−Q2α; ð12Þ

where R represents the distance between the centers of
mass of the fragments (the index 1 refers to the heavy
fragment, and 2 to the α). The approximate relation
between R and the quadrupole moment is

q20 ¼ 2A2R: ð13Þ

The corresponding effective collective mass reads

Meff ¼
μ

8A2q20
; ð14Þ

where μ ¼ mnA2=2 is the reduced mass of the
(2αþ heavy) fragments. This yields a scission to 2α
emission action of 23.89. The predicted 2α half-life is
logT2α½s& ¼ 14.24, which is much shorter than the 8Be-like
emission half-life logT2α½s& ¼ 27.87, calculated using the
semiempirical model for cluster decay of Ref. [41]. We
have obtained a similar symmetric 2α decay half-life (to
within one order of magnitude) with few other standard
relativistic energy density functionals. It could, therefore,
be interesting to reconsider the cluster detection experiment
for this nucleus, aiming to detect two α clusters in
coincidence at 180°. The insets in Fig. 3 display the
intrinsic nucleon densities for three selected points on
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and white dashed curve denotes the dynamical (least-action) path
for 2α emission from equilibrium deformation to scission, and the
insets display the intrinsic nucleon densities for three selected
points on the path.
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A microscopic calculation of half-lives for both the α and 2α decays of 212Po and 224Ra is performed,
using a self-consistent framework based on energy density functionals. A relativistic density functional and
a separable pairing interaction of finite range are used to compute axially symmetric deformation energy
surfaces as functions of quadrupole, octupole, and hexadecapole collective coordinates. Dynamical least-
action paths are determined, that trace the α and 2α emission from the equilibrium deformation to the point
of scission. The calculated half-lives for the α decay of 212Po and 224Ra are in good agreement with data.
A new decay mode, the symmetric 2α emission, is predicted with half-lives of the order of those observed
for cluster emission.
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Radioactive decays driven by the strong interaction
present a difficult and long-standing nuclear physics prob-
lem [1]. Even though the field, initiated by the observation of
α decay, is more than hundred years old, not all possible
decaymodes have been identified. In addition to extensively
investigated phenomena, such as the α decay and fission
process, more exotic decay modes have been studied, both
experimentally and theoretically. For instance, cluster
decays [2] and two-proton radioactivity [3,4]. Another
intriguing possibility is the spontaneous and simultaneous
emission of 2α particles from a heavy nucleus. Although not
observed yet, this decay mode has been analyzed in a
semimicroscopic approach, in which the 2α decay is
considered as a 8Be-like mode [5,6]. The nucleus 8Be is,
of course, unstable and decays into two α particles with
T1=2 ≃ 10−16 s. The predicted half-lives for spontaneous 2α
decay of heavy nuclei, however, T1=2 ≃ 1033 years or more,
indicate that the experimental detection of this mode is very
unlikely.
Alpha, cluster, and fission decay processes have success-

fully been described with semimicroscopic methods [7,8].
Here, however, we aim to use a fully self-consistent micro-
scopic approach, based on deformation energy surfaces, to
analyze the possibility of 2α emission processes in heavy
nuclei. When used in the framework of energy density
functionals (EDF), such an approach can quantitatively
describe cluster decay as, for instance, in Hartree-Fock
Bogoliubov calculations with the Gogny energy functional
[9,10]. The model that we employ in the present study is
based on relativistic EDFs that have very successfully been
used to describe nuclear structure phenomena [11], cluster

states [12,13], spontaneous and induced fission [14–18], and
α decay [19–21].
In particular, in the recent study of Ref. [19], we

calculated the half-lives for the recently observed 108Xe →
104Te → 100Sn α-decay chain. The relativistic density func-
tional DD-PC1 [22] and a separable pairing interaction of
finite range were used to compute axially symmetric
deformation energy surfaces of 104Te and 108Xe as functions
of quadrupole and octupole collective coordinates.
Dynamical least-action paths were determined that trace
the α-particle emission from the equilibrium deformation to
the point of scission. Here, we use the same model to
explore α decays and possible 2α decays in the region of
heavier nuclei, specifically for the isotopes 212Po and 224Ra.
We will show that there is a possibility for the two α
particles to be emitted back to back, in a symmetric way,
rather than spatially correlated as in a 8Be-like mode. The
half-life of the symmetric 2α mode may then be signifi-
cantly reduced, in some cases to the order of half-lives
already observed for cluster decay.
A detailed description of the relativistic Hartree-

Bogoliubov (RHB) self-consistent model can be found
in Refs. [11,23,24]. Here, it is used to perform constrained
calculations of axially symmetric energy surfaces of α
emitters, as functions of intrinsic deformation parameters.
We then follow the α or 2α emission along a dynamical
path L embedded in a multidimensional collective space.
For the α emission process, the collective space is three
dimensional ðβ20; β30; β40Þ, while for the symmetric 2α
emission, because of reflection symmetry, the collective
space can be built from the coordinates β20 and β40.
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Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a three-dimensional (3D)
harmonic oscillator. Since 108Xe and 104Te are not particularly
heavy nuclei, calculations have been performed in a basis with
16 oscillator shells.

The process of emission of an α particle is modeled along a
path L, determined by minimizing the action integral [36,37]

S(L) =
∫ sout

sin

1
h̄

√
2Meff (s)[Veff (s) − E0]ds, (1)

where Meff (s) and Veff (s) are the effective collective inertia
and potential, respectively. E0 is the collective ground-state
energy, and the integration limits correspond to the classical
inner (sin) and outer turning points (sout), defined by Veff (s) =
E0.

The effective inertia is computed from the multidimen-
sional collective inertia tensor M [36,38–41]

Meff (s) =
∑

i j

Mi j
dqi

ds
dq j

ds
, (2)

where qi(s) denotes the collective coordinate as a function of
the path length. The collective inertia tensor is calculated by
using the self-consistent RHB solutions and applying the adi-
abatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
method [42]. In the perturbative cranking approximation the
collective inertia reads [20]

M = h̄2M−1
(1)M(3)M−1

(1) , (3)

where

[M(k)]i j =
∑

µν

〈0|Q̂i|µν〉〈µν|Q̂ j |0〉
(Eµ + Eν )k

. (4)

|µν〉 are two-quasiparticle wave functions, and Eµ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that describe the collective degrees of free-
dom. The effective collective potential Veff is obtained by
subtracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [40,41,43,44], the ZPE is computed by using the
Gaussian overlap approximation,

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (5)

The microscopic self-consistent solutions of the constrained
RHB equations; that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions
of the quadrupole and octupole deformations, provide the
microscopic input for the calculation of both the collective
inertia and zero-point energy.

In practical calculations we first determine the least action
path from ground state to scission in the restricted two-
dimensional collective space (β20,β30). The scission point
is determined by a discontinuity in β40. After scission, the
configuration with two well-separated fragments becomes the
lowest-energy solution and the energy can be approximated by
the classical expression for two uniformly charged spheres:

Veff (β3) = e2 Z1Z2

R
− Q, (6)

FIG. 1. Deformation-energy surface of 104Te in the quadrupole-
octupole axially symmetric plane, calculated with the RHB model
based on the DD-PC1 functional. The dashed and solid curves on the
energy surface correspond to the static (least-energy) and dynamic
(least-action) paths for α emission, respectively. The insets display
the intrinsic nucleon densities at selected values of (β20, β30).

where R represents the distance between the centers of mass
of the fragments, and the second term is the experimental Q
value. We use Eqs. (9) and (10) of Ref. [9] to approximate the
relation between R and the octuple moment Q30,

Q30 = f3R3, (7)

with

f3 = A1A2

A
(A1 − A2)

A
, (8)

and β30 = 4πQ30/3AR3. The corresponding effective collec-
tive mass reads

Meff = µ

9Q4/3
30 f 2/3

3

, (9)

where µ = mnA1A2/(A1 + A2) is the reduced mass of the two
fragments, and mn denotes the nucleon mass [9]. Thus the
path involved in the action integral of Eq. (1) consists of the
least-action path from sin to scission, and the energy is approx-
imated by the Coulomb potential from scission to sout [9]. The
alpha-decay half-life is calculated as T1/2 = ln 2/(nP), where
n is the number of assaults on the potential barrier per unit
time [38–41], and P is the barrier penetration probability in
the WKB approximation,

P = 1
1 + exp [2S(L)]

. (10)

We choose E0 = 1 MeV in Eq. (1) for the value of the
collective ground-state energy. For the vibrational frequency
h̄ω = 1 MeV, the corresponding n value is 1020.38 s−1.

Figure 1 displays the axially symmetric deformation-
energy surface of 104Te with respect to the octupole and
quadrupole collective coordinates. When one considers the
paths for α emission, the static path (dashed) which minimizes

011301-2



and proton pairing strengths by 9% and 12%, respectively.
This modification of the pairing strength is consistent with
the conclusions of the recent global study of the separable
pairing interaction, when used with relativistic energy
density functionals [37].
To test the model in the region of heavy nuclei, we will

first consider the case of the well known α emitter 212Po.
Figure 1 displays the deformation energy surface of 212Po
in the ðβ20; β30Þ plane for several values of the hexadeca-
pole deformation β40. One notices that, for deformations
β40 ≥ 0.5 and ðβ20; β30Þ ≃ ð0.15; 0.3Þ, a pronounced mini-
mum develops on the deformation energy surface at
approximately 25 MeV above the equilibrium minimum.
The red dots in each panel indicate the points on the
dynamical (least-action) path for α emission, and the insets
display the corresponding intrinsic nucleon densities along
the path, starting from the equilibrium deformation up to
the scission point. This point is determined by a disconti-
nuity of β40 at the energy minimum. The dimensionless
action calculated along the dynamical path up to the
scission point is 7.07. The density distribution at the
scission point clearly shows the formation of a small
cluster of nucleons, and we have verified that the integrated
density of this cluster is four nucleons. Beyond the scission
point, the dynamics between the two fragments is deter-
mined by the Coulomb repulsion [9] and we have calcu-
lated the value of 9.46 for the corresponding contribution to
the dimensionless action. Therefore, the predicted alpha
half-live is Tα ¼ 0.6 μs, to be compared with the exper-
imental value of 0.3 μs.

In the case of 224Ra, the scission point for α decay is
located at ðβ20; β30; β40Þ ≃ ð0.15; 0.31; 0.68Þ. The contri-
bution to the dimensionless action along the path up to the
scission point is 9.96, and from the scission point to sout
20.50. This leads to the predicted α half-live of 9.5 days, in
qualitative agreement with the experimental value of
3.6 days.
The emission of two α particles from a nucleus can occur

in several ways. In addition to the obvious sequential 2α
process, there have also been some predictions [38], and
detection [39] of 2α particles emitted during fission. The
8Be cluster emission [7] has also been predicted, and this
process should lead to a 2α state because of the resonant
nature of 8Be (Qα ¼ 92 keV).
The process of direct spontaneous emission of two α

particles from a nucleus is different. There have only been a
few analyses of spontaneous 2α decays: it has been
discussed in Ref. [5], and recently a possible experimental
investigation has been considered in Ref. [6]. In these
studies, the corresponding half-life is approximated by that
of the 8Be cluster emission, leading to very long half-lives,
of the order of logT½s% ≃ 50 to 100, typically.
A microscopic self-consistent calculation can provide

complementary insight on the direct 2α decay process.
Here, we will show that the two α particles can be emitted
back to back, in a symmetric way, rather than in a 8Be-like
mode. The half-life of the symmetric 2α mode may be
significantly reduced compared to those of 8Be cluster
emission discussed above.
A necessary condition for direct 2α spontaneous emis-

sion is a positive Q value. A simple calculation leads to

Q2α ¼ Qα1 þQα2 þ ΔE; ð11Þ

where Qα1;2 are the Q values for the α decay of the parent
and daughter nuclei, respectively. ΔE is the excitation
energy difference between the sum of the one of the
daughter and the granddaughter nuclei in the one α decay,
and the one of the granddaughter nucleus in the 2α decay.
In the following, we consider, for simplicity, α or 2α
transitions involving only the ground states of the daughter
or granddaughter nuclei (that is, ΔE ¼ 0).
Figure 2 displays a global survey of possible candidates

for 2α decay, that is, a map of N > 50 and Z > 50 nuclei
with positive Q2α, computed from the available experi-
mental masses [40]. A large number of nuclei are possible
candidates for 2α emission, especially “north” of the valley
of stability, and this is also the case for single α emission.
Of course, the main problem in detecting a possible 2α
mode is its extremely low probability. For instance, much
shorter β-decay lifetimes for most of these nuclei prevent
the experimental detection of the α decay modes. It is then
relevant to consider nuclei for which one of the sequential
single-α decays is energetically forbidden. Such nuclei are
also shown in Fig 2. If the half-life of the first daughter
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FIG. 1. Deformation energy surface of 212Po in the quadrupole-
octupole axially symmetric plane, for selected values of the
hexadecapole deformation β40. Calculations are performed using
the RHB model based on the DD-PC1 functional and a separable
pairing interaction. Contours join points on the surface with the
same energy and red circles indicate the points on the dynamical
(least-action) path for α emission. The insets display the intrinsic
nucleon densities at selected points on the dynamical path.
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for cluster emission.

DOI: 10.1103/PhysRevLett.127.012501

Radioactive decays driven by the strong interaction
present a difficult and long-standing nuclear physics prob-
lem [1]. Even though the field, initiated by the observation of
α decay, is more than hundred years old, not all possible
decaymodes have been identified. In addition to extensively
investigated phenomena, such as the α decay and fission
process, more exotic decay modes have been studied, both
experimentally and theoretically. For instance, cluster
decays [2] and two-proton radioactivity [3,4]. Another
intriguing possibility is the spontaneous and simultaneous
emission of 2α particles from a heavy nucleus. Although not
observed yet, this decay mode has been analyzed in a
semimicroscopic approach, in which the 2α decay is
considered as a 8Be-like mode [5,6]. The nucleus 8Be is,
of course, unstable and decays into two α particles with
T1=2 ≃ 10−16 s. The predicted half-lives for spontaneous 2α
decay of heavy nuclei, however, T1=2 ≃ 1033 years or more,
indicate that the experimental detection of this mode is very
unlikely.
Alpha, cluster, and fission decay processes have success-

fully been described with semimicroscopic methods [7,8].
Here, however, we aim to use a fully self-consistent micro-
scopic approach, based on deformation energy surfaces, to
analyze the possibility of 2α emission processes in heavy
nuclei. When used in the framework of energy density
functionals (EDF), such an approach can quantitatively
describe cluster decay as, for instance, in Hartree-Fock
Bogoliubov calculations with the Gogny energy functional
[9,10]. The model that we employ in the present study is
based on relativistic EDFs that have very successfully been
used to describe nuclear structure phenomena [11], cluster

states [12,13], spontaneous and induced fission [14–18], and
α decay [19–21].
In particular, in the recent study of Ref. [19], we

calculated the half-lives for the recently observed 108Xe →
104Te → 100Sn α-decay chain. The relativistic density func-
tional DD-PC1 [22] and a separable pairing interaction of
finite range were used to compute axially symmetric
deformation energy surfaces of 104Te and 108Xe as functions
of quadrupole and octupole collective coordinates.
Dynamical least-action paths were determined that trace
the α-particle emission from the equilibrium deformation to
the point of scission. Here, we use the same model to
explore α decays and possible 2α decays in the region of
heavier nuclei, specifically for the isotopes 212Po and 224Ra.
We will show that there is a possibility for the two α
particles to be emitted back to back, in a symmetric way,
rather than spatially correlated as in a 8Be-like mode. The
half-life of the symmetric 2α mode may then be signifi-
cantly reduced, in some cases to the order of half-lives
already observed for cluster decay.
A detailed description of the relativistic Hartree-

Bogoliubov (RHB) self-consistent model can be found
in Refs. [11,23,24]. Here, it is used to perform constrained
calculations of axially symmetric energy surfaces of α
emitters, as functions of intrinsic deformation parameters.
We then follow the α or 2α emission along a dynamical
path L embedded in a multidimensional collective space.
For the α emission process, the collective space is three
dimensional ðβ20; β30; β40Þ, while for the symmetric 2α
emission, because of reflection symmetry, the collective
space can be built from the coordinates β20 and β40.
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4Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France

5Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

(Received 2 April 2021; revised 11 May 2021; accepted 8 June 2021; published 2 July 2021)

A microscopic calculation of half-lives for both the α and 2α decays of 212Po and 224Ra is performed,
using a self-consistent framework based on energy density functionals. A relativistic density functional and
a separable pairing interaction of finite range are used to compute axially symmetric deformation energy
surfaces as functions of quadrupole, octupole, and hexadecapole collective coordinates. Dynamical least-
action paths are determined, that trace the α and 2α emission from the equilibrium deformation to the point
of scission. The calculated half-lives for the α decay of 212Po and 224Ra are in good agreement with data.
A new decay mode, the symmetric 2α emission, is predicted with half-lives of the order of those observed
for cluster emission.

DOI: 10.1103/PhysRevLett.127.012501

Radioactive decays driven by the strong interaction
present a difficult and long-standing nuclear physics prob-
lem [1]. Even though the field, initiated by the observation of
α decay, is more than hundred years old, not all possible
decaymodes have been identified. In addition to extensively
investigated phenomena, such as the α decay and fission
process, more exotic decay modes have been studied, both
experimentally and theoretically. For instance, cluster
decays [2] and two-proton radioactivity [3,4]. Another
intriguing possibility is the spontaneous and simultaneous
emission of 2α particles from a heavy nucleus. Although not
observed yet, this decay mode has been analyzed in a
semimicroscopic approach, in which the 2α decay is
considered as a 8Be-like mode [5,6]. The nucleus 8Be is,
of course, unstable and decays into two α particles with
T1=2 ≃ 10−16 s. The predicted half-lives for spontaneous 2α
decay of heavy nuclei, however, T1=2 ≃ 1033 years or more,
indicate that the experimental detection of this mode is very
unlikely.
Alpha, cluster, and fission decay processes have success-

fully been described with semimicroscopic methods [7,8].
Here, however, we aim to use a fully self-consistent micro-
scopic approach, based on deformation energy surfaces, to
analyze the possibility of 2α emission processes in heavy
nuclei. When used in the framework of energy density
functionals (EDF), such an approach can quantitatively
describe cluster decay as, for instance, in Hartree-Fock
Bogoliubov calculations with the Gogny energy functional
[9,10]. The model that we employ in the present study is
based on relativistic EDFs that have very successfully been
used to describe nuclear structure phenomena [11], cluster

states [12,13], spontaneous and induced fission [14–18], and
α decay [19–21].
In particular, in the recent study of Ref. [19], we

calculated the half-lives for the recently observed 108Xe →
104Te → 100Sn α-decay chain. The relativistic density func-
tional DD-PC1 [22] and a separable pairing interaction of
finite range were used to compute axially symmetric
deformation energy surfaces of 104Te and 108Xe as functions
of quadrupole and octupole collective coordinates.
Dynamical least-action paths were determined that trace
the α-particle emission from the equilibrium deformation to
the point of scission. Here, we use the same model to
explore α decays and possible 2α decays in the region of
heavier nuclei, specifically for the isotopes 212Po and 224Ra.
We will show that there is a possibility for the two α
particles to be emitted back to back, in a symmetric way,
rather than spatially correlated as in a 8Be-like mode. The
half-life of the symmetric 2α mode may then be signifi-
cantly reduced, in some cases to the order of half-lives
already observed for cluster decay.
A detailed description of the relativistic Hartree-

Bogoliubov (RHB) self-consistent model can be found
in Refs. [11,23,24]. Here, it is used to perform constrained
calculations of axially symmetric energy surfaces of α
emitters, as functions of intrinsic deformation parameters.
We then follow the α or 2α emission along a dynamical
path L embedded in a multidimensional collective space.
For the α emission process, the collective space is three
dimensional ðβ20; β30; β40Þ, while for the symmetric 2α
emission, because of reflection symmetry, the collective
space can be built from the coordinates β20 and β40.

PHYSICAL REVIEW LETTERS 127, 012501 (2021)

0031-9007=21=127(1)=012501(6) 012501-1 © 2021 American Physical Society



Dynamical synthesis of 4He in the scission phase of nuclear fission 

Ren, Vretenar, Nikšić, Zhao, Zhao, Meng, Phys. Rev. Lett. 128, 172501 (2022)

TDDFT fission trajectories Density profiles at times immediately 
prior to the scission event.



Nucleon localization functions:

2

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
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for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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✔ …accurate microscopic description of universal collective phenomena that 
reflect the organisation of nucleonic matter in finite nuclei.

Methods based on the framework of Energy Density Functionals

✔ … nucleon localization and formation of light clusters at sub-saturation densities.

✔ … cluster structure and dynamics in light N=Z and neutron-rich nuclei (quasi-
molecular structures).

✔ … alpha-decay in medium-heavy and heavy nuclei.

✔ … nuclear fission dynamics ➠ cluster formation in the neck during the scission 
phase ⇒ ternary fission.


