Momentum-space structure of dineutron in ¹¹Li and ²²C

Masayuki Yamagami (University of Aizu)

Structure of dineutron and the probe

Dineutron

- Compact S = 0 pair of two neutrons
- Enhanced in low-density medium as neutron halo
 [For recent review, H. Sagawa and K. Hagino, Eur. Phys. J. A51, 102 (2015)]

Question of long standing

- How can we probe the 2n density $\rho_2(\mathbf{r}_1, \mathbf{r}_2)$?
- Not only $|\boldsymbol{r}_1| = |\boldsymbol{r}_2|$, but also $|\boldsymbol{r}_1| \neq |\boldsymbol{r}_2|$

Two-neutron density (cal)

K.Hagino, H.Sagawa, PRC 72, 044321 (2005)

Mean correlation angle $\langle \theta_{nf} \rangle$ in ¹¹Li (exp)

Numerous studies for Borromean nuclei such as ¹¹Li

E1 strength in ¹¹Li (exp)

Three-body model in momentum space

Recoil term

Three-body Hamiltonian (momentum space)

$$H = h_{\text{core}-n}(1) + h_{\text{core}-n}(2) + V_{nn} + \frac{h^2}{A_c m} \mathbf{k}_1 \cdot \mathbf{k}_2$$

Valence n-n

• Diagonalized by using single-particle WF $\varphi_{lj}(k)$

Single-particle Schrödinger eq. (Integral eq.)

$$h_{\text{core}-n} \varphi_{lj}(k) = \frac{\hbar^2 k^2}{2\mu} \varphi_{lj}(k) + V_{\text{core}-n}[\varphi_{lj}] = \varepsilon_{lj} \varphi_{lj}(k)$$

- k-space rep. \rightarrow Suitable for weakly-bound nuclei
- Woods-Saxon potential for $V_{\text{core}-n}$

V _{core-n}	One-particle resonance	s-wave scattering length		
¹¹ Li [1]	$E_R^{(exp)}(\mathbf{p_{1/2}}) = 0.54 \text{ MeV} [2]$	$a_0 = -5.6 \text{ fm}$		
²² C (set C1)	$E_R(\mathbf{d}_{3/2}) = 0.9 \text{ MeV } [3,4]$	a = -2.9 fm [6]		
²² C (set C2)	$E_R(d_{5/2}) = 1.5 \text{ MeV [5]}$	$u_0 = -2.8 \text{ Im} [6]$		

 H.Esbensen et al., PRC56, 3054 (1997)
 B. M. Young et al., PRC49, 279 (1994)
 E.C.Pinilla and P. Descouvemon, PRC 94, 024620 (2016),
 J.Singh et al., Few-Body Syst. 60:50 (2019)
 N.A.Orr, EPJ Web of Conf.113, 06011 (2016)
 S.Mosby et al., NPA 909, 69 (2013)

V_{nn} : Separable-type, finite-range *n*-*n* interaction

[1] Y. Yamaguchi, Phys. Rev. 95 (1954) 1628 [2] H. Tajima et al., Scientific reports 9, 18477 (2019)

Ground-state properties

		One-particle resonance (MeV)	2n separation energy S_{2n} (MeV)	Occupation prob. $(s_{1/2})^2$ (%)	Matter radius R_m (fm)	Core-2n distance \bar{r}_{c-2n} (fm)	n-n distance $ar{r}_{nn}$ (fm)
¹¹ Li	Cal.	p _{1/2} : 0.54	0.369 [2]	27.1	3.20	5.00	6.78
	Exp.	[1]		35±4 [3]	3.12(16) [4]	5.01(32) [5]	6.6±1.4 [6]
²² C	Cal.(set C1)	d _{3/2} : 0.9	0.111	28.1	3.39	5.08	7.53
	Cal.(set C2)	d _{5/2} : 1.5	0.202	32.9	3.41	5.20	7.55
	Exp.		<0.32 [7]	-	3.44±0.08 [8]	-	-
		Input for V _c	ore-n	Input for V_{nn}	n		

- [1] B. M. Young et al., Phys Rev. C49, 279 (1994)
- [2] M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008)
- [3] Y. Kubota et al., Phys. Rev. Lett. 125, 252501 (2020)
- [4] A. Ozawa et al., Nucl. Phys. A693, 32 (2001)
- [5] T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)
- [6] F. M. Marqués et al., Phy. Lett. B476, 219 (2000)
- [7] L. Gaudefroy et al., Phys. Rev. Lett. 109, 202503 (2012)
- [8] Y. Togano et al., Phy. Lett. B 761, 412 (2016)

Two-neutron density in ¹¹Li

Mean correlation/opening angle

Different role between n_1 and n_2

Surface effect on n_2

Mean opening angle in ¹¹Li and ²²C

Summary

Topics: Momentum-space structure of dineutron in ¹¹Li and ²²C

 $heta_{nn}$

 $|\mathbf{k}_1| = k_n$

"knockout"

1. Development of calculation

- Three-body model in momentum space
- Separable-type, finite-range *n*-*n* interaction
- 2. Discussion about dineutron

 $\rho_2(\mathbf{k}_1, \mathbf{k}_2)$

• Mean opening angle $\langle \theta_{nn} \rangle$ as a function of $|\mathbf{k}_1| = k_n$

- Cutoff $|\mathbf{k}_2| < k_{\mathrm{LMAX}}$ for similarity to experimental $\langle heta_{nf}
 angle$
- *k*_{LMAX} = local maximum of |**k**₂| (Relative mom. *k*_{rel})
 Relevant not only |**k**₁| = |**k**₂|, but also |**k**₁| ≠ |**k**₂|
- $\langle \theta_{nf} \rangle \sim \langle \theta_{nn} \rangle$ can be a good probe of $\rho_2(\mathbf{k}_1, \mathbf{k}_2)$

Can distinguish between dineutron in ¹¹Li and ²²C

