Mean-field based approach for collective excitations in neutron-rich nuclei

Kenichi Yoshida
Kyoto Univ.

Frontier explored by RIBF

15 years since the full-scale operation started
187 new isotopes discovered at RIKEN
32: pre-RIBF
50: 2007-2010
105: 2011-2021
cf. The last YKIS was held in 2011.

Nuclear density functional theory (DFT)

Nuclear EDF $E\left[\rho, \tilde{\rho}, \tilde{\rho}^{*}\right]$: Skyrme, Gogny, covariant,...

Kohn-Sham-Bogoliubov-de Gennes (or HFB) method

for the equilibrium configuration

$$
\begin{aligned}
\delta\left(E\left[\rho, \tilde{\rho}, \tilde{\rho}^{*}\right]-\right. & \left.\sum_{q} \lambda^{q}\left\langle\hat{N}_{q}\right\rangle\right)=0 \\
& \left(\mathscr{H}_{\mathrm{HFB}}^{q}-\lambda^{q} \mathcal{N}\right) \Phi_{\alpha}^{q}(x)=E_{\alpha}^{q} \Phi_{\alpha}^{q}(x)
\end{aligned}
$$

$$
\mathscr{H}_{\mathrm{HFB}}^{q}\left[\rho, \tilde{\rho}, \tilde{\rho}^{*}\right]=\sum_{\sigma^{\prime}}\left[\begin{array}{cc}
h_{\sigma \sigma^{\prime}}^{q}(\boldsymbol{r}) & \tilde{h}_{\sigma \sigma^{\prime}}^{q}(\boldsymbol{r}) \\
4 \sigma \sigma^{\prime} \tilde{h}_{-\sigma-\sigma^{\prime}}^{q^{*}}(\boldsymbol{r}) & -4 \sigma \sigma^{\prime} h_{-\sigma-\sigma^{\prime}}^{q^{*}}(\boldsymbol{r})
\end{array}\right], \quad \mathcal{N}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad h=\frac{\delta E}{\delta \rho}, \quad \tilde{h}=\frac{\delta E}{\delta \tilde{\rho}^{*}}
$$

appropriate framework for describing neutron-rich nuclei asymptotic behavior of densities at large distances pairing involving the continuum states

Nuclear DFT for equilibrium deformed shapes

3D-mesh calculation is now available
Krylov subspace method for the Greens func.
Seattle-Warsaw (Jin-Bulgac-Roche-Wlazłowski, 2017)
Tsukuba (Kashiwaba-Nakatsukasa, 2020)
canonical basis and FFT East Lansing-Erlangen (Chen+, 2022)

Nuclear DFT for equilibrium deformed shapes

3D-mesh calculation is now available
Krylov subspace method for the Greens func.
Seattle-Warsaw (Jin-Bulgac-Roche-Wlazłowski, 2017)
Tsukuba (Kashiwaba-Nakatsukasa, 2020)
canonical basis and FFT East Lansing-Erlangen (Chen+, 2022)

triaxial deformation

$$
10^{\circ}<\gamma<50^{\circ}
$$

triaxially-deformed drip-line nuclei

Triaxiality-induced halo structure

Uzawa-Hagino-Yoshida (2021)
condition for the halo
spherical: $\ell=0,1$ only
axially-def.: $\Omega^{\pi}=1 / 2^{ \pm}, 3 / 2^{-}$only
triaxially-def.: any Ω^{π}

near the drip line symmetries broken as much as possible to obtain a deeper binding releasing the kinetic energy \square halo
systematic 3D-mesh cal. with a large box size

Nuclear DFT for collective motions

Time-dependent DFT for dynamics:TD-KSB approach

$$
i \partial_{t} R^{q}(t)=\left[\mathscr{H}_{\mathrm{HFB}}^{q}(t)-\lambda^{q} \mathcal{N}, R^{q}(t)\right] \quad R=\Phi \Phi^{\dagger}
$$

for collective rotations

$$
\begin{aligned}
& \Phi^{\prime}(t)=U \Phi(t)=\exp \left[i \omega \hat{J}_{x} \cdot \mathcal{N} t\right] \Phi(t) \quad \text { in a uniformly rotating system about } x \text {-axis } \\
& i \partial_{t} R^{\prime q}(t)=\left[\mathscr{H}_{\mathrm{HFB}}^{q}-\left(\lambda^{q}+\omega \hat{J}_{x}\right) \mathcal{N}, R^{\prime q}(t)\right] \\
& \text { stationary } \\
& \text { cranked KSB equation } \\
& {\left[\mathscr{H}_{\mathrm{HFB}}^{q}-\left(\lambda^{q}+\omega \hat{J}_{x}\right) \mathcal{N}\right] \Phi_{\alpha}^{\prime q}(x)=E_{\alpha}^{\prime q} \Phi_{\alpha}^{\prime q}(x)} \\
& \omega \text { (MeV) }
\end{aligned}
$$

Validity of the cranking model for the 2_{1}^{+}state energy

Exp.:
657 even-even nuclei with known $E\left(2_{1}^{+}\right)$in NNDC
22 nuclei with $Z<10$; Skyrme EDF is least justified
Cranking model: $E\left(2^{+}\right)=\frac{3}{\mathscr{J}}, \quad \mathcal{J}=\lim _{\omega \rightarrow 0} \frac{J_{x}}{\omega} \quad$ evaluated at $\omega=0.05 \mathrm{MeV}$
no rotation in spherical nuclei: 273 (260) nuclei with SkM* (SLy4)

Validity of the cranking model for the 2_{1}^{+}state energy

KY, arXiv:2205.01814

model	\# of nuclei	\bar{R}_{E}	σ_{E}
CHFB(SkM*)	332	-0.021	0.33
CHFB(SLy4)	335	-0.095	0.30
MAP(SL4)	359	0.28	0.49
MAP(SLy4,def)	135	0.20	0.30
GCM(SLy4)	359	0.51	0.38
GCM(SLy4,def)	135	0.27	0.33
5DCH(D1S)	519	0.12	0.33
5DCH(D1 S,def)	146	-0.05	0.19

$$
\begin{aligned}
& R_{E}=\ln \left(E_{\mathrm{th}}\left(2^{+}\right) / E_{\text {exp }}\left(2^{+}\right)\right) \\
& \sigma_{E}=\sqrt{\left\langle\left(R_{E}-\bar{R}_{E}\right)^{2}\right\rangle} \\
& \text { self-consistent cranking model }
\end{aligned}
$$ surprisingly well describes $E\left(2^{+}\right)$ $E \Rightarrow I(I+1)$

30-35\% error implies a variety of characters of individual nuclides

MAP (minimization after projection), Sabby+(2007)
GCM (Hill-Wheeler), Sabby+(2007)
5DCH (GCM+GOA), Bertsch+(2007)

Mol of neutron-rich nuclei

$E\left(2^{+}\right)$: indicator for the evolution of shell structure and deformation
cf. SEASTAR

Mol of neutron-rich Dy isotopes

\mathscr{F} is highest at $N=104$ both in exp. and cal.
Δ_{n} is lowest at $N=104$
deformation develops toward $N=100$
$\mathscr{J} \leftrightarrow \beta$ is not a one-to-one correspondence

$$
E\left(2^{+}\right) \leftrightarrow B(E 2)
$$

\mathscr{J} is much more sensitive to the shell structure and pairing

Mol of neutron-rich Dy isotopes: A role of the pairing

Nuclear DFT for collective motions: vibrations

Time-dependent DFT

$$
\rho(\mathbf{r}, t)=\rho_{0}(\mathbf{r})+\delta \rho(\mathbf{r}, t)+\mathrm{h} . \mathrm{c} .
$$

linear response to the external field: $e^{-i \omega t} \hat{F}=e^{-i \omega t} \int d \mathbf{r f}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r})$

$$
\delta \rho(\mathbf{r}, t) \sim \delta \rho(\mathbf{r}) e^{-i \omega t} \quad \delta \rho(\mathbf{r})=\int d \mathbf{r}^{\prime} \chi_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left[\frac{\delta^{2} E[\rho]}{\delta^{2} \rho} \delta \rho\left(\mathbf{r}^{\prime}\right)+f\left(\mathbf{r}^{\prime}\right)\right]
$$

vibration in space/spin-space/isospin-space/gauge-space and couping among them

$$
\hat{F}_{L}=\int d \boldsymbol{r} \sum_{\sigma \sigma^{\prime}} \sum_{\tau \tau^{\prime}} r^{L} Y_{L}(\hat{r}) O\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \hat{\psi}^{\dagger}(\boldsymbol{r} \sigma \tau) \hat{\psi}\left(\boldsymbol{r} \sigma^{\prime} \tau^{\prime}\right) \text { or } \hat{\psi}^{\dagger}(\boldsymbol{r} \sigma \tau) \hat{\psi}^{\dagger}\left(\boldsymbol{r} \tilde{\sigma}^{\prime} \tilde{\tau}^{\prime}\right)
$$

rich variety of modes of vibration

172Dy: heaviest n-rich nucleus with spectroscopic info

Gamma vibration in n-rich Dy isotopes

Exp.:
N
N=104: Söderström+ (2016)

$$
\Delta N=0 \text { or } 2, \Delta n_{3}=0, \Delta \Lambda=\Delta \Omega=2
$$

Gamma vibration in n-rich Dy isotopes

Yoshida-Watanabe (2016)

$\omega_{K=2}<2 \Delta$
shell structure
lowest at $N=108,110$
$\Delta N=0$ or $2, \Delta n_{3}=0, \Delta \Lambda=\Delta \Omega=2$
$N=104$

$$
\langle\lambda| \hat{Q}_{22}|0\rangle=\sum M_{22, \alpha \beta}^{\lambda}
$$

A $[510] 1 / 2 \otimes[512] 5 / 2$
SkM ${ }^{\star}$

IV dipole responses in neutron-rich nuclei

Pygmy Dipole Resonance/Low-Energy Dipole: Many open problems
deepen the understanding of the PDR from a wider perspective multi-messenger investigation: $\left(\alpha, \alpha^{\prime}\right),\left(p, p^{\prime}\right),\left(\gamma, \gamma^{\prime}\right),\left(\mathrm{HI}^{\prime}, \mathrm{HI}^{\prime}\right)$

+ charge-exchange excitation

$$
\hat{F}_{K \mu}=\int d \boldsymbol{r} \sum_{\sigma \sigma^{\prime}} \sum_{\tau \tau^{\prime}} r Y_{1 K}(\hat{r}) \delta_{\sigma \sigma^{\prime}}\langle\tau| \tau_{\mu}\left|\tau^{\prime}\right\rangle \hat{\psi}^{\dagger}(\boldsymbol{r} \sigma \tau) \hat{\psi}\left(\boldsymbol{r} \sigma^{\prime} \tau^{\prime}\right)
$$

IV mode: not only $\mu=0$ but charge-exchange $\mu= \pm 1$

New types of excitation mode in $\mu= \pm 1$?
other than the anti-analog GDR

IV dipole responses: charge-exchange channel

SkM*, Г=2.0 MeV $K Y(2017)$

Anti-analog PDR and GDR

transition density

AGDR

pronounced IV character around the surface

APDR

not a simply IV mode IS/IV mixing
spatially extended structure weakly-bound neutrons

Cross-shell $-1 \hbar \omega_{0}$ excitation

protons are deeply bound

should be distinguished from the anti-analog of PDR

Cross-shell $-1 \hbar \omega_{0}$ excitation: impact on β-decay rate

allowed transitions only $\quad \mathrm{SkM}^{*}$

Cross-shell $-1 \hbar \omega_{0}$ excitation: impact on β-decay rate

 first-forbidden transitions included SkM*

Summary

Nuclear energy-density functional method in the framework of TDDFT

powerful tool to describe the collective modes in unstable nuclei
coordinate-space representation
high feasibility for systematic calculations thanks to HPC
Rotational mode unique in neutron-rich nuclei
$E\left(2^{+}\right) \leftrightarrow B(E 2)$ relation found in stable nuclei can be different due to the isospindependence of pairing

Vibrational modes
low-frequency excitations are sensitive to the shell effect and pairing, common in stable nuclei roles of spatially extended neutrons appear near the drip line

Next

Yrare bands (γ band, octupole band..): interplay between vibration and rotation near the drip line Triaxially deformed nuclei: β-decay, halo,...

Role of the IV-density dependence

Mol and the pairing

Q-Value Systematics for Isovector Giant Resonances Excited by (p, n) Reactions on $\mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Sn}$, and Pb Isotopes

W. A. Sterrenburg, Sam M. Austin, R. P. DeVito, and Aaron Galonsky Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

$$
\text { (Received } 7 \text { July 1980) }
$$

The (p, n) reaction at 45 MeV is used to study two broad peaks found previously with the target ${ }^{90} \mathrm{Zr}$. They have now been observed with all but one of seventeen targets from ${ }^{90} \mathrm{Zr}$ to ${ }^{208} \mathrm{~Pb}$. Energy systematics favor the conclusion that these peaks are antianalogs of the giant $M 1$ and $E 1$ resonances in the target nucleus. The first experimental determinations of $T, T-1$ splittings of the giant $E 1$ resonance are reported. Their low values in comparison to $T, T+1$ splittings observed previously can be interpreted as due to a tensor part of the effective isospin potential.

P. Petrovich and W. G. Love, NPA354(1981)499c

FIG. 1. Some states of the target nucleus ($T_{z}=T$) and their analogs (isospin $=T$) and antianalogs (isospin $=T-1$) in the $T_{z}=T-1$ nucleus resulting from a (p, n) reaction. The target states are the ground state and the $M 1$ and $E 1$ giant resonant states. Isospin geometry strongly favors the three transitions indicated.

