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Outline

A quick review of the D1-D5-P system:

the Strominger-Vafa counting

The dual CFT side:

microstates of the D1-D5 CFT

Supergravity construction of D1-D5-P microstates:
superstrata

Holography:
deriving geometry from the CFT
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The D1-D5-P system

The D1-D5-P system

The simplest BPS black hole with a finite-area horizon is

D1-D5-P on R4,1 × S1 × T 4

At small gravitational coupling (gs → 0) the bound state of
D-branes is described by a CFT
Microstates of the CFT can be counted

log(#microstates) = 2π
√

n1n5np = SBH

(Note: index equals degeneracy at leading order in ni )

What happens to the microstates at finite gravitational coupling
(gsN � 1)?
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The D1-D5-P system

Microstate geometries

For large gsN, D-branes backreact on spacetime
For particular microstates (coherent states), the backreaction is
well described by supergravity

gsN ∼ 0

D-brane microstate

→

gsN � 1

microstate geometry

R4,1 × S1

AdS3 × S3

← r ∼ RHor

no horizon!
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Holography The D1-D5 CFT

The D1-D5 CFT

At a special point in moduli space, the low energy limit of the
D1-D5 system is described by the

(T 4)N/SN orbifold with (4,4) susy
where N = n1n5

States carrying D1-D5 charges are RR ground states
Fermion zero-modes ψαȦ

0 , ψ̃α̇Ȧ
0 carry spin under

SU(2)α×SU(2)α̇ ∼ SO(4)

...

w1w 2 i

si1 2

∑
i Ni wi = N

Ni # strands of winding wi
and “spin” si

⇔
∏

i (|si〉wi )
Ni
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Holography The D1-D5 CFT

Examples I

The simplest D1-D5 state is the maximally rotating one

|+,+〉N1 ↔ ...

N

Spectral flow maps this state into the SL(2,C) invariant vacuum:

|+,+〉N1
s.f .−→ |0〉NS

The dual geometry is (in appropriate coordinates)

AdS3 × S3
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Holography The D1-D5 CFT

Examples II

A more general state is

|+,+〉N1
1 |0,0〉

(N−N1)/k
k ↔ ...

N1 N-

k

( )/k

The dual geometry is a deformation of AdS3 × S3 × T 4

The deformation is controlled by one scalar warp factor

Z4 = b R
( a√

r2 + a2

)k sink θ

r2 + a2 cos2 θ
cos kφ

where |a|2 ∝ N1 , |b|2 ∝ (N − N1)
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Holography The D1-D5 CFT

Coherent states and supergravity

The state |+,+〉N1
1 |0,0〉

(N−N1)/k
k is an eigenstate of R-charge

but the geometry (Z4) depends on φ
The state dual to the geometry is actually the “coherent state”∑

N1

aN1 bN−N1 |+,+〉N1
1 |0,0〉

(N−N1)/k
k

(Kanitscheider, Skenderis, Taylor)

The sum over N1 is peaked on N1 ≈ N1 ∝ |a|2

When N1, (N − N1)/k � 1 the state is well described by
supergravity
The supergravity parameters a , b , . . . determine the average
numbers N i of strands of each type
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Holography A class of D1-D5-P microstates

Adding momentum

Susy: momentum is carried by left-moving excitations on the CFT

For example, one can act with modes of the global chiral algebra

L−1
s.f .−→ L−1 − J3

−1 , J+
0

s.f .−→ J+
−1

We concentrate here on J+
−1 (L−1 − J3

−1 is work in progress)

N1

J+
-1( )

m1

k1

N

k2

J+
-1( )

m2

k1m1 2 2

Note:

J+
−1|+,+〉1 = 0

(J+
−1)m|0,0〉k = 0 for m > k

How to construct the dual geometries?
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Supergravity

Linearized perturbation

If Nki mi � 1 the states are described by a linearized perturbation
around AdS3 × S3, encoded in Z4

The perturbation can be derived by acting on the D1-D5 geometry
|+,+〉N1

1 |0,0〉
N−N1
k with the diffeomorphism dual to J+

−1
(Mathur, Saxena, Srivastava; Shigemori)

Z4 =
∑
k ,m

bk ,m Z (k ,m)
4 , Z (k ,m)

4 = ∆k ,m(r , θ) cos
(√2v

R
+(k−m)φ−mψ

)
where |bk ,m|2 ∝ Nk ,m

(note the dependence on φ , ψ and v = t + y )

If Nki mi � 1 non-linear terms in bk ,m become important
The non-linear geometry is not a descendant of a D1-D5 geometry
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Supergravity

General susy ansatz

The most general geometry preserving the same supercharges as
the D1-D5-P black hole and T 4-invariant is

ds2
6 = − 2√

P
(dv +β)

(
du +ω+

F
2

(dv +β)
)

+
√
Pds2

4 , P = Z1Z2 − Z 2
4

where v = t+y√
2
, u = t−y√

2

It is encoded by

0) ds2
4 (4D euclidean metric), β (1-form in 4D)

1) Z1 , Z2 , Z4 (0-forms)

2) ω (1-form in 4D), F (0-form)

Susy implies that u is an isometry. Everything depends on v , x i
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Supergravity

Almost linear structure

0) The sugra equations for ds2
4 , β are non-linear (they define an

“almost hyperkahler” structure)
1) Assuming ds2

4 , β, the equations for Z1 , Z2 , Z4 are linear and
homogeneous

2) The equations for ω , F are linear and inhomogeneous: the
sources are quadratic in Zi ’s

Strategy: given ds2
4 , β, first solve 1) and then solve 2)
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Supergravity Superstrata

Non-linear completion

Given the linear structure, one can assume that
ds2

4 , β and Z2 do not receive corrections in bk,m
Z4 remains linear in bk,m

Given Z1 , Z2 , Z4 one can solve the sugra eqs. for ω , F

Regularity:
ω is singular unless one includes in Z1 terms quadratic in bk,m

Result:
for any {bk,m} there is a unique regular geometry
{bk,m} ↔ Fourier modes of an arbitrary function of two variables
⇒ supestrata

D1-D5-P microstates depend on functions of at least two variables
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Geometry from CFT 1-point functions

Holographic 1-point functions

Can we test the connection between geometries and states?
Terms of order r−2−d in the asymptotic expansion of the geometry
are related to vevs of dimension d operators in the microstate
(Kanitscheider, Skenderis, Taylor)

The vevs of chiral primary operators (and their descendants) in
1/4 and 1/8 BPS states are protected
Examples: operators of dimension 1

O: O |+ +〉k = |00〉k ⇒ Z4 ∼ 〈O 〉Y 1

r3

Σ2: Σ2 (|+ +〉k1 ⊗ |+ +〉k2 ) = |+ +〉k1+k2 ⇒ Z1 ∼ 〈Σ2〉Y 1

r3

(Y 1 : S3 scalar spherical harmonic of order 1)
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Geometry from CFT 1-point functions

A D1-D5-P example

Consider the state: |s〉 =
∑

Ni

N1 N2N0

J+
-1

b2
1 ∝ N1

b2
2 ∝ N2

O = ⇒ 〈s|O|s〉 ∝ b1 ↔ Z4 ∝ b1

Σ2 ⊗ = ⇒ 〈s|Σ2|s〉 ∝ eiv b1b2 ↔ Z1 ∝ eiv b1b2

Gravity and CFT match (including numerical coefficients)

The CFT implies the regularity of spacetime

15 / 18



Geometry from CFT Entanglement Entropy

Entanglement entropy

Consider the EE of one interval of length l in the state |s〉 : S(s)
l

CFT: in the limit of l → 0, S(s)
l is encoded by the vevs 〈s|OK |s〉

S(s)
l = −∂S(s)

n

∂n
|n=1 , S(s)

n =
( l

R

)−4∆n
[
1 +

∑
K

( l
R

)∆K +∆̄K
CK 〈s|OK |s〉

]
Gravity: S(s)

l is given by the area of a minimal co-dimension 2
surface in the 6D geometry (Ryu, Takayanagi; Hubeny, Rangamani)

S(s)
l =

area(γl)

4GN

S(s)
l is not protected, but if one includes only chiral primary OK
⇒ gravity and CFT match!
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Summary and Outlook

Summary

We have constructed a family of regular and horizonless D1-D5-P
geometries

We have identified their CFT dual states

We have checked the gravity-CFT map by computing 1-point
functions and entanglement entropy
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Summary and Outlook

Outlook

The states we have constructed are all the ones that reduce (in
the limit Ni � 1) to linear perturbations around AdS3 × S3

⇒ “graviton gas”

These states are insufficient to produce an entropy which scales
like (n1n5np)1/2 (fractional modes are missing)

Which CFT states (outside the “graviton gas”) admit a description
in supergravity?

How well can one resolve typical states in supergravity?
(need to know the vevs of operators of high enough dimension)

What can one say about non-BPS microstates?
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