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@ A quick review of the D1-D5-P system:
e the Strominger-Vafa counting

@ The dual CFT side:
e microstates of the D1-D5 CFT

@ Supergravity construction of D1-D5-P microstates:
e superstrata

@ Holography:
o deriving geometry from the CFT



The D1-D5-P system

@ The simplest BPS black hole with a finite-area horizon is

|D1-D5-P on R4 x ST x T*|

@ At small gravitational coupling (gs — 0) the bound state of
D-branes is described by a CFT

@ Microstates of the CFT can be counted

log(#microstates) = 2m/N1Nsnp = Spy

(Note: index equals degeneracy at leading order in n;)
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The D1-D5-P system

@ The simplest BPS black hole with a finite-area horizon is

|D1-D5-P on R4 x ST x T*|

@ At small gravitational coupling (gs — 0) the bound state of
D-branes is described by a CFT

@ Microstates of the CFT can be counted

log(#microstates) = 2m/N1Nsnp = Spy

(Note: index equals degeneracy at leading order in n;)

What happens to the microstates at finite gravitational coupling
(gsN > 1)?



The D1-D5-P system

Microstate geometries

@ For large gsN, D-branes backreact on spacetime

@ For particular microstates (coherent states), the backreaction is
well described by supergravity

gsN ~0 gsN > 1
R4 S

AdS; x S8

— r~ RHor

no horizon!

D-brane microstate microstate geometry
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The D1-D5 CFT

@ At a special point in moduli space, the low energy limit of the
D1-D5 system is described by the

(T*)N /Sy orbifold with (4,4) susy
where N = nyns
@ States carrying D1-D5 charges are RR ground states
@ Fermion zero-modes ¢3A, sz}A carry spin under

SU(2)axSU(2)4 ~ SO(4)
Zi Niw; =N

s s, .. Si N; # strands of winding w;
and “spin” s;

< IL(s)w)"



Holography The D1-D5 CFT

Examples |

@ The simplest D1-D5 state is the maximally rotating one

BTN,

@ Spectral flow maps this state into the SL(2,C) invariant vacuum:

s.f.

+ )Y == [Ows
@ The dual geometry is (in appropriate coordinates)

AdS3 X 83



Holography The D1-D5 CFT

Examples Il

@ A more general state is

|+, +) M0, 0) N -7k ,@ /@

@ The dual geometry is a deformation of AdS3 x S® x T4
@ The deformation is controlled by one scalar warp factor

(N-Ny)/k

a \k sinfo
2= bR (=) 7 oawrg 05K

where |al® oc Ny, |b|? o< (N — Ny)



Holography The D1-D5 CFT

Coherent states and supergravity

@ The state |+, +>4V‘ |0, 0>§(N_N1)/k is an eigenstate of R-charge
but the geometry (Z;) depends on ¢
@ The state dual to the geometry is actually the “coherent state”

ZaM pN—Ni ‘_‘_7_’_)4\/1 |070>E(N—N1)/k
N.
1 (Kanitscheider, Skenderis, Taylor)
@ The sum over N is peaked on N ~ Ny o |a|?
@ When Ny, (N — N;)/k > 1 the state is well described by
supergravity
@ The supergravity parameters a, b, ... determine the average
numbers N; of strands of each type



Holography A class of D1-D5-P microstates

Adding momentum

@ Susy: momentum is carried by left-moving excitations on the CFT

@ For example, one can act with modes of the global chiral algebra
Ly 2hr =By b 2hut

@ We concentrate here on Jj1 (L_y — J§1 is work in progress)
LN LS
Note:
uym™ Wik JH |+, +)1 =0
(J*,)™0,0), = 0 for m > k
N, Nigm N om:

kimy Nkzmz
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Holography A class of D1-D5-P microstates

Adding momentum

@ Susy: momentum is carried by left-moving excitations on the CFT

@ For example, one can act with modes of the global chiral algebra
Ly 2hr =By b 2hut

@ We concentrate here on Jj1 (L_y — J§1 is work in progress)
K1 LS
Note:
a2 ) g+ =0
(J*,)™0,0), = 0 for m > k
“: ml NI;"_‘}Z

How to construct the dual geometries?



Supergravity

Linearized perturbation

@ If N, < 1 the states are described by a linearized perturbation
around AdS; x S®, encoded in Z4
@ The perturbation can be derived by acting on the D1-D5 geometry
1+, +)M110,0) ) M with the diffeomorphism dual to J,
(Mathur, Saxena, Srivastava; Shigemori)
2v
Zo= 3 b Z8™ 28 — Ay (r,0)c08 (V24 (k- myo-mo)
k,m
where |by m|? o< Ni.m

(note the dependence on ¢,y and v =t + y)
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Supergravity

Linearized perturbation

@ If N, < 1 the states are described by a linearized perturbation
around AdS; x S®, encoded in Z4

@ The perturbation can be derived by acting on the D1-D5 geometry
1+, +)M110,0) ) M with the diffeomorphism dual to J,
(Mathur, Saxena, Srivastava; Shigemori)

2
Zy = Z bk.m Zik,m) ’ Zik»m) = Dk m(r, 9)009(\[R‘/+(k—m)¢—mz/}>

k,m
where [bx m[? o Nk.m

(note the dependence on ¢,y and v =t + y)

@ If Ny, > 1 non-linear terms in by , become important
@ The non-linear geometry is not a descendant of a D1-D5 geometry

10/18



Supergravity

General susy ansatz

@ The most general geometry preserving the same supercharges as
the D1-D5-P black hole and T*-invariant is

) F
ds? = 7ﬁ(dv+ﬂ)(du+w+§(dV+ﬁ)> +VPds;, P=212—-2Z;
wherev:HTy, UZ%

@ Itis encoded by

0) ds2 (4D euclidean metric), 3 (1-form in 4D)
1) Z , 2o, Zy (O-fOFmS)
2) w (1-form in 4D), F (0-form)
@ Susy implies that u is an isometry. Everything depends on v, x’

11/18



Supergravity

Almost linear structure

0) The sugra equations for dsﬁ , B are non-linear (they define an
“almost hyperkahler” structure)

1) Assuming dsZ, 3, the equations for Z; , Z, Z, are linear and
homogeneous

2) The equations for w , F are linear and inhomogeneous: the
sources are quadratic in Zj’'s

Strategy: given ds?, 3, first solve 1) and then solve 2)

12/18



Supergravity Superstrata

Non-linear completion

@ Given the linear structure, one can assume that

e ds7, 3 and Z, do not receive corrections in by, m
e Z, remains linear in by m

e Given Z;, Z>, Z, one can solve the sugra egs. for w, 7

@ Regularity:
@ w is singular unless one includes in Z; terms quadratic in by m

@ Result:
e for any {bx m} there is a unique regular geometry
o {bx m} < Fourier modes of an arbitrary function of two variables
= supestrata

13/18



Supergravity Superstrata

Non-linear completion

@ Given the linear structure, one can assume that

e ds7, 3 and Z, do not receive corrections in by, m
e Z, remains linear in by m

e Given Z;, Z>, Z, one can solve the sugra egs. for w, 7
@ Regularity:

@ w is singular unless one includes in Z; terms quadratic in by m

@ Result:

e for any {bx m} there is a unique regular geometry
o {bx m} < Fourier modes of an arbitrary function of two variables
= supestrata

D1-D5-P microstates depend on functions of at least two variables

13/18



Holographic 1-point functions

@ Can we test the connection between geometries and states?

@ Terms of order r—2~ in the asymptotic expansion of the geometry
are related to vevs of dimension d operators in the microstate
(Kanitscheider, Skenderis, Taylor)

@ The vevs of chiral primary operators (and their descendants) in
1/4 and 1/8 BPS states are protected

@ Examples: operators of dimension 1

o O: O+ )k = |00)« =z~ 19

1
0 Yo Lo+ +Hk @1+ ) = |+ P = Z o~ EY

(Y : S8 scalar spherical harmonic of order 1)

14/18



A D1-D5-P example

b12 x Nj

o Consider the state: [s) = >, I _
bg oc No

—

AN
No N N2

O/@ = O = <S’O|S> x by ~  Zy x by
Z/O O @ S|22|S o<e"’b1b2 4 Z1o<e"’b1b2

@ Gravity and CFT match (including numerical coefficients)

@ The CFT implies the regularity of spacetime

15/18



Geometry from CFT Entanglement Entropy

Entanglement entropy

@ Consider the EE of one interval of length / in the state |s) : S,(S)

e CFT:in the limit of / — 0, ') is encoded by the vevs (s|Ox|s)

SR 88 S\ = (é) e {1 + Z(A)AKMKCK (s|Okls)
K

@ Gravity: S,(s) is given by the area of a minimal co-dimension 2
surface in the 6D geometry (Ryu, Takayanagi; Hubeny, Rangamani)

(s) _ area(7y)
S’ - 4Gy

° S,(S) is not protected, but if one includes only chiral primary Ok
= gravity and CFT match!

16/18



Summary and Outlook

Summary

@ We have constructed a family of regular and horizonless D1-D5-P
geometries

@ We have identified their CFT dual states

@ We have checked the gravity-CFT map by computing 1-point
functions and entanglement entropy

17/18



Outlook

@ The states we have constructed are all the ones that reduce (in
the limit N; < 1) to linear perturbations around AdS; x S°
= “graviton gas”

@ These states are insufficient to produce an entropy which scales
like (n1nsnp)!/? (fractional modes are missing)

@ Which CFT states (outside the “graviton gas”) admit a description
in supergravity?

@ How well can one resolve typical states in supergravity?
(need to know the vevs of operators of high enough dimension)

@ What can one say about non-BPS microstates?

18/18
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