# Codimension-2 Solutions in Five-Dimensional Supergravity with Masaki Shigemori [arXiv:1505.05169] 

Minkyu Park

YITP, Kyoto University

November 27, 2015

## 1 Introduction

## 2 The 4D/5D Solution

- 3- and 4-Charge System

3 Supertube Transition

- 1-Dipole Solutions
- Exotic Brane

4 Codimension-2 Solutions
■ Multi-Dipole Solutions

- Mixed Configurations

5 Conclusions

## Low Codimension Branes

- People thought they are not common
- They are peculiar, but it makes them more interesting!

For example,
■ Codimension-2: D7-brane
$\rightarrow$ Spacetime is no longer asymptotically flat.
■ Codimension-1: D8-brane
$\rightarrow$ Spacetime terminates at finite distance from the brane.

$$
\text { Codimension }=\operatorname{dim}(\text { spacetime })-\operatorname{dim}(\text { object })
$$

## Low Codimension Branes

## However,

- By supertube effect,

- More common than previously thought
- Relevant to black hole physics
- Fuzzball conjecture
- Microstate geometry program


## Purpose of This Work

Demonstrate the existence of general multi-dipole solutions


Codim-3


Codim-2

## 1 Introduction

2 The 4D/5D Solution

- 3- and 4-Charge System

3 Supertube Transition
■ 1-Dipole Solutions

- Exotic Brane

4 Codimension-2 Solutions
■ Multi-Dipole Solutions

- Mixed Configurations

5 Conclusions

## Setup

[Bates-Denef '03, Gutowski-Reall '04, Bena-Warner '04, Gauntlett-Gutowski '04]

- M-theory on $T^{6}=T_{45}^{2} \times T_{67}^{2} \times T_{89}^{2}$
- $D=5, \mathcal{N}=1$ ungauged SUGRA with two vector multiplets
- Action

$$
\begin{aligned}
& S=\frac{1}{16 \pi G_{5}} \int\left(-R * 1+Q_{I J} * F^{I} \wedge F^{J}+Q_{I J} * \mathrm{~d} X^{I} \wedge \mathrm{~d} X^{J}\right. \\
& \left.-\frac{1}{6} C_{I J K} F^{I} \wedge F^{J} \wedge A^{K}\right), \\
& \\
& C_{I J K}=\left|\epsilon_{I J K}\right|, \quad Q_{I J}=\frac{1}{2} \operatorname{diag}\left(\left(X^{1}\right)^{-2},\left(X^{2}\right)^{-2},\left(X^{3}\right)^{-2}\right)
\end{aligned}
$$

## The 4D/5D Solution

[Bates-Denef '03, Gutowski-Reall '04, Bena-Warner '04, Gauntlett-Gutowski '04]

- BPS solutions
- Require SUSY
- Assume $\mathrm{U}(1)$ symmetry $\leftarrow \mathrm{M}$-theory direction
- 8 harmonic functions $H=\left\{V, K^{I=1,2,3}, L_{I}, M\right\}$ on $\mathbb{R}^{3}$

$$
\nabla^{2} H(\mathbf{x})=0
$$

- Integrability condition

$$
0=V \nabla^{2} M-M \nabla^{2} V+\frac{1}{2}\left(K^{I} \nabla^{2} L_{I}-L_{I} \nabla^{2} K^{I}\right)
$$

## The 4D/5D Solution

[Bates-Denef '03, Gutowski-Reall '04, Bena-Warner '04, Gauntlett-Gutowski '04]

- Multi-center solutions with codimension-3 sources


$$
H(\mathbf{x})=h+\sum_{p=1}^{N} \frac{\Gamma_{p}}{\left|\mathbf{x}-\mathbf{x}_{p}\right|}, \quad \Gamma_{p}: \text { charge }
$$

- Brane interpretation in type IIA theory

$$
\begin{array}{lll} 
& K^{1} \leftrightarrow \mathrm{D} 4(6789) \\
V \leftrightarrow \mathrm{D} 6(456789), & K^{2} \leftrightarrow \mathrm{D} 4(4589) \\
K^{3} \leftrightarrow \mathrm{D} 4(4567)
\end{array}, \begin{aligned}
& L_{1} \leftrightarrow \mathrm{D} 2(45) \\
& L_{2} \leftrightarrow \mathrm{D} 2(67) \\
& L_{3} \leftrightarrow \mathrm{D} 2(89)
\end{aligned}, M \leftrightarrow \mathrm{D} 0
$$

■ Integrability condition: force between branes has to be in balance

## 10D Type IIA Uplift

- Metric and other fields are given by

$$
\begin{aligned}
& d s_{10, \mathrm{str}}^{2}=-\frac{1}{\sqrt{V\left(Z-V \mu^{2}\right)}}(d t+\omega)^{2}+\sqrt{V\left(Z-V \mu^{2}\right)} d x^{i} d x^{i} \\
& \quad+\sqrt{\frac{Z-V \mu^{2}}{V}}\left(Z_{1}^{-1} d x_{45}^{2}+Z_{2}^{-1} d x_{67}^{2}+Z_{3}^{-1} d x_{89}^{2}\right), \\
& e^{2 \Phi}= \frac{\left(Z-V \mu^{2}\right)^{3 / 2}}{V^{3 / 2} Z}, \quad B_{2}=\left(V^{-1} K^{I}-Z_{I}^{-1} \mu\right) J_{I} \\
& C_{1}= A-\frac{V \mu}{Z-V \mu^{2}}(d t+\omega), \\
& C_{3}= {\left[\left(V^{-1} K^{I}-Z_{I}^{-1} \mu\right) A+\xi^{I}-Z_{I}^{-1}(d t+\omega)\right] \wedge J_{I} } \\
& J_{1}=\mathrm{d} x^{4} \wedge \mathrm{~d} x^{5}, \quad J_{2}=\mathrm{d} x^{6} \wedge \mathrm{~d} x^{7}, \quad J_{3}=\mathrm{d} x^{8} \wedge \mathrm{~d} x^{9}
\end{aligned}
$$

## Torus Moduli

## Complexified Kähler Moduli

- $\tau^{1}$ for the 2-torus $T_{45}^{2}$ is

$$
\tau^{1}=B_{45}+i \operatorname{vol}\left(T_{45}^{2}\right)=\left(\frac{K^{1}}{V}-\frac{\mu}{Z_{1}}\right)+i \frac{\sqrt{V\left(Z-V \mu^{2}\right)}}{Z_{1} V}
$$

where $R_{4}=R_{5}=l_{s}$

- $\tau^{1}$ transforms under $\mathrm{SL}(2, \mathbb{Z})_{45}$ duality group
- $\tau^{2}$ and $\tau^{3}$ are defined in the same manner


## Example

## 4-Charge Black Hole

■ Supersymmetric black hole in 4D

$$
\begin{array}{llll} 
& & N_{1} & \mathrm{D} 2(45) \\
N^{0} & \mathrm{D} 6(456789) & N_{2} & \mathrm{D} 2(67) \\
& & N_{3} & \mathrm{D} 2(89)
\end{array}
$$

- Harmonic function

$$
V=\frac{N^{0}}{r}, \quad K^{I}=0, \quad L_{I}=1+\frac{N_{I}}{r}, \quad M=0
$$

■ Single-center

- Macroscopic entropy

$$
S \sim \sqrt{N^{0} N_{1} N_{2} N_{3}}
$$

## 3- and 4-Charge Black Holes

## Microstate Geometry Program

- By tuning parameters, we find smooth solutions without singularities $\rightarrow$ Bubbling solutions [Bena-Warner '05, Berglund-Gimon-Levi '05]
- The hope was that smooth 4D/5D solutions with codim-3 sources can reproduce 3- and 4-charge BHs entropy


$$
H(\mathbf{x})=h+\sum_{p=1}^{N} \frac{\Gamma_{p}}{\left|\mathbf{x}-\mathbf{x}_{p}\right|}
$$

- Not enough to reproduce BH entropy!
[de Boer-El-Showk-Messamah-Van den Bleeken '09,
Bena-Bobev-Giusto-Ruef-Warner '10]
- There have been many attempts to resolve this problem


## 3- and 4-Charge Black Holes

## The 4D/5D Solutions with Codim-3 Sources

- There should be more general configurations because of the supertube effect [de Boer-Shigemori '10, '12]


- $\lambda$ is a parameter of an arbitrary curve which describes a profile of supertube in $\mathbb{R}^{3}$


## 3- and 4-Charge Black Holes

In this work,
We restrict our attention to the simplest case, i.e. codimension-2 sources.


Codim-3
$\xrightarrow{\text { Supertube Effect }}$
$\xrightarrow{\text { Supertube }}$


Codim-2

## 1 Introduction

2 The 4D/5D Solution

- 3- and 4-Charge System

3 Supertube Transition
■ 1-Dipole Solutions

- Exotic Brane

4 Codimension-2 Solutions
■ Multi-Dipole Solutions

- Mixed Configurations

5 Conclusions

## Supertube Transition

## The Supertube Transition is

- a spontaneous polarization phenomenon
- branes puff up into a new dipole charges


## F1-D0 System [Mateos-Townsend '01]

- Analyzed by using DBI action of D2-brane

- F1 and D0 charges are dissolved in d2

■ Supergravity solution is known
[Emparan-Mateos-Townsend '01]

## Supertube Transition

## F1-P System

■ $\mathrm{F} 1(9)+\mathrm{P}(9) \rightarrow \mathrm{f} 1(\lambda)+\mathrm{p}(\lambda)$


- To carry momentum, F1 should wiggle in transverse directions
- Arbitrary curves in transverse directions
- Supergravity solution is known [Lunin-Mathur '01]


## Supertube Transition

Supertubes in different frames

$$
\begin{aligned}
& \mathrm{F} 1(9)+\mathrm{D} 0 \rightarrow \mathrm{~d} 2(\lambda 9)+\mathrm{p}(\lambda) \\
& \mathrm{F} 1(9)+\mathrm{P}(9) \rightarrow \mathrm{f} 1(\lambda)+\mathrm{p}(\lambda)
\end{aligned}
$$

- Typical supertubes in 4-charge black hole

$$
\begin{array}{lll}
\mathrm{D} 2(67) & +\mathrm{D} 2(45) & \rightarrow \mathrm{ns} 5(\lambda 4567) \\
\mathrm{D} 2(89) & +\mathrm{p}(\lambda) \\
\mathrm{D} 6(456789) & \rightarrow 5_{2}^{2}(\lambda 4567,89) & +\mathrm{p}(\lambda)
\end{array}
$$



## $\mathrm{D} 2(67)+\mathrm{D} 2(45) \rightarrow \operatorname{ns} 5(\lambda 4567)$

- Harmonic functions

$$
\begin{aligned}
& V=1, \quad K^{1}=0, \quad K^{2}=0, \quad K^{3}=0, \\
& L_{1}=1+\frac{Q_{2}}{r}, \quad L_{2}=1+\frac{Q_{1}}{r}, \quad L_{3}=1, \quad M=0
\end{aligned}
$$

- Integrability condition is satisfied trivially
- But this is not true bound state of this system


## $\mathrm{D} 2(67)+\mathrm{D} 2(45) \rightarrow \operatorname{ns} 5(\lambda 4567)$

- Harmonic functions

$$
\begin{aligned}
V=1, & K^{1} & =0, & K^{2}
\end{aligned}=0, \quad K^{3}=\gamma, \quad M=-\frac{\gamma}{2}
$$

where

$$
f_{1}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{\mathrm{~d} \lambda}{|\mathbf{x}-\mathbf{F}(\lambda)|}, \quad f_{2}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{|\dot{\mathbf{F}}(\lambda)|^{2} \mathrm{~d} \lambda}{|\mathbf{x}-\mathbf{F}(\lambda)|}
$$

and

$$
\mathrm{d} \gamma=*_{3} \mathrm{~d} \alpha, \quad \alpha_{i}=\frac{Q_{1}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(\lambda) \mathrm{d} \lambda}{|\mathbf{x}-\mathbf{F}(\lambda)|} .
$$

## $\mathrm{D} 2(67)+\mathrm{D} 2(45) \rightarrow \mathrm{ns} 5(\lambda 4567)$

## Monodromy

- $\gamma$ has monodromy


$$
\int_{c} \mathrm{~d} \gamma=\int_{c} *_{3} \mathrm{~d} \alpha=1
$$

■ Complexified Kähler moduli are

$$
\tau^{1}=i \sqrt{f_{1} / f_{2}}, \quad \tau^{2}=i \sqrt{f_{2} / f_{1}}, \quad \tau^{3}=\gamma+i \sqrt{f_{1} f_{2}}
$$

- $\tau^{3}$ has monodromy

$$
\tau^{3} \rightarrow \tau^{3}+1
$$

## $\mathrm{D} 2(67)+\mathrm{D} 2(45) \rightarrow \mathrm{ns} 5(\lambda 4567)$

Metric

- 10D metric only depends on

$$
\begin{aligned}
Z_{I} & =L_{I}+\frac{1}{2} C_{I J K} V^{-1} K^{J} K^{K} \\
\mu & =M+\frac{1}{2} V^{-1} K^{I} L_{I}+\frac{1}{6} C_{I J K} V^{-2} K^{I} K^{J} K^{K}
\end{aligned}
$$

- SIngle-valued

$$
Z_{1}=f_{2}, \quad Z_{2}=f_{1}, \quad Z_{3}=1, \quad \mu=0
$$

- Metric

$$
\begin{aligned}
d s_{10}^{2}=- & \left(f_{1} f_{2}\right)^{-1 / 2}(\mathrm{~d} t-\alpha)^{2}+\left(f_{1} f_{2}\right)^{1 / 2} \mathrm{~d} x^{i} \mathrm{~d} x^{i} \\
& +\left(f_{1} / f_{2}\right)^{1 / 2} d x_{45}^{2}+\left(f_{2} / f_{1}\right)^{1 / 2} d x_{67}^{2}+\left(f_{1} f_{2}\right)^{1 / 2} d x_{89}^{2}, \\
e^{2 \Phi}= & \left(f_{1} f_{2}\right)^{1 / 2}, \quad B_{2}=\gamma \mathrm{d} x^{8} \wedge \mathrm{~d} x^{9}, \quad \cdots
\end{aligned}
$$

## $\mathrm{D} 2(89)+\mathrm{D} 6(456789) \rightarrow 5_{2}^{2}(\lambda 4567,89)$

- Harmonic functions

$$
\begin{aligned}
& V=f_{2}, \quad K^{1}=\gamma, \quad K^{2}=\gamma, \quad K^{3}=0, \\
& L_{1}=1, \quad L_{2}=1, \quad L_{3}=f_{1}, \quad M=0 .
\end{aligned}
$$

■ Metric is multi-valued $\rightarrow$ Non-geometric

$$
\begin{aligned}
d s_{10}^{2}= & -\left(f_{1} f_{2}\right)^{-1 / 2}(\mathrm{~d} t-\alpha)^{2}+\left(f_{1} f_{2}\right)^{1 / 2} \mathrm{~d} x^{i} \mathrm{~d} x^{i} \quad\left(F=1+\frac{\gamma^{2}}{f_{1} f_{5}}\right) \\
& \quad+\left(f_{1} / f_{2}\right)^{1 / 2}\left(d x_{4567}^{2}+f_{1}^{-1} F^{-1} d x_{89}^{2}\right) \\
e^{2 \Phi}= & f_{1}^{1 / 2} f_{2}^{-3 / 2} F^{-1}, \quad B_{2}=-\frac{\gamma}{f_{1} f_{2} F} \mathrm{~d} x^{8} \wedge \mathrm{~d} x^{9}, \quad \cdots
\end{aligned}
$$

■ Monodromy

$$
\tau^{\prime 3} \rightarrow \tau^{\prime 3}+1, \quad \text { where } \tau^{\prime 3}=-\frac{1}{\tau^{3}}
$$

## Exotic Brane

## $55_{2}^{2}$-brane

- Obtained from NS5-brane

$$
\operatorname{NS5}(34567) \xrightarrow{\mathrm{T}_{8}} \mathrm{KKM}(34567 ; 8) \xrightarrow{\mathrm{T}_{9}} 5_{2}^{2}(34567 ; 89)
$$

- Non-geometric

$$
\mathbb{R}_{123}^{3}
$$

- From supertube effect

$$
\mathrm{D} 2(89)+\mathrm{D} 6(456789) \rightarrow 5_{2}^{2}(\lambda 4567 ; 89)+\mathrm{p}(\lambda)
$$

- DFT/EFT can deal with exotic branes more systematically


## Summaries so far

## We have seen

- 4D/5D solutions are framework of black hole research
- supertube effect is important in black hole physics
- what supertube effect is
- some examples of supertube in the 4D/5D solutions

What we want to do
Constructing more general multi-dipole solutions

## General Configurations

## 4-Charge Black Hole

■ In general,


- There can be further supertube transitions

|  | $\mathrm{D} 2(45)$ | $5_{2}^{2}(\lambda 6789,45)$ | $\mathrm{ns} 5(\lambda 4567)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{D} 6(456789)$ | $\mathrm{D} 2(67)$ | $\rightarrow$ | $5_{2}^{2}(\lambda 4589,67)$ | $\mathrm{ns} 5(\lambda 6789)$ | $\rightarrow$ | $\ldots$ |
|  | $\mathrm{D} 2(89)$ | $5_{2}^{2}(\lambda 4567,89)$ | $\mathrm{ns} 5(\lambda 4589)$ |  |  |  |

## General Configurations

## Simplest possible configuration

- 2-dipole solution

$$
\begin{aligned}
& \mathrm{D} 2(45)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{p}(\lambda) \\
& \mathrm{D} 2(67)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 6789)+\mathrm{p}(\lambda)
\end{aligned}
$$

## D6(456789)



2 The 4D/5D Solution

- 3- and 4-Charge System

3 Supertube Transition

- 1-Dipole Solutions
- Exotic Brane

4 Codimension-2 Solutions
■ Multi-Dipole Solutions

- Mixed Configurations

5 Conclusions

## Constructing 2-Dipole Solutions

## Naive Attempt

- Superpose 1-dipole solutions

$$
\mathrm{D} 2(45)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{p}(\lambda)
$$

- Harmonic functions are

$$
\begin{aligned}
V=1, & K^{1} & =0, & K^{2}
\end{aligned}=\gamma, \quad K^{3}=0, \quad l o l=\frac{\gamma}{2}
$$

## Constructing 2-Dipole Solutions

## Naive Attempt

- Superpose 1-dipole solutions

$$
\begin{aligned}
& \mathrm{D} 2(45)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{p}(\lambda) \\
& \mathrm{D} 2(67)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 6789)+\mathrm{p}(\lambda)
\end{aligned}
$$

- Harmonic functions are

$$
\begin{aligned}
V=1, \quad K^{1} & =\gamma^{\prime}, \quad K^{2}=\gamma, \quad K^{3}=0, \\
L_{1} & =f_{1}, \quad L_{2}=f_{1}^{\prime}, \quad L_{3}=f_{2}+f_{2}^{\prime}, \quad M=-\frac{\gamma}{2}-\frac{\gamma^{\prime}}{2}
\end{aligned}
$$

■ This does not work. Integrability condition is not satisfied

## Constructing 2-Dipole Solutions

## Superthread [Niehoff-Vasilakis-Warner '12]

- Solutions in 6D SUGRA
- D1 and D5-branes with traveling waves on them

$$
\begin{array}{lll}
\mathrm{D} 1(5) & +\mathrm{P}(5) \rightarrow \mathrm{d} 1(\lambda) & +\mathrm{p}(\lambda) \\
\mathrm{D} 5(56789) & +\mathrm{P}(5) \rightarrow \mathrm{d} 5(\lambda 6789) & +\mathrm{p}(\lambda)
\end{array}
$$

■ Supertubes interact with each other $\rightarrow$ it solves the problem before

## 2-Dipole Solutions [MP-Shigemori '15]

## $\mathrm{D} 2(45)+\mathrm{D} 2(67)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{ns} 5(\lambda 6789)$

- Smear and dualize superthread
- After some messy calculations, we get 2-dipole solutions

- This can be described in 4D/5D solutions
- Multi-valued harmonic functions on $\mathbb{R}^{3}$


## 2-Dipole Solutions [MP-Shigemori '15]

## $\mathrm{D} 2(45)+\mathrm{D} 2(67)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{ns} 5(\lambda 6789)$

- Harmonic functions

$$
\begin{aligned}
& V=1, \quad K^{1}=\gamma_{2}, \quad K^{2}=\gamma_{1}, \quad K^{3}=0 \\
& L_{I}= 1+\sum_{p} Q_{p I} \int_{p} \frac{1}{R_{p}}=Z_{I}, \quad I=1,2 \\
& L_{3}= 1+\sum_{p} \int_{p} \frac{\rho_{p}}{R_{p}}-K^{1} K^{2} \\
&+\sum_{p, q} Q_{p q} \iint_{p, q}\left[\frac{\dot{\mathbf{F}}_{p} \cdot \dot{\mathbf{F}}_{q}}{2 R_{p} R_{q}}-\frac{\dot{F}_{p i} \dot{F}_{q j}\left(R_{p i} R_{q j}-R_{p j} R_{q i}\right)}{F_{p q} R_{p} R_{q}\left(F_{p q}+R_{p}+R_{q}\right)}\right] \\
& M= \frac{1}{2} \sum_{p, q} Q_{p q} \iint_{p, q} \frac{\epsilon_{i j k} \dot{F}_{p q i} R_{p j} R_{q k}}{F_{p q} R_{p} R_{q}\left(F_{p q}+R_{p}+R_{q}\right)}-\frac{1}{2}\left(K^{1} L_{1}+K^{2} L_{2}\right)
\end{aligned}
$$

## 2-Dipole Solutions [MP-Shigemori '15]

## $\mathrm{D} 2(45)+\mathrm{D} 2(67)+\mathrm{D} 2(89) \rightarrow \mathrm{ns} 5(\lambda 4589)+\mathrm{ns} 5(\lambda 6789)$

- $\gamma_{1,2}$ is multi-valued as before

■ But, $Z_{3}$ and $\mu$ are single-valued $\rightarrow$ metric is single-valued

$$
\begin{aligned}
Z_{3} & =L_{3}+K^{1} K^{2} \\
\mu & =M+\frac{1}{2}\left(K^{1} L_{1}+K^{2} L_{2}\right)
\end{aligned}
$$

- Condition for no closed timelike curves
- Proper monodromies for NS5-branes

$$
\tau^{1} \rightarrow \tau^{1}+1, \quad \tau^{2} \rightarrow \tau^{2}+1
$$

■ Unbound state $\rightarrow$ unable to use as microstate of black hole

## 3-Dipole Solutions [MP-Shigemori '15]

```
D2(45) + D2(67) + D2(89)
ns5(\lambda4567) + ns5(\lambda4589) + ns5(\lambda6789)
```

■ We can extend the solutions including 3-dipole sources.


- Although it is not explicit as 2-dipole solutions, it satisfies all conditions for 3 -dipole solutions.
- This system is also not bound state


## Mixed Configurations [MP-Shigemori '15]

- Consider codim-3 and codim-2 sources simultaneously

with harmonic functions

$$
\begin{array}{rlrl}
V & =n_{0}+\frac{n}{r}, \\
K^{1} & =k_{0}^{1}+\frac{k^{1}}{r}, & K^{2}=k_{0}^{2}+\frac{k^{2}}{r}, \quad K^{3}=k_{0}^{3}+\gamma+\frac{k^{3}}{r} \\
L_{1} & =l_{1}^{0}+f_{2}+\frac{l_{1}}{r}, \quad L_{2}=l_{2}^{0}+f_{1}+\frac{l_{2}}{r}, \quad L_{3}=l_{3}^{0}+\frac{l_{3}}{r} \\
M & =m_{0}-\frac{\gamma}{2}+\frac{m}{r} .
\end{array}
$$

## Mixed Configurations [MP-Shigemori '15]

■ Integrability condition reads

$$
\begin{aligned}
& 0=n_{0} m-m_{0} n+\frac{1}{2}\left(k_{0}^{I} l_{I}-l_{I}^{0} k^{I}\right)-\frac{1}{2} \frac{Q}{L} \int_{0}^{L} \mathrm{~d} \lambda \frac{k^{1}|\dot{\mathbf{F}}(\lambda)|^{2}+k^{2}}{|\mathbf{F}(\lambda)|}, \\
& 0=n+l_{3}, \\
& 0=k_{0}^{2}+\frac{k^{2}}{|\mathbf{F}(\lambda)|}+|\dot{\mathbf{F}}(\lambda)|^{2}\left(k_{0}^{1}+\frac{k^{1}}{|\mathbf{F}(\lambda)|}\right) \quad \text { for each value of } \lambda .
\end{aligned}
$$

- First two equations are easily satisfied
- Third one gives an force balance condition at each point $\lambda$
$\rightarrow$ Bound state!


## 1 Introduction

## 2 The 4D/5D Solution

- 3- and 4-Charge System

3 Supertube Transition

- 1-Dipole Solutions
- Exotic Brane

4 Codimension-2 Solutions
■ Multi-Dipole Solutions

- Mixed Configurations


## 5 Conclusions

## Conclusions

## Conclusions

- 4D/5D solution: a paradigm for BH research
- Only codim-3 solutions are studied so far
- Codim-2 solutions are also important


## Conclusions

## Conclusions

- 4D/5D solution: a paradigm for BH research
- Only codim-3 solutions are studied so far
- Codim-2 solutions are also important


## Future Directions

■ Find systematic way to construct general multi-dipole solutions

- Applications to
- Split attractor flow, Wall crossing, Quiver QM, etc.
- More low codimension
- Superstratum: arbitrary surface parametrized by two variables
[Bena-Giusto-Russo-Shigemori-Warner '15]

