Black hole deconstruction	Backreaction	Holography	Outlook

Microstate solutions from black hole deconstruction

Joris Raeymaekers

Academy of Sciences, Prague

Microstructures of Black Holes, YITP, 25.11.2015

- < ∃ →

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000

based on

• J.R. and D. Van den Bleeken, "Microstate solutions from black hole deconstruction," arXiv:1510.00583 [hep-th]

see also

- JR and D. Van den Bleeken, *Unlocking the Axion-Dilaton in* 5D Supergravity, JHEP **1411**, 029 (2014) [arXiv:1407.5330 [hep-th]].
- T. S. Levi, J. R., D. Van den Bleeken, W. Van Herck and B. Vercnocke, *Godel space from wrapped M2-branes*, JHEP **1001**, 082 (2010) [arXiv:0909.4081 [hep-th]].

周レイモレイモ

Black hole deconstruction	Backreaction	Holography	Outlook
	00000000	00000000	000
Overview			

• Black hole deconstruction proposal for microstate solutions

御下 人 王下 人 王

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
OVERVIEW			

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions

伺 ト イヨ ト イヨ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
OVEDNIEW			

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions
- Holographic picture

< 回 ト < 三 ト < 三

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions
- Holographic picture
- Open issues

< 回 ト < 三 ト < 三

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

• String theory has been successful in explaining the Bekenstein-Hawking entropy $S = \frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S = \frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling g_s → 0 limit with gravity switched off

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S = \frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling g_s → 0 limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.

4 **A b b b b b b**

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S = \frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling g_s → 0 limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.
- Focus here on the 4D D0-D4 black hole (Maldacena, Strominger, Witten 1997). Black hole deconstruction proposal (Denef, Gaiotto, Strominger, Van Den Bleeken, Yin 2007): microstates from multicentered brane configurations.

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S = \frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling g_s → 0 limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.
- Focus here on the 4D D0-D4 black hole (Maldacena, Strominger, Witten 1997). Black hole deconstruction proposal (Denef, Gaiotto, Strominger, Van Den Bleeken, Yin 2007): microstates from multicentered brane configurations.
- These are microstate solutions with singular brane sources.

伺 ト イ ヨ ト イ ヨ ト

3

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

• Consider type IIA on CY. Make a a D0-D4 black hole with charges ($\Gamma \equiv (Q_{D6}, Q_{D4}, Q_{D2}, Q_{D0})$),

 $\Gamma_{BH} = (0, P, 0, q_0)$

< 回 > < 三 > < 三

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

• Consider type IIA on CY. Make a a D0-D4 black hole with charges ($\Gamma \equiv (Q_{D6}, Q_{D4}, Q_{D2}, Q_{D0})$),

 $\Gamma_{BH} = (0, P, 0, q_0)$

• Bekenstein-Hawking entropy

$$S_{BH} = 2\pi \sqrt{q_0 P^3}, \qquad P^3 \equiv D_{ABC} P^A P^B P^C$$

A (B) < (B) < (B)</p>

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

D0-D4 black hole and decoupling limit

• Consider type IIA on CY. Make a a D0-D4 black hole with charges ($\Gamma \equiv (Q_{D6}, Q_{D4}, Q_{D2}, Q_{D0})$),

 $\Gamma_{BH} = (0, P, 0, q_0)$

• Bekenstein-Hawking entropy

$$S_{BH} = 2\pi \sqrt{q_0 P^3}, \qquad P^3 \equiv D_{ABC} P^A P^B P^C$$

• M-theory decoupling limit:

$$rac{R_M}{l_{11}}
ightarrow \infty, \qquad V_\infty \equiv rac{V_X}{l_{11}^6} \quad {
m fixed},$$

・ 何 ト ・ 三 ト ・ 三

Black hole deconstruction	
0000000000	

Backreaction

Holography

Outlook

D0-D4 black hole and decoupling limit

• 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

 $\lambda \equiv \frac{P^3}{V_\infty}$

・ 同 ト ・ ヨ ト ・ ヨ

D0-D4 black hole and decoupling limit

• 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

$$\lambda \equiv \frac{P^3}{V_{\infty}}$$

 Large λ: 11D supergravity in AdS₃ × S² × CY attractor throat geometry (decoupling limit of black hole is BTZ × S² × CY)

< ロト < 同ト < ヨト < ヨト

D0-D4 black hole and decoupling limit

• 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

$$\lambda \equiv \frac{P^3}{V_{\infty}}$$

- Large λ: 11D supergravity in AdS₃ × S² × CY attractor throat geometry (decoupling limit of black hole is BTZ × S² × CY)
- Small λ: worldvolume theory on M5-brane on a smooth holomorphic 4-cycle *D*, with [*D*] = *P*

< ロ > < 同 > < 回 > < 回 > < 回 >

Black hole deconstruction	Backreaction	Holography	Outlook
○○○●○○○○○○		00000000	000
MSW CFT			

• Reducing M5-brane worldvolume theory on *D*, gives dual MSW (4,0) CFT

不得 とくき とくき

Black hole deconstruction	Backreaction	Holography	Outlook
○○○●○○○○○○○		000000000	000
MSW CFT			

- Reducing M5-brane worldvolume theory on *D*, gives dual MSW (4,0) CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_L = c_R = P^3$

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography	Outlook
○○○●○○○○○○○	000000000	00000000	000
MSW CET			

- Reducing M5-brane worldvolume theory on *D*, gives dual MSW (4,0) CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_L = c_R = P^3$
- Microstates of the D0-D4 black hole are of the form

(R ground state with h = 0) \otimes (excited state with $\bar{h} = q_0$)

< □ > < 同 > < 回 > < 回 > < 回

Black hole deconstruction	Backreaction	Holography	Outlook
○○○●○○○○○○		000000000	000
MSW CET			

- Reducing M5-brane worldvolume theory on *D*, gives dual MSW (4,0) CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_L = c_R = P^3$
- Microstates of the D0-D4 black hole are of the form

(R ground state with h = 0) \otimes (excited state with $\bar{h} = q_0$)

• Cardy's formula reproduces *S*_{BH}

Black hole deconstruction	Backreaction	Holography	Outlook
○○○○●○○○○○○		000000000	000

• Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)

.

Black hole deconstruction	Backreaction	Holography	Outlook
○○○○●○○○○○○		000000000	000

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ

.

Black hole deconstruction	Backreaction	Holography 000000000	Outlook 000

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ
- Consider
 - $\Gamma_{D6} = (1, \frac{p}{2}, \frac{p^2}{8}, -\frac{p^3}{48})$: D6-brane with flux $\frac{p}{2}$
 - $\Gamma_{\bar{D6}} = (-1, \frac{p}{2}, -\frac{p^2}{8}, -\frac{p^3}{48})$: anti-D6-brane with flux $-\frac{p}{2}$
 - $\Gamma_{D0} = (0, 0, 0, q_0 + \frac{p^3}{24})$: D0-brane charge

(同) (ヨ) (ヨ)

Black hole deconstruction	Backreaction	Holography	Outlook
000000000			

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ
- Consider
 - $\Gamma_{D6} = (1, \frac{p}{2}, \frac{p^2}{8}, -\frac{p^3}{48})$: D6-brane with flux $\frac{p}{2}$
 - $\Gamma_{\bar{D6}} = (-1, \frac{p}{2}, -\frac{p^2}{8}, -\frac{p^3}{48})$: anti-D6-brane with flux $-\frac{p}{2}$
 - $\Gamma_{D0} = (0, 0, 0, q_0 + \frac{p^3}{24})$: D0-brane charge
- the D0-charge can be added in two distinct ways:

A (B) > A (B) > A (B)

Black hole deconstruction	
00000000	

Backreaction

Holography

Outlook 000

I. SINGLE D0-BRANE CENTERS

Moduli space of such solutions, but not large enough to account for entropy (De Boer, El-Showk, Messamah, Van Den Bleeken 2009).

Backreaction

Holography

Outlook

II. SUPEREGGS: D2-BRANES WITH D0-BRANE FLUX

BPS (Gaiotto, Simons, Strominger, Yin 2004), induced D0 charge through $\int_{D2} C_1 \wedge F$

Joris Raeymaekers Microstate solutions from black hole deconstruction

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
COUNTING ARGUM	ENT		

(Gaiotto, Strominger, Yin 2004)

• D2-branes feel flux on Calabi-Yau through

 $\int_{D2} C_3$

Behave like particles in a magnetic field.

< □ > < 同 > < 回 > < 回 > < 回

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
COUNTING ARGUM	ENT		

(Gaiotto, Strominger, Yin 2004)

• D2-branes feel flux on Calabi-Yau through

$$\int_{D2} C_3$$

Behave like particles in a magnetic field.

• Quantum mechanics on each D2-probe has lowest Landau level degeneracy $\sim P^3$

A (10) A (10) A (10)

Black hole deconstruction	Backreaction	Holography	Outlook
○○○○○○●○○○		000000000	000
COUNTING ARGUM	ENT		

(Gaiotto, Strominger, Yin 2004)

• D2-branes feel flux on Calabi-Yau through

$$\int_{D2} C_3$$

Behave like particles in a magnetic field.

- Quantum mechanics on each D2-probe has lowest Landau level degeneracy $\sim P^3$
- Combinatorics of partitioning q_0 over the D2's gives, for $q_0 \gg P^3$, an entropy

$$S = 2\pi \sqrt{q_0 P^3}$$

Matches with Bekenstein-Hawking entropy

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
M-THEORY DECOUR	PLING LIMIT		

 Lift of D6-anti-D6 gives 2 KK monopoles with opposite charge. Is a bubbled geometry with near geometry AdS₃ × S² × CY

Black hole deconstruction	Backreaction	Holography 00000000	Outlook
M-THEORY DECOUP	LING LIMIT		

- Lift of D6-anti-D6 gives 2 KK monopoles with opposite charge. Is a bubbled geometry with near geometry $AdS_3 \times S^2 \times CY$
- Lift of D2 is M2 wrapping the S^2 , pointlike in AdS_3

Black hole deconstruction	Backreaction	Holography	Outlook
○○○○○○○○●○		00000000	000
BACKREACTION			

• Approximation: M2-charge is smeared over *CY*. Can reduce to 5D on *CY*, or to 3D on $S^2 \times CY$

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
BACKREACTION			

- Approximation: M2-charge is smeared over *CY*. Can reduce to 5D on *CY*, or to 3D on *S*² × *CY*
- M2 sources 5D universal hypermultiplet ← technical hurdle.

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
BACKREACTION			

- Approximation: M2-charge is smeared over *CY*. Can reduce to 5D on *CY*, or to 3D on *S*² × *CY*
- M2 sources 5D universal hypermultiplet ← technical hurdle.
- Hoped to capture 'pure Higgs' states of D-brane system (Martinec, Niehoff 2015)

A (10) A (10) A (10)

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
BACKREACTION			

- Approximation: M2-charge is smeared over *CY*. Can reduce to 5D on *CY*, or to 3D on *S*² × *CY*
- M2 sources 5D universal hypermultiplet ← technical hurdle.
- Hoped to capture 'pure Higgs' states of D-brane system (Martinec, Niehoff 2015)
- Goals:
 - construct backreacted solution
 - check absence of pathologies such as closed timelike curves
 - check that is asymptotically $AdS \rightarrow holographic$ interpretation

< ロ > < 同 > < 回 > < 回 > < 回 >
Black hole deconstruction ○○○○○○○○●	Backreaction	Holography 00000000	Outlook 000
TADPOLE AND A	A DISCLAIMER		
TADPOLE AND A	A DISCLAIMER		

Coupling ∫_{D6} G₆ ∧ A induces charge on compact D6 worldvolume which must be cancelled by adding an F1-string (Brodie, Susskind, Toumbas 2001).

 \Rightarrow no net D2-charge.

4 E N

Black hole deconstruction ○○○○○○○○●	Backreaction 00000000	Holography 00000000	Outlook 000
TADPOLE AND A	DISCLAIMER		

• Coupling $\int_{D6} G_6 \wedge A$ induces charge on compact D6 worldvolume which must be cancelled by adding an F1-string (Brodie, Susskind, Toumbas 2001).

 \Rightarrow no net D2-charge.

• Have not yet succeeded in adding this F1

Black hole deconstruction	Backreaction	Holography 000000000	Outlook 000

REDUCTION TO 3D

• Reduce to 3D on $S^2 \times CY$:

$$S = \frac{1}{16\pi G_3} \int_{\mathcal{M}} \left[d^3x \sqrt{-g} \left(R + \frac{2}{l^2} - \frac{\partial_\mu \tau \partial^\mu \bar{\tau}}{2\tau_2^2} \right) + \frac{l}{2} \mathcal{A} \wedge d\mathcal{A} \right]$$

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography 000000000	Outlook 000

REDUCTION TO 3D

• Reduce to 3D on $S^2 \times CY$:

$$S = \frac{1}{16\pi G_3} \int_{\mathcal{M}} \left[d^3x \sqrt{-g} \left(R + \frac{2}{l^2} - \frac{\partial_\mu \tau \partial^\mu \bar{\tau}}{2\tau_2^2} \right) + \frac{l}{2} \mathcal{A} \wedge d\mathcal{A} \right]$$

• τ_1 : axion from dualizing 1-form A ($C_3 = A \land vol_{S^2}$) τ_2 : volume of internal Calabi-Yau \mathcal{A} : Chern-Simons 1-form from S^2 -reduction

< ロ > < 同 > < 回 > < 回 > < 回 >

Black hole deconstruction	Backreaction	Holography 000000000	Outlook 000

REDUCTION TO 3D

• Reduce to 3D on $S^2 \times CY$:

$$S = \frac{1}{16\pi G_3} \int_{\mathcal{M}} \left[d^3x \sqrt{-g} \left(R + \frac{2}{l^2} - \frac{\partial_\mu \tau \partial^\mu \bar{\tau}}{2\tau_2^2} \right) + \frac{l}{2} \mathcal{A} \wedge d\mathcal{A} \right]$$

- τ₁: axion from dualizing 1-form A (C₃ = A ∧ vol_{S²})
 τ₂: volume of internal Calabi-Yau
 A: Chern-Simons 1-form from S²-reduction
- wrapped M2 is point-particle source for τ :

$$S_{M2} = \frac{1}{16\pi G_3} \left[-2\pi p \int_{\mathcal{W}} d\xi \frac{\sqrt{-^*g}}{\tau_2} \right] + 2\pi p \int_{\mathcal{W}} A$$

Black hole deconstruction	Backreaction	Holography	Outlook
	●○○○○○○○○	00000000	000
ANSATZ, BPS EQ	UATIONS		

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

• Ansatz for BPS solutions: fibration over 2D base

$$ds^{2} = \frac{l^{2}}{4} \left[-(dt + 2\Im m(\partial \Phi) + \Lambda)^{2} + \tau_{2}e^{-2\Phi}dwd\bar{w} \right]$$

$$\mathcal{A} = dt + \Lambda, \qquad d\Lambda = 0$$

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography	Outlook
	●○○○○○○○○	00000000	000
ANSATZ, BPS EQ	UATIONS		

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

• Ansatz for BPS solutions: fibration over 2D base

$$ds^{2} = \frac{l^{2}}{4} \left[-(dt + 2\Im m(\partial \Phi) + \Lambda)^{2} + \tau_{2}e^{-2\Phi}dwd\bar{w} \right]$$

$$\mathcal{A} = dt + \Lambda, \qquad d\Lambda = 0$$

• Axiodilaton equation allows holomorphic solutions cfr. Greene,

Shapere, Vafa, Yau 1989

 $\tau = \tau(w)$

Black hole deconstruction	Backreaction	Holography	Outlook
	●○○○○○○○	00000000	000
ANSATZ, BPS EQ	UATIONS		

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

• Ansatz for BPS solutions: fibration over 2D base

$$ds^{2} = \frac{l^{2}}{4} \left[-(dt + 2\Im m(\partial \Phi) + \Lambda)^{2} + \tau_{2}e^{-2\Phi}dwd\bar{w} \right]$$

$$\mathcal{A} = dt + \Lambda, \qquad d\Lambda = 0$$

• Axiodilaton equation allows holomorphic solutions cfr. Greene,

Shapere, Vafa, Yau 1989

$$\tau = \tau(w)$$

• equation for conformal factor

$$4\partial_w \partial_{\bar{w}} \Phi + \tau_2 e^{-2\Phi} = 0$$

Black hole deconstruction	Backreaction	Holography	Outlook
	0000000		

LIFT OF FLUXED D6-ANTI-D6

• Lift of fluxed D6-anti-D6 is solution with $c = \frac{2l}{3G_3} = P^3$. Setting $w = x + i\psi$,

$$au = iV_{\infty}, \qquad \Phi = \ln\sqrt{V_{\infty}}\sinh(-x), \qquad \Lambda = d\psi$$

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography	Outlook
	00000000		

LIFT OF FLUXED D6-ANTI-D6

• Lift of fluxed D6-anti-D6 is solution with $c = \frac{2l}{3G_3} = P^3$. Setting $w = x + i\psi$,

$$au = iV_{\infty}, \qquad \Phi = \ln \sqrt{V_{\infty}} \sinh(-x), \qquad \Lambda = d\psi$$

• This is global AdS + leftmoving Wilson line

$$x = \ln \tanh \rho, \quad t = 2T, \quad \psi = \phi - T$$

$$ds^{2} = l^{2} \left[-\cosh^{2} \rho dT^{2} + d\rho^{2} + \sinh^{2} \rho d\phi^{2} \right]$$

$$\mathcal{A} = d(\phi + T)$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Black hole deconstruction	Backreaction	Holography	Outlook
	00000000		

LIFT OF FLUXED D6-ANTI-D6

• Lift of fluxed D6-anti-D6 is solution with $c = \frac{2l}{3G_3} = P^3$. Setting $w = x + i\psi$,

$$au = iV_{\infty}, \qquad \Phi = \ln \sqrt{V_{\infty}} \sinh(-x), \qquad \Lambda = d\psi$$

• This is global AdS + leftmoving Wilson line

$$x = \ln \tanh \rho, \qquad t = 2T, \qquad \psi = \phi - T$$
$$ds^{2} = l^{2} \left[-\cosh^{2} \rho dT^{2} + d\rho^{2} + \sinh^{2} \rho d\phi^{2} \right]$$
$$\mathcal{A} = d(\phi + T)$$

 In dual (4,0) MSW CFT, represents (R vacuum with maximal R-charge) ⊗ vacuum

$$(h, \bar{h}) = (0, -c/24), \qquad j_L = c/12$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

WRAPPED M2: PROBE APPROXIMATION

• M2 wrapped on S^2 is massive point particle in AdS_3

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography	Outlook
	00000000		

WRAPPED M2: PROBE APPROXIMATION

M2 wrapped on S² is massive point particle in AdS₃
solution where M2 rotates at fixed ρ = ρ₀ ← half-BPS (Gaiotto,

Simons, Strominger, Yin 2004)

Preserves $U(1) \times U(1)$

Black hole deconstruction	Backreaction	Holography	Outlook
	00000000		

WRAPPED M2: PROBE APPROXIMATION

M2 wrapped on S² is massive point particle in AdS₃
solution where M2 rotates at fixed ρ = ρ₀ ← half-BPS (Gaiotto,

Simons, Strominger, Yin 2004)

Preserves $U(1) \times U(1)$

• M2 of charge $2\pi p$ adds to the vacuum

$$\Delta h = \frac{1}{2}(H_T - P_{\phi}) = \frac{p}{V_{\infty}}\frac{c}{24} \quad \leftarrow \text{puzzle!}$$

$$\Delta \bar{h} = \frac{1}{2}(H_T + P_{\phi}) = -\frac{c}{24} + \frac{p}{V_{\infty}}\frac{c}{24}\cosh 2\rho_0$$

Black hole deconstruction	Backreaction ○○○●○○○○○	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER OF A	NDS		

First let's consider the M2 in the 'center' $x \rightarrow -\infty$ of AdS. Shift coordinate *x* such that AdS boundary at x = 0.

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M^2 in center (DE ADS		

• Impose rotational invariance

 $\tau_2 = \tau_2(x)$ $\Phi = \Phi(x)$

<ロト < 四ト < 三ト < 三ト

э

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER O	F ADS		

• Impose rotational invariance

$$au_2 = au_2(x) \qquad \Phi = \Phi(x)$$

• Source terms fix

$$\tau = p\psi + i(V_{\infty} - px)$$

$$\Phi \xrightarrow{x \to -\infty} -x + \mathcal{O}(1)$$

 V_{∞} : asymptotic Calabi-Yau volume

• • = • • =

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER O	F ADS		

• Impose rotational invariance

$$au_2 = au_2(x) \qquad \Phi = \Phi(x)$$

• Source terms fix

$$\tau = p\psi + i(V_{\infty} - px)$$

$$\Phi \xrightarrow{x \to -\infty} -x + \mathcal{O}(1)$$

 $V_\infty:$ asymptotic Calabi-Yau volume

• τ has monodromy

$$\tau \to \tau + 2\pi p$$
 under $\psi \to \psi + 2\pi$

→ ∃ →

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER (OF ADS		

$$\Phi'' + (1 - \epsilon x)e^{-2\Phi} = 0, \qquad \epsilon = \frac{p}{V_{\infty}} \ll 1$$

<ロト < 四ト < 三ト < 三ト

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER (OF ADS		

$$\Phi'' + (1 - \epsilon x)e^{-2\Phi} = 0, \qquad \epsilon = \frac{p}{V_{\infty}} \ll 1$$

• Equivalent to 1st order Abel equation, as yet unsolved analytically

・ 同 ト ・ ヨ ト ・ ヨ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER (OF ADS		

$$\Phi'' + (1 - \epsilon x)e^{-2\Phi} = 0, \qquad \epsilon = \frac{p}{V_{\infty}} \ll 1$$

- Equivalent to 1st order Abel equation, as yet unsolved analytically
- If we turn off M2 charge, must recover D6-anti-D6 background

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER (OF ADS		

$$\Phi'' + (1 - \epsilon x)e^{-2\Phi} = 0, \qquad \epsilon = \frac{p}{V_{\infty}} \ll 1$$

- Equivalent to 1st order Abel equation, as yet unsolved analytically
- If we turn off M2 charge, must recover D6-anti-D6 background
- Will work perturbatively in ϵ around D6-anti-D6 solution

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
Backreaction			
M2 IN CENTER O	of ADS		

To second order in ϵ one finds

$$\begin{split} \Phi &= \Phi_0 + \epsilon \Phi_1 + \epsilon^2 \Phi_2 + \dots \\ \Phi_0 &= \ln \sinh(-x) \\ \Phi_1 &= \frac{1}{2} (-x + x \coth(x) - 1) \\ \Phi_2 &= \frac{1}{24} \left(-6 \text{Li}_2 \left(e^{2x} \right) \coth(x) - 3 \left(2x^2 + x^2 \text{csch}^2(x) \right) \\ &-4 \log(-\text{csch}(x)) - 1 + \log(16)) \\ &+ \left(\pi^2 - 6(x - 2)x \right) \coth(x) \end{split}$$

イロト イポト イヨト イヨト

э

Black hole deconstruction	Backreaction ○○○○○○●○	Holography 000000000	Outlook 000
Backreaction			
2.70			

M2 IN CENTER OF ADS

At higher order:

$$\Phi = \sum_{\epsilon=0}^{\infty} \Phi_n \epsilon^n$$

$$\Phi_n'' - \frac{2}{\sinh^2 x} \Phi_n = S_n(x)$$

$$S_n(x) = \frac{1}{\sinh^2 x} \left(x \sum_{\vec{p} \in \mathcal{P}_{n-1}} \prod_{l=1}^{n-1} \frac{(-2\Phi_l)^{p_l}}{p_l!} - \sum_{\vec{p} \in \mathcal{P}_n'} \prod_{l=1}^{n-1} \frac{(-2\Phi_l)^{p_l}}{p_l!} \right)$$

Have the iterative solution, explicit up a a single integral

$$\Phi_n(x) = (x \coth x - 1) \int_{-\infty}^x S_n(u) \coth u \, du + \coth x \int_x^0 S_n(u) (u \coth u - 1) du$$

< 回 ト < 三 ト < 三

 ∞

Black hole deconstruction	Backreaction	Holography	Outlook
	○○○○○○○●	00000000	000
3D GEOMETRY			

• curvature singularity near M2 position $x \to -\infty$:

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography	Outlook
	○○○○○○○●	00000000	000
3D GEOMETRY			

• curvature singularity near M2 position $x \to -\infty$:

 $R \sim \frac{e^{-2x}}{(-x)}$

- absence of closed timelike curves:
 - Our solution has 'nice' (no CTC) behaviour near symmetry axis and boundary

A (1) > A (1) > A

Black hole deconstruction	Backreaction	Holography	Outlook
	○○○○○○○●	00000000	000

3D GEOMETRY

• curvature singularity near M2 position $x \to -\infty$:

 $R \sim \frac{e^{-2x}}{(-x)}$

- absence of closed timelike curves:
 - Our solution has 'nice' (no CTC) behaviour near symmetry axis and boundary
 - Under these conditions, using null energy condition, can show that no CTCs can develop in the interior (JR 2011)

Holography

Outlook 000

HOLOGRAPHIC INTERPRETATION

Asymptotically AdS with Fefferman-Graham expansions

$$ds_{3}^{2} = l^{2} \left[\frac{dy^{2}}{4y^{2}} + \frac{g_{(0)}}{y} + g_{(2)++} dx_{+}^{2} + g_{(2)--} dx_{-}^{2} + \ln y \tilde{g}_{(2)--} dx_{-}^{2} + \dots \right]$$

$$\Psi = \Psi_{(0)} + y \Psi_{(2)} + \dots$$

$$\tau_{1} = \tau_{1(0)}$$

$$\mathcal{A} = \mathcal{A}_{(0)+} dx_{+} + \mathcal{A}_{(0)-} dx_{-}$$

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
CFT SOURCES			

• Source terms in CFT are

$$g_{(0)+-} = 1$$

$$\Psi_{(0)} = -\ln V_{\infty}$$

$$\tau_{1(0)} = px_{-}$$

$$\mathcal{A}_{(0)-} = \frac{\epsilon}{2}$$

ヘロト 人間 とくほ とくほとう

Э.

Black hole deconstruction	Backreaction	Holography	Outlook 000
CFT SOURCES			

• Source terms in CFT are

$$g_{(0)+-} = 1$$

$$\Psi_{(0)} = -\ln V_{\infty}$$

$$\tau_{1(0)} = px_{-}$$

$$\mathcal{A}_{(0)-} = \frac{\epsilon}{2}$$

Dual field theory is deformed by source terms for weight (1,1) primary O_{τ1} and weight (1,0) R-current J³₊:

$$\delta S_{CFT} = -\int dx_{+} dx_{-} \left(\tau_{1(0)} \mathcal{O}_{\tau_{1}} + \mathcal{A}_{(0)-} J_{+}^{3} \right)$$

< 回 ト < 三 ト < 三

Black hole deconstruction	Backreaction	Holography	Outlook 000

CFT SOURCES

• Source terms in CFT are

$$g_{(0)+-} = 1 \Psi_{(0)} = -\ln V_{\infty} \tau_{1(0)} = px_{-} \mathcal{A}_{(0)-} = \frac{\epsilon}{2}$$

Dual field theory is deformed by source terms for weight (1,1) primary O_{τ1} and weight (1,0) R-current J³₊:

$$\delta S_{CFT} = -\int dx_+ dx_- \left(au_{1(0)} \mathcal{O}_{ au_1} + \mathcal{A}_{(0)-} J_+^3
ight)$$

• Null deformation, preserves leftmoving conformal symmetry (see e.g. Caldeira Costa, Taylor 2010)

伺 ト イヨ ト イヨ

Black hole deconstruction	Backreaction	Holography	Outlook 000
CFT SOURCES			

• Source terms in CFT are

$$g_{(0)+-} = 1$$

 $\Psi_{(0)} = -\ln V_{\infty}$
 $\tau_{1(0)} = px_{-}$
 $\mathcal{A}_{(0)-} = \frac{\epsilon}{2}$

Dual field theory is deformed by source terms for weight (1,1) primary O_{τ1} and weight (1,0) R-current J³₊:

$$\delta S_{CFT} = -\int dx_+ dx_- \left(au_{1(0)} \mathcal{O}_{ au_1} + \mathcal{A}_{(0)-} J_+^3
ight)$$

- Null deformation, preserves leftmoving conformal symmetry (see e.g. Caldeira Costa, Taylor 2010)
- Killing spinor analysis suggests that a leftmoving chiral N = 2 is preserved

Black hole deconstruction	Backreaction	Holography	Outlook 000
VEVs			

Holographic renormalization (de Haro, Solodukhin, Skenderis 2001) gives

$$\begin{array}{rcl} \langle T_{++} \rangle & = & \frac{c}{6} \left(g_{(2)++} + \frac{1}{4} \mathcal{A}^2_{(0)+} \right) \\ \langle T_{--} \rangle & = & \frac{c}{6} \left(g_{(2)--} - \frac{1}{2} \tilde{g}_{(2)--} + \frac{1}{4} \mathcal{A}^2_{(0)-} \right) \\ \langle J^3_+ \rangle & = & \mathcal{A}_{(0)+} \\ \langle \mathcal{O}_{\Psi} \rangle & = & -\frac{c}{6} \Psi_{(2)} \\ \langle \mathcal{O}_{\tau_1} \rangle & = & 0 \end{array}$$

<ロト < 四ト < 三ト < 三ト

э

Black hole deconstruction	Backreaction	Holography	Outlook 000
VEVS			

Taking Fourier modes one finds the VEVs

 $h = 0 \quad \leftarrow \text{R groundstate}$ $\bar{h} = -\frac{c}{24} \left(1 - \epsilon + \frac{\pi^2}{6} \epsilon^3 - (0.819...) \epsilon^4 + (0.621...) \epsilon^5 + \mathcal{O}(\epsilon^6)\right)$ $j_L = \frac{c}{12} \left(1 - \frac{\epsilon}{2}\right)$ $\langle (\mathcal{O}_{\Psi})_0 \rangle = \frac{c\epsilon}{12} \left(1 - \frac{\epsilon}{2}\right)$ $\langle (\mathcal{O}_{\tau_1})_0 \rangle = 0$

 $ar{h}$ agrees with probe probe analysis to order ϵ

Black hole deconstruction	Backreaction	Holography ●00000000	Outlook 000

OTHER SOLUTIONS

Defining

$$1 - \epsilon x = e^{-\epsilon u}$$

$$X = -\left(2\Phi + 3\epsilon u + \ln\frac{3}{2V_{\infty}}\right)$$

$$Y = \dot{X}$$

Equation for Φ becomes flow equation

$$(\dot{X}, \dot{Y}) = (Y, -\epsilon Y + 3(e^X - \epsilon^2))$$

Black hole deconstruction	Backreaction	Holography ○●○○○○○○○	Outlook 000

OTHER SOLUTIONS

<ロト < 四ト < 三ト < 三ト
Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
OTHER SOLUTIONS			

• Fixed point corresponds to exact solution

$$\Phi = \ln\left(\sqrt{\frac{2}{3\epsilon^2}}(1-\epsilon x)^{3/2}\right)$$

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
OTHER SOLUTIONS			

• Fixed point corresponds to exact solution

$$\Phi = \ln\left(\sqrt{\frac{2}{3\epsilon^2}}(1-\epsilon x)^{3/2}\right)$$

 Has enlarged symmetry U(1) × SL(2, ℝ). Corresponds to filling spacetime with congruence of M2-branes → rotating dust

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000
OTHER SOLUTIONS			

• Fixed point corresponds to exact solution

$$\Phi = \ln\left(\sqrt{\frac{2}{3\epsilon^2}}(1-\epsilon x)^{3/2}\right)$$

- Has enlarged symmetry U(1) × SL(2, ℝ). Corresponds to filling spacetime with congruence of M2-branes → rotating dust
- Geometry is that of 3D Gödel universe (Levi, JR, Van den Bleeken, Van

Herck, Vercnocke 2011)

Black hole deconstruction	Backreaction	Holography 00000000	Outlook 000

FIGURE 31. Gödel's universe with the irrelevant coordinate z suppressed. The page is rotationally symmetric about any point; the diagram represents correctly the rotational symmetry about the axis r = 0, and the time invariance. The light cone opens out and tips over as r increases (see line L) resulting in closed timelike curves. The diagram does not correctly represent the fact that all points are in fact equivalent.

- - モト - モト・

э

Black hole deconstruction	Backreaction	Holography 000000000	Outlook 000

M2 AT CONSTANT RADIUS

• Probe picture: obtained by acting with broken generators

< 回 ト < 三 ト < 三

Black hole deconstruction	Backreaction	Holography 00000000	Outlook

M2 AT CONSTANT RADIUS

• Probe picture: obtained by acting with broken generators

$$\tilde{x}_{-} = \arg \left[(1 + e^{ix_{-}} \operatorname{coth} \rho_0 \tanh \rho) (1 + e^{-ix_{-}} \tanh \rho_0 \tanh \rho) \right]$$

< ロト < 同ト < ヨト < ヨト

Black hole deconstruction	Backreaction	Holography ○○○○●○○○	Outlook 000
M2 at constant b	RADIUS		

• Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$\begin{aligned} \tilde{x}_{+} &= x_{+} + \mathcal{O}(e^{-2\rho}) \\ e^{i\tilde{x}_{-}} &= \frac{\cosh\rho_{0}e^{ix_{-}} + \sinh\rho_{0}}{\sinh\rho_{0}e^{ix_{-}} + \cosh\rho_{0}} + \mathcal{O}(e^{-2\rho}) \end{aligned}$$

伺 ト イヨ ト イヨ ト

Black hole deconstruction	Backreaction	Holography	Outlook 000
M2 at constant r	ADIUS		

• Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$\begin{aligned} \tilde{x}_+ &= x_+ + \mathcal{O}(e^{-2\rho}) \\ e^{i\tilde{x}_-} &= \frac{\cosh\rho_0 e^{ix_-} + \sinh\rho_0}{\sinh\rho_0 e^{ix_-} + \cosh\rho_0} + \mathcal{O}(e^{-2\rho}) \end{aligned}$$

• Implements $e^{\rho_0(\tilde{L}_{-1}-\tilde{L}_1)}$

伺 ト イヨ ト イヨ ト

Black hole deconstruction	Backreaction	Holography ○○○○○●○○○	Outlook 000
M2 at constant r	ADIUS		

• Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$\begin{aligned} \tilde{x}_+ &= x_+ + \mathcal{O}(e^{-2\rho}) \\ e^{i\tilde{x}_-} &= \frac{\cosh\rho_0 e^{ix_-} + \sinh\rho_0}{\sinh\rho_0 e^{ix_-} + \cosh\rho_0} + \mathcal{O}(e^{-2\rho}) \end{aligned}$$

- Implements $e^{\rho_0(\tilde{L}_{-1}-\tilde{L}_1)}$
- Acting on our solution, obtain new solution with

$$\begin{split} h &= 0 \\ \bar{h} &= -\frac{c}{24} \left[1 - \epsilon \cosh 2\rho_0 \right. \\ &- \epsilon^2 \left(2\rho_0 \cosh 2\rho_0 - e^{-4\rho_0} {}_2 F_1^{(0,1,0,0)}(\frac{1}{2},2,1,1-e^{-4\rho_0}) \right) + . \end{split}$$

Black hole deconstruction	Backreaction	Holography	Outlook
		000000000	

5D POINT OF VIEW

• Lift to 5D: solution with VMs and *τ* ∈ universal hyper excited:

$$ds_{5}^{2} = \frac{l^{2}}{4} \left[-\left(dt + 2\Im m(\partial\Phi) + \Lambda\right)^{2} + \tau_{2}e^{-2\Phi}dwd\bar{w} + d\theta^{2} + \sin^{2}\theta(d\phi - A)^{2} \right]$$

$$\mathcal{A} = dt + \Lambda, \qquad d\Lambda = 0, \qquad \tau = \tau(w), \qquad l = 2\left(\frac{P^{3}}{6}\right)^{\frac{1}{3}}$$

$$F^{I} = \frac{P^{I}}{2}\sin\theta d\theta \wedge (d\phi - A), \qquad Y^{I} = \frac{P^{I}}{l}$$

Black hole deconstruction	Backreaction	Holography	Outlook
		000000000	

5D POINT OF VIEW

• Lift to 5D: solution with VMs and *τ* ∈ universal hyper excited:

$$ds_{5}^{2} = \frac{l^{2}}{4} \left[-\left(dt + 2\Im m(\partial\Phi) + \Lambda\right)^{2} + \tau_{2}e^{-2\Phi}dwd\bar{w} + d\theta^{2} + \sin^{2}\theta(d\phi - A)^{2} \right]$$

$$\mathcal{A} = dt + \Lambda, \qquad d\Lambda = 0, \qquad \tau = \tau(w), \qquad l = 2\left(\frac{P^{3}}{6}\right)^{\frac{1}{3}}$$

$$F^{I} = \frac{P^{I}}{2}\sin\theta d\theta \wedge (d\phi - A), \qquad Y^{I} = \frac{P^{I}}{l}$$

• Can be written as *t*-fibration over 4D base, which contains 3 ASD 2-forms with structure

$$d\Phi^{\pm} \mp i \frac{d\tau_1}{2\tau_2} \wedge \Phi^{\pm} = 0$$

$$d\Phi^3 = 0 \qquad \leftarrow \text{Kahler form} \quad \text{End} \quad \text{Kahler form} \quad \text{Kahler$$

Black hole deconstruction	Backreaction	Holography ○○○○○○○○○	Outlook 000
5D POINT OF VIEW			

• In our solutions: base is toric Kahler with

- 1 translational Killing vector ∂_{ψ}
- 1 rotational Killing vector $\partial_{\phi} \leftarrow \text{preserves } \tau$

伺下 イヨト イヨ

Black hole deconstruction	Backreaction 000000000	Holography ○○○○○○○●○	Outlook

5D POINT OF VIEW

- In our solutions: base is toric Kahler with
 - 1 translational Killing vector ∂_{ψ}
 - 1 rotational Killing vector $\partial_{\phi} \leftarrow \text{preserves } \tau$
- requires generalization of Bellorin, Meessen, Ortin 2007, see JR, Van den Bleeken 2014

伺下 イヨト イヨ

Black hole deconstruction	Backreaction	Holography ○○○○○○○●	Outlook 000
KILLING SPINORS			

$$G_0^{\beta\gamma} = e^{-\frac{i}{2}\beta\phi\sigma_3} e^{\frac{i\theta}{2}\gamma^{\hat{\phi}}} g_0^{\beta\gamma} \qquad \beta, \gamma = \pm 1$$

with $g_0^{\beta\gamma}$ certain constant spinors.

A (10) > A (10) > A (10)

Black hole deconstruction	Backreaction	Holography ○○○○○○●	Outlook 000
Killing spinors			

$$G_0^{\beta\gamma} = e^{-\frac{i}{2}\beta\phi\sigma_3} e^{\frac{i\theta}{2}\gamma^{\hat{\phi}}} g_0^{\beta\gamma} \qquad \beta, \gamma = \pm 1$$

with $g_0^{\beta\gamma}$ certain constant spinors.

• Independent of AdS3 coordinates, in Ramond sector

A (1) > A (1) > A

Black hole deconstruction	Backreaction	Holography ○○○○○○○●	Outlook 000
KILLING SPINORS			

$$G_0^{\beta\gamma} = e^{-\frac{i}{2}\beta\phi\sigma_3} e^{\frac{i\theta}{2}\gamma\hat{\phi}} g_0^{\beta\gamma} \qquad \beta, \gamma = \pm 1$$

with $g_0^{\beta\gamma}$ certain constant spinors.

- Independent of AdS3 coordinates, in Ramond sector
- Without the M2, all 4 $G_0^{\beta\gamma}$, without the M2 only the 2 with $\beta=1$

Black hole deconstruction	Backreaction	Holography ○○○○○○○●	Outlook 000
KILLING SPINORS			

$$G_0^{\beta\gamma} = e^{-\frac{i}{2}\beta\phi\sigma_3} e^{\frac{i\theta}{2}\gamma\hat{\phi}} g_0^{\beta\gamma} \qquad \beta, \gamma = \pm 1$$

with $g_0^{\beta\gamma}$ certain constant spinors.

- Independent of AdS3 coordinates, in Ramond sector
- Without the M2, all 4 $G_0^{\beta\gamma}$, without the M2 only the 2 with $\beta=1$
- Further non-common (4 resp. 2) KS depending on *x*⁺: extra ±1 modes preserved by maximal R-charged Ramond groundstate

イロト イポト イヨト イヨト

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ●○○

伺下 イヨト イヨ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ●○○

• Understand interpretation in MSW CFT better

• • = • • =

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ●○○
OUTIOOK			

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_0 > 0$

周レイモレイモ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ●○○

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_0 > 0$
- Missing ingredient: stretched F1-string

伺 ト イヨ ト イヨ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ●○○
OUTLOOK			

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_0 > 0$
- Missing ingredient: stretched F1-string
- Full BH entropy from quantizing solution space? Unlikely in 5D/3D sugra, though expect to get scaling with D0-charge right. Perhaps in 11D?

< ロ > < 同 > < 回 > < 回 > < 回 >

Black hole deconstruction	Backreaction	Holography 000000000	Outlook ○●○
Outlook			

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

з.

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ○●○
OUTLOOK			

• Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)

伺下 イヨト イヨ

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ○●○
Outlook			

- Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)
- Make contact with superstrata upon duality, moving in moduli space, ...

► < Ξ > <</p>

Black hole deconstruction	Backreaction	Holography 00000000	Outlook ○●○

Outlook

- Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)
- Make contact with superstrata upon duality, moving in moduli space, ...
- M2 in center is prototype W-brane solution (Martinec, Niehoff 2015) conjectured to describe pure Higgs states

4 **A b b b b b b**

Black hole deconstruction	Backreaction	Holography	Outlook
			000

EXTRA: COMMENT ON BOUNDARY STRESS TENSOR

• Despite broken right-moving conformal invariance, our solutions have, surprisingly

$$\langle T_{+-} \rangle = \partial_+ \langle T_{--} \rangle = 0$$

• For sources of the type

 $\Psi_{(0)} = \text{constant}, \qquad \partial_+ \tau_{1(0)} = \partial_+ \mathcal{A}_{(0)-} = 0$

derive holographic Ward identities

$$\begin{array}{rcl} \langle T_{+-} \rangle & = & 0 \\ \partial_{-} \langle T_{++} \rangle & = & 0 \\ \partial_{+} \langle T_{--} \rangle & = & -\frac{1}{2} \langle \mathcal{O}_{\tau_{1}} \rangle \tau_{1(0)}' \end{array}$$

• Our solutions have vanishing $\langle O_{\tau_1} \rangle$ and therefore $\partial_+ \langle T_{--} \rangle = 0$