Microstate solutions from black hole deconstruction

Joris Raeymaekers

Academy of Sciences, Prague

Microstructures of Black Holes, YITP, 25.11.2015
based on

- J.R. and D. Van den Bleeken, "Microstate solutions from black hole deconstruction," arXiv:1510.00583 [hep-th]
see also
- JR and D. Van den Bleeken, Unlocking the Axion-Dilaton in 5D Supergravity, JHEP 1411, 029 (2014) [arXiv:1407.5330 [hep-th]].
- T. S. Levi, J. R., D. Van den Bleeken, W. Van Herck and B. Vercnocke, Godel space from wrapped M2-branes, JHEP 1001, 082 (2010) [arXiv:0909.4081 [hep-th]].

OvERVIEW

- Black hole deconstruction proposal for microstate solutions

OVERVIEW

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions

OVERVIEW

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions
- Holographic picture

OVERVIEW

- Black hole deconstruction proposal for microstate solutions
- Explicit construction of backreacted solutions
- Holographic picture
- Open issues

Microstate solutions and AdS/CFT

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S=\frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)

Microstate solutions and AdS/CFT

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S=\frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling $g_{s} \rightarrow 0$ limit with gravity switched off

Microstate solutions and AdS/CFT

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S=\frac{A}{4}$ microscopically for susy black holes (Strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling $g_{s} \rightarrow 0$ limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.

Microstate solutions and AdS/CFT

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S=\frac{A}{4}$ microscopically for susy black holes (strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling $g_{s} \rightarrow 0$ limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.
- Focus here on the 4D D0-D4 black hole (Maldacena, Strominger, Witten 1997). Black hole deconstruction proposal (Denef, Gaiotto, Strominger, Van Den Bleeken, Yin 2007): microstates from multicentered brane configurations.

Microstate solutions and AdS/CFT

- String theory has been successful in explaining the Bekenstein-Hawking entropy $S=\frac{A}{4}$ microscopically for susy black holes (strominger, Vafa 1996)
- Uses protected nature of BPS entropy to count states at weak coupling $g_{s} \rightarrow 0$ limit with gravity switched off
- AdS/CFT interpretation suggests that there should exist asymptotically AdS bulk solutions corresponding to individual microstates.
- Focus here on the 4D D0-D4 black hole (Maldacena, Strominger, Witten 1997). Black hole deconstruction proposal (Denef, Gaiotto, Strominger, Van Den Bleeken, Yin 2007): microstates from multicentered brane configurations.
- These are microstate solutions with singular brane sources.

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- Consider type IIA on CY. Make a a D0-D4 black hole with charges $\left(\Gamma \equiv\left(Q_{D 6}, Q_{D 4}, Q_{D 2}, Q_{D 0}\right)\right)$,

$$
\Gamma_{B H}=\left(0, P, 0, q_{0}\right)
$$

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- Consider type IIA on CY. Make a a D0-D4 black hole with charges $\left(\Gamma \equiv\left(Q_{D 6}, Q_{D 4}, Q_{D 2}, Q_{D 0}\right)\right)$,

$$
\Gamma_{B H}=\left(0, P, 0, q_{0}\right)
$$

- Bekenstein-Hawking entropy

$$
S_{B H}=2 \pi \sqrt{q_{0} P^{3}}, \quad P^{3} \equiv D_{A B C} P^{A} P^{B} P^{C}
$$

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- Consider type IIA on CY. Make a a D0-D4 black hole with charges $\left(\Gamma \equiv\left(Q_{D 6}, Q_{D 4}, Q_{D 2}, Q_{D 0}\right)\right)$,

$$
\Gamma_{B H}=\left(0, P, 0, q_{0}\right)
$$

- Bekenstein-Hawking entropy

$$
S_{B H}=2 \pi \sqrt{q_{0} P^{3}}, \quad P^{3} \equiv D_{A B C} P^{A} P^{B} P^{C}
$$

- M-theory decoupling limit:

$$
\frac{R_{M}}{l_{11}} \rightarrow \infty, \quad V_{\infty} \equiv \frac{V_{X}}{l_{11}^{6}} \quad \text { fixed }
$$

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

$$
\lambda \equiv \frac{p^{3}}{V_{\infty}}
$$

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

$$
\lambda \equiv \frac{P^{3}}{V_{\infty}}
$$

- Large λ : 11D supergravity in $A d S_{3} \times S^{2} \times C Y$ attractor throat geometry (decoupling limit of black hole is $\mathrm{BTZ} \times S^{2} \times \mathrm{CY}$)

D0-D4 BLACK HOLE AND DECOUPLING LIMIT

- 't Hooft-like coupling interpolates between AdS gravity and weakly coupled CFT descriptions:

$$
\lambda \equiv \frac{p^{3}}{V_{\infty}}
$$

- Large λ : 11D supergravity in $A d S_{3} \times S^{2} \times C Y$ attractor throat geometry (decoupling limit of black hole is $\mathrm{BTZ} \times S^{2} \times \mathrm{CY}$)
- Small λ : worldvolume theory on M5-brane on a smooth holomorphic 4-cycle D, with $[D]=P$

MSW CFT

- Reducing M5-brane worldvolume theory on D, gives dual MSW $(4,0)$ CFT

MSW CFT

- Reducing M5-brane worldvolume theory on D, gives dual MSW $(4,0)$ CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_{L}=c_{R}=P^{3}$

MSW CFT

- Reducing M5-brane worldvolume theory on D, gives dual MSW $(4,0)$ CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_{L}=c_{R}=P^{3}$
- Microstates of the D0-D4 black hole are of the form
(R ground state with $h=0) \otimes\left(\right.$ excited state with $\left.\bar{h}=q_{0}\right)$

MSW CFT

- Reducing M5-brane worldvolume theory on D, gives dual MSW $(4,0)$ CFT
- Central charges are (up to $\mathcal{O}(1)$ terms) $c_{L}=c_{R}=P^{3}$
- Microstates of the D0-D4 black hole are of the form
$(\mathrm{R}$ ground state with $h=0) \otimes\left(\right.$ excited state with $\left.\bar{h}=q_{0}\right)$
- Cardy's formula reproduces $S_{B H}$

BLACK HOLE DECONSTRUCTION

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)

BLACK HOLE DECONSTRUCTION

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ

BLACK HOLE DECONSTRUCTION

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ
- Consider
- $\Gamma_{D 6}=\left(1, \frac{P}{2}, \frac{P^{2}}{8},-\frac{P^{3}}{48}\right)$: D6-brane with flux $\frac{P}{2}$
- $\Gamma_{\overline{D 6}}=\left(-1, \frac{P}{2},-\frac{p^{2}}{8},-\frac{P^{3}}{48}\right)$: anti-D6-brane with flux $-\frac{P}{2}$
- $\Gamma_{D 0}=\left(0,0,0, q_{0}+\frac{p^{3}}{24}\right):$ D0-brane charge

BLACK HOLE DECONSTRUCTION

- Exist multi-centered D-brane solutions with zero-entropy centers, with same total charge as black hole (Bates, Denef 2003)
- Black hole deconstruction idea: decoupling limit of these solutions represent microstates at large λ
- Consider
- $\Gamma_{D 6}=\left(1, \frac{P}{2}, \frac{P^{2}}{8},-\frac{P^{3}}{48}\right)$: D6-brane with flux $\frac{P}{2}$
- $\Gamma_{\overline{D 6}}=\left(-1, \frac{P}{2},-\frac{p^{2}}{8},-\frac{P^{3}}{48}\right)$: anti-D6-brane with flux $-\frac{P}{2}$
- $\Gamma_{D 0}=\left(0,0,0, q_{0}+\frac{p^{3}}{24}\right):$ D0-brane charge
- the D0-charge can be added in two distinct ways:

I. SINGLE D0-BRANE CENTERS

Moduli space of such solutions, but not large enough to account for entropy (De Boer, El-Showk, Messamah, Van Den Bleeken 2009).

II. Supereggs: D2-BRanes with D0-brane flux

BPS (Gaiotto, Simons, Strominger, Yin 2004), induced D0 charge through $\int_{D 2} C_{1} \wedge F$

COUNTING ARGUMENT

(Gaiotto, Strominger, Yin 2004)

- D2-branes feel flux on Calabi-Yau through

$$
\int_{D 2} C_{3}
$$

Behave like particles in a magnetic field.

CoUnting Argument

(Gaiotto, Strominger, Yin 2004)

- D2-branes feel flux on Calabi-Yau through

$$
\int_{D 2} C_{3}
$$

Behave like particles in a magnetic field.

- Quantum mechanics on each D2-probe has lowest Landau level degeneracy $\sim P^{3}$

COUNTING ARGUMENT

(Gaiotto, Strominger, Yin 2004)

- D2-branes feel flux on Calabi-Yau through

$$
\int_{D 2} C_{3}
$$

Behave like particles in a magnetic field.

- Quantum mechanics on each D2-probe has lowest Landau level degeneracy $\sim P^{3}$
- Combinatorics of partitioning q_{0} over the D2's gives, for $q_{0} \gg P^{3}$, an entropy

$$
S=2 \pi \sqrt{q_{0} P^{3}}
$$

Matches with Bekenstein-Hawking entropy

M-THEORY DECOUPLING LIMIT

- Lift of D6-anti-D6 gives 2 KK monopoles with opposite charge. Is a bubbled geometry with near geometry $A d S_{3} \times S^{2} \times C Y$

M-THEORY DECOUPLING LIMIT

- Lift of D6-anti-D6 gives 2 KK monopoles with opposite charge. Is a bubbled geometry with near geometry $A d S_{3} \times S^{2} \times C Y$
- Lift of D2 is M2 wrapping the S^{2}, pointlike in AdS_{3}

BACKREACTION

M2's were treated as probes, fully backreacted solution was unknown: subject of this talk. Remarks:

- Approximation: M2-charge is smeared over CY. Can reduce to 5D on $C Y$, or to 3D on $S^{2} \times C Y$

BACKREACTION

M2's were treated as probes, fully backreacted solution was unknown: subject of this talk. Remarks:

- Approximation: M2-charge is smeared over CY. Can reduce to 5D on $C Y$, or to 3D on $S^{2} \times C Y$
- M2 sources 5D universal hypermultiplet \leftarrow technical hurdle.

BACKREACTION

M2's were treated as probes, fully backreacted solution was unknown: subject of this talk. Remarks:

- Approximation: M2-charge is smeared over CY. Can reduce to 5D on $C Y$, or to 3D on $S^{2} \times C Y$
- M2 sources 5D universal hypermultiplet \leftarrow technical hurdle.
- Hoped to capture 'pure Higgs' states of D-brane system (Martinec, Niehoff 2015)

BACKREACTION

M2's were treated as probes, fully backreacted solution was unknown: subject of this talk. Remarks:

- Approximation: M2-charge is smeared over CY. Can reduce to 5D on $C Y$, or to 3D on $S^{2} \times C Y$
- M2 sources 5D universal hypermultiplet \leftarrow technical hurdle.
- Hoped to capture 'pure Higgs' states of D-brane system (Martinec, Niehoff 2015)
- Goals:
- construct backreacted solution
- check absence of pathologies such as closed timelike curves
- check that is asymptotically AdS \rightarrow holographic interpretation

TADPOLE AND A DISCLAIMER

- Coupling $\int_{D 6} G_{6} \wedge A$ induces charge on compact D6 worldvolume which must be cancelled by adding an F1-string (Brodie, Susskind, Toumbas 2001).
\Rightarrow no net D2-charge.

TADPOLE AND A DISCLAIMER

- Coupling $\int_{D 6} G_{6} \wedge A$ induces charge on compact D6 worldvolume which must be cancelled by adding an F1-string (Brodie, Susskind, Toumbas 2001).
\Rightarrow no net D2-charge.

- Have not yet succeeded in adding this F1

Reduction to 3D

- Reduce to 3D on $S^{2} \times C Y$:

$$
S=\frac{1}{16 \pi G_{3}} \int_{\mathcal{M}}\left[d^{3} x \sqrt{-g}\left(R+\frac{2}{l^{2}}-\frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{2 \tau_{2}^{2}}\right)+\frac{l}{2} \mathcal{A} \wedge d \mathcal{A}\right]
$$

Reduction to 3D

- Reduce to 3D on $S^{2} \times C Y$:
$S=\frac{1}{16 \pi G_{3}} \int_{\mathcal{M}}\left[d^{3} x \sqrt{-g}\left(R+\frac{2}{l^{2}}-\frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{2 \tau_{2}^{2}}\right)+\frac{l}{2} \mathcal{A} \wedge d \mathcal{A}\right]$
- τ_{1} : axion from dualizing 1-form $A\left(C_{3}=A \wedge \operatorname{vol}_{S^{2}}\right)$ τ_{2} : volume of internal Calabi-Yau
\mathcal{A} : Chern-Simons 1-form from S^{2}-reduction

Reduction to 3D

- Reduce to 3D on $S^{2} \times C Y$:

$$
S=\frac{1}{16 \pi G_{3}} \int_{\mathcal{M}}\left[d^{3} x \sqrt{-g}\left(R+\frac{2}{l^{2}}-\frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{2 \tau_{2}^{2}}\right)+\frac{l}{2} \mathcal{A} \wedge d \mathcal{A}\right]
$$

- τ_{1} : axion from dualizing 1-form $A\left(C_{3}=A \wedge\right.$ vol $\left._{S^{2}}\right)$ τ_{2} : volume of internal Calabi-Yau
\mathcal{A} : Chern-Simons 1-form from S^{2}-reduction
- wrapped M2 is point-particle source for τ :

$$
S_{M 2}=\frac{1}{16 \pi G_{3}}\left[-2 \pi p \int_{\mathcal{W}} d \xi \frac{\sqrt{-{ }^{*} g}}{\tau_{2}}\right]+2 \pi p \int_{\mathcal{W}} A
$$

ANSATZ, BPS EQUATIONS

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

- Ansatz for BPS solutions: fibration over 2D base

$$
\begin{aligned}
d s^{2} & =\frac{l^{2}}{4}\left[-(d t+2 \Im m(\partial \Phi)+\Lambda)^{2}+\tau_{2} e^{-2 \Phi} d w d \bar{w}\right] \\
\mathcal{A} & =d t+\Lambda, \quad d \Lambda=0
\end{aligned}
$$

ANSATZ, BPS EQUATIONS

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

- Ansatz for BPS solutions: fibration over 2D base

$$
\begin{aligned}
d s^{2} & =\frac{l^{2}}{4}\left[-(d t+2 \Im m(\partial \Phi)+\Lambda)^{2}+\tau_{2} e^{-2 \Phi} d w d \bar{w}\right] \\
\mathcal{A} & =d t+\Lambda, \quad d \Lambda=0
\end{aligned}
$$

- Axiodilaton equation allows holomorphic solutions cfr: Greene, Shapere, Vafa, Yau 1989

$$
\tau=\tau(w)
$$

ANSATZ, BPS EQUATIONS

Levi, JR, Van den Bleeken, Van Herck, Vercnocke 2011

- Ansatz for BPS solutions: fibration over 2D base

$$
\begin{aligned}
d s^{2} & =\frac{l^{2}}{4}\left[-(d t+2 \Im m(\partial \Phi)+\Lambda)^{2}+\tau_{2} e^{-2 \Phi} d w d \bar{w}\right] \\
\mathcal{A} & =d t+\Lambda, \quad d \Lambda=0
\end{aligned}
$$

- Axiodilaton equation allows holomorphic solutions cfr: Greene,

Shapere, Vafa, Yau 1989

$$
\tau=\tau(w)
$$

- equation for conformal factor

$$
4 \partial_{w} \partial_{\bar{w}} \Phi+\tau_{2} e^{-2 \Phi}=0
$$

Lift OF FLUXED D6-ANTI-D6

- Lift of fluxed D6-anti-D6 is solution with $c=\frac{2 l}{3 G_{3}}=P^{3}$. Setting $w=x+i \psi$,

$$
\tau=i V_{\infty}, \quad \Phi=\ln \sqrt{V_{\infty}} \sinh (-x), \quad \Lambda=d \psi
$$

LIFT OF FLUXED D6-ANTI-D6

- Lift of fluxed D6-anti-D6 is solution with $c=\frac{2 l}{3 G_{3}}=P^{3}$. Setting $w=x+i \psi$,

$$
\tau=i V_{\infty}, \quad \Phi=\ln \sqrt{V_{\infty}} \sinh (-x), \quad \Lambda=d \psi
$$

- This is global AdS + leftmoving Wilson line

$$
\begin{aligned}
x & =\ln \tanh \rho, \quad t=2 T, \quad \psi=\phi-T \\
d s^{2} & =l^{2}\left[-\cosh ^{2} \rho d T^{2}+d \rho^{2}+\sinh ^{2} \rho d \phi^{2}\right] \\
\mathcal{A} & =d(\phi+T)
\end{aligned}
$$

LIFT OF FLUXED D6-ANTI-D6

- Lift of fluxed D6-anti-D6 is solution with $c=\frac{2 l}{3 G_{3}}=P^{3}$. Setting $w=x+i \psi$,

$$
\tau=i V_{\infty}, \quad \Phi=\ln \sqrt{V_{\infty}} \sinh (-x), \quad \Lambda=d \psi
$$

- This is global AdS + leftmoving Wilson line

$$
\begin{aligned}
x & =\ln \tanh \rho, \quad t=2 T, \quad \psi=\phi-T \\
d s^{2} & =l^{2}\left[-\cosh ^{2} \rho d T^{2}+d \rho^{2}+\sinh ^{2} \rho d \phi^{2}\right] \\
\mathcal{A} & =d(\phi+T)
\end{aligned}
$$

- In dual $(4,0)$ MSW CFT, represents (R vacuum with maximal R-charge) \otimes vacuum

$$
(h, \bar{h})=(0,-c / 24), \quad j_{L}=c / 12
$$

Wrapped M2: PROBE APPROXIMATION

- M2 wrapped on S^{2} is massive point particle in $A d S_{3}$

WRAPPED M2: PROBE APPROXIMATION

- M2 wrapped on S^{2} is massive point particle in $A d S_{3}$
- solution where M2 rotates at fixed $\rho=\rho_{0} \leftarrow$ half-BPS (Gaiotto,

Simons, Strominger, Yin 2004)

$$
\text { Preserves } U(1) \times U(1)
$$

Wrapped M2: PROBE APPROXIMATION

- M2 wrapped on S^{2} is massive point particle in $A d S_{3}$
- solution where M2 rotates at fixed $\rho=\rho_{0} \leftarrow$ half-BPS (Gaiotto,

Simons, Strominger, Yin 2004)

Preserves $U(1) \times U(1)$

- M2 of charge $2 \pi p$ adds to the vacuum

$$
\begin{aligned}
\Delta h & =\frac{1}{2}\left(H_{T}-P_{\phi}\right)=\frac{p}{V_{\infty}} \frac{c}{24} \quad \leftarrow \text { puzzle! } \\
\Delta \bar{h} & =\frac{1}{2}\left(H_{T}+P_{\phi}\right)=-\frac{c}{24}+\frac{p}{V_{\infty}} \frac{c}{24} \cosh 2 \rho_{0}
\end{aligned}
$$

Backreaction

M2 IN CENTER OF AdS

First let's consider the M2 in the 'center' $x \rightarrow-\infty$ of AdS. Shift coordinate x such that AdS boundary at $x=0$.

M2 IN CENTER OF ADS

- Impose rotational invariance

$$
\tau_{2}=\tau_{2}(x) \quad \Phi=\Phi(x)
$$

M2 IN CENTER OF AdS

- Impose rotational invariance

$$
\tau_{2}=\tau_{2}(x) \quad \Phi=\Phi(x)
$$

- Source terms fix

$$
\begin{array}{rll}
\tau & =p \psi+i\left(V_{\infty}-p x\right) \\
\Phi \xrightarrow{x \rightarrow-\infty} & -x+\mathcal{O}(1)
\end{array}
$$

V_{∞} : asymptotic Calabi-Yau volume

Backreaction

M2 IN CENTER OF AdS

- Impose rotational invariance

$$
\tau_{2}=\tau_{2}(x) \quad \Phi=\Phi(x)
$$

- Source terms fix

$$
\begin{array}{rll}
\tau & = & p \psi+i\left(V_{\infty}-p x\right) \\
\Phi \xrightarrow{x \rightarrow-\infty} & -x+\mathcal{O}(1)
\end{array}
$$

V_{∞} : asymptotic Calabi-Yau volume

- τ has monodromy

$$
\tau \rightarrow \tau+2 \pi p \quad \text { under } \psi \rightarrow \psi+2 \pi
$$

Backreaction

M2 IN CENTER OF ADS

- Φ (after shift) must solve nonlinear ODE

$$
\Phi^{\prime \prime}+(1-\epsilon x) e^{-2 \Phi}=0, \quad \epsilon=\frac{p}{V_{\infty}} \ll 1
$$

Backreaction

M2 IN CENTER OF ADS

- Φ (after shift) must solve nonlinear ODE

$$
\Phi^{\prime \prime}+(1-\epsilon x) e^{-2 \Phi}=0, \quad \epsilon=\frac{p}{V_{\infty}} \ll 1
$$

- Equivalent to 1st order Abel equation, as yet unsolved analytically

Backreaction

M2 IN CENTER OF AdS

- Φ (after shift) must solve nonlinear ODE

$$
\Phi^{\prime \prime}+(1-\epsilon x) e^{-2 \Phi}=0, \quad \epsilon=\frac{p}{V_{\infty}} \ll 1
$$

- Equivalent to 1st order Abel equation, as yet unsolved analytically
- If we turn off M2 charge, must recover D6-anti-D6 background

Backreaction

M2 IN CENTER OF ADS

- Φ (after shift) must solve nonlinear ODE

$$
\Phi^{\prime \prime}+(1-\epsilon x) e^{-2 \Phi}=0, \quad \epsilon=\frac{p}{V_{\infty}} \ll 1
$$

- Equivalent to 1st order Abel equation, as yet unsolved analytically
- If we turn off M2 charge, must recover D6-anti-D6 background
- Will work perturbatively in ϵ around D6-anti-D6 solution

Backreaction

M2 IN CENTER OF ADS

To second order in ϵ one finds

$$
\begin{aligned}
\Phi= & \Phi_{0}+\epsilon \Phi_{1}+\epsilon^{2} \Phi_{2}+\ldots \\
\Phi_{0}= & \ln \sinh (-x) \\
\Phi_{1}= & \frac{1}{2}(-x+x \operatorname{coth}(x)-1) \\
\Phi_{2}= & \frac{1}{24}\left(-6 \operatorname{Li}_{2}\left(e^{2 x}\right) \operatorname{coth}(x)-3\left(2 x^{2}+x^{2} \operatorname{csch}^{2}(x)\right.\right. \\
& -4 \log (-\operatorname{csch}(x))-1+\log (16)) \\
& \left.+\left(\pi^{2}-6(x-2) x\right) \operatorname{coth}(x)\right)
\end{aligned}
$$

Backreaction

M2 IN CENTER OF AdS

At higher order:

$$
\begin{gathered}
\Phi=\sum_{\epsilon=0}^{\infty} \Phi_{n} \epsilon^{n} \\
\Phi_{n}^{\prime \prime}-\frac{2}{\sinh ^{2} x} \Phi_{n}=S_{n}(x) \\
S_{n}(x)=\frac{1}{\sinh ^{2} x}\left(x \sum_{\vec{p} \in \mathcal{P}_{n-1}} \prod_{l=1}^{n-1} \frac{\left(-2 \Phi_{l}\right)^{p_{l}}}{p_{l}!}-\sum_{\vec{p} \in \mathcal{P}_{n}^{\prime}} \prod_{l=1}^{n-1} \frac{\left(-2 \Phi_{l}\right)^{p_{l}}}{p_{l}!}\right)
\end{gathered}
$$

Have the iterative solution, explicit up a a single integral
$\Phi_{n}(x)=(x \operatorname{coth} x-1) \int_{-\infty}^{x} S_{n}(u) \operatorname{coth} u d u+\operatorname{coth} x \int_{x}^{0} S_{n}(u)(u \operatorname{coth} u-1) d u$

3D GEOMETRY

- curvature singularity near M2 position $x \rightarrow-\infty$:

$$
R \sim \frac{e^{-2 x}}{(-x)}
$$

3D GEOMETRY

- curvature singularity near M2 position $x \rightarrow-\infty$:

$$
R \sim \frac{e^{-2 x}}{(-x)}
$$

- absence of closed timelike curves:
- Our solution has 'nice' (no CTC) behaviour near symmetry axis and boundary

3D GEOMETRY

- curvature singularity near M2 position $x \rightarrow-\infty$:

$$
R \sim \frac{e^{-2 x}}{(-x)}
$$

- absence of closed timelike curves:
- Our solution has 'nice' (no CTC) behaviour near symmetry axis and boundary
- Under these conditions, using null energy condition, can show that no CTCs can develop in the interior ${ }_{(\mathbb{R}}$ 2011)

Holographic interpretation

Asymptotically AdS with Fefferman-Graham expansions

$$
\begin{aligned}
d s_{3}^{2} & =l^{2}\left[\frac{d y^{2}}{4 y^{2}}+\frac{g_{(0)}}{y}+g_{(2)++} d x_{+}^{2}+g_{(2)--} d x_{-}^{2}+\ln y \tilde{g}_{(2)--} d x_{-}^{2}+\ldots\right. \\
\Psi & =\Psi_{(0)}+y \Psi_{(2)}+\ldots \\
\tau_{1} & =\tau_{1(0)} \\
\mathcal{A} & =\mathcal{A}_{(0)+} d x_{+}+\mathcal{A}_{(0)-} d x_{-}
\end{aligned}
$$

CFT SOURCES

- Source terms in CFT are

$$
\begin{aligned}
g_{(0)+-} & =1 \\
\Psi_{(0)} & =-\ln V_{\infty} \\
\tau_{1(0)} & =p x_{-} \\
\mathcal{A}_{(0)-} & =\frac{\epsilon}{2}
\end{aligned}
$$

CFT SOURCES

- Source terms in CFT are

$$
\begin{aligned}
g_{(0)+-} & =1 \\
\Psi_{(0)} & =-\ln V_{\infty} \\
\tau_{1(0)} & =p x_{-} \\
\mathcal{A}_{(0)-} & =\frac{\epsilon}{2}
\end{aligned}
$$

- Dual field theory is deformed by source terms for weight $(1,1)$ primary $\mathcal{O}_{\tau_{1}}$ and weight $(1,0)$ R-current J_{+}^{3} :

$$
\delta S_{C F T}=-\int d x_{+} d x_{-}\left(\tau_{1(0)} \mathcal{O}_{\tau_{1}}+\mathcal{A}_{(0)-} J_{+}^{3}\right)
$$

CFT SOURCES

- Source terms in CFT are

$$
\begin{aligned}
g_{(0)+-} & =1 \\
\Psi_{(0)} & =-\ln V_{\infty} \\
\tau_{1(0)} & =p x_{-} \\
\mathcal{A}_{(0)-} & =\frac{\epsilon}{2}
\end{aligned}
$$

- Dual field theory is deformed by source terms for weight $(1,1)$ primary $\mathcal{O}_{\tau_{1}}$ and weight $(1,0)$ R-current J_{+}^{3} :

$$
\delta S_{C F T}=-\int d x_{+} d x_{-}\left(\tau_{1(0)} \mathcal{O}_{\tau_{1}}+\mathcal{A}_{(0)-} J_{+}^{3}\right)
$$

- Null deformation, preserves leftmoving conformal symmetry (see e.g. Caldeira Costa, Taylor 2010)

CFT SOURCES

- Source terms in CFT are

$$
\begin{aligned}
g_{(0)+-} & =1 \\
\Psi_{(0)} & =-\ln V_{\infty} \\
\tau_{1(0)} & =p x_{-} \\
\mathcal{A}_{(0)-} & =\frac{\epsilon}{2}
\end{aligned}
$$

- Dual field theory is deformed by source terms for weight $(1,1)$ primary $\mathcal{O}_{\tau_{1}}$ and weight $(1,0)$ R-current J_{+}^{3} :

$$
\delta S_{C F T}=-\int d x_{+} d x_{-}\left(\tau_{1(0)} \mathcal{O}_{\tau_{1}}+\mathcal{A}_{(0)-} J_{+}^{3}\right)
$$

- Null deformation, preserves leftmoving conformal symmetry (see e.g. Caldeira Costa, Taylor 2010)
- Killing spinor analysis suggests that a leftmoving chiral $N=2$ is preserved

VEVs

Holographic renormalization (de Haro, Solodukhin, Skenderis 2001) gives

$$
\begin{aligned}
\left\langle T_{++}\right\rangle & =\frac{c}{6}\left(g_{(2)++}+\frac{1}{4} \mathcal{A}_{(0)+}^{2}\right) \\
\left\langle T_{--}\right\rangle & =\frac{c}{6}\left(g_{(2)--}-\frac{1}{2} \tilde{g}_{(2)--}+\frac{1}{4} \mathcal{A}_{(0)-}^{2}\right) \\
\left\langle J_{+}^{3}\right\rangle & =\mathcal{A}_{(0)+} \\
\left\langle\mathcal{O}_{\Psi}\right\rangle & =-\frac{c}{6} \Psi_{(2)} \\
\left\langle\mathcal{O}_{\tau_{1}}\right\rangle & =0
\end{aligned}
$$

VEVs

Taking Fourier modes one finds the VEVs

$$
\begin{aligned}
h & =0 \quad \leftarrow \text { R groundstate } \\
\bar{h} & =-\frac{c}{24}\left(1-\epsilon+\frac{\pi^{2}}{6} \epsilon^{3}-(0.819 \ldots) \epsilon^{4}+(0.621 \ldots) \epsilon^{5}+\mathcal{O}\left(\epsilon^{6}\right)\right) \\
j_{L} & =\frac{c}{12}\left(1-\frac{\epsilon}{2}\right) \\
\left\langle\left(\mathcal{O}_{\Psi}\right)_{0}\right\rangle & =\frac{c \epsilon}{12}\left(1-\frac{\epsilon}{2}\right) \\
\left\langle\left(\mathcal{O}_{\tau_{1}}\right)_{0}\right\rangle & =0
\end{aligned}
$$

\bar{h} agrees with probe probe analysis to order ϵ

OTHER SOLUTIONS

Defining

$$
\begin{aligned}
1-\epsilon x & =e^{-\epsilon u} \\
X & =-\left(2 \Phi+3 \epsilon u+\ln \frac{3}{2 V_{\infty}}\right) \\
Y & =\dot{X}
\end{aligned}
$$

Equation for Φ becomes flow equation

$$
(\dot{X}, \dot{Y})=\left(Y,-\epsilon Y+3\left(e^{X}-\epsilon^{2}\right)\right)
$$

OTHER SOLUTIONS

OTHER SOLUTIONS

- Fixed point corresponds to exact solution

$$
\Phi=\ln \left(\sqrt{\frac{2}{3 \epsilon^{2}}}(1-\epsilon x)^{3 / 2}\right)
$$

OTHER SOLUTIONS

- Fixed point corresponds to exact solution

$$
\Phi=\ln \left(\sqrt{\frac{2}{3 \epsilon^{2}}}(1-\epsilon x)^{3 / 2}\right)
$$

- Has enlarged symmetry $U(1) \times S L(2, \mathbb{R})$. Corresponds to filling spacetime with congruence of M2-branes \rightarrow rotating dust

OTHER SOLUTIONS

- Fixed point corresponds to exact solution

$$
\Phi=\ln \left(\sqrt{\frac{2}{3 \epsilon^{2}}}(1-\epsilon x)^{3 / 2}\right)
$$

- Has enlarged symmetry $U(1) \times S L(2, \mathbb{R})$. Corresponds to filling spacetime with congruence of M2-branes \rightarrow rotating dust
- Geometry is that of 3D Gödel universe (Levi, JR, Van den Bleeken, Van

Herck, Vercnocke 2011)

Figure 31. Gödel's universe with the irrelevant coordinate z suppressed. The space is rotationally symmetric about any point; the diagram represents correctly the rotational symmetry about the axis $r=0$, and the time invariance. The light cone opens out and tips over as r increases (see line L) resulting in closed timelike curves. The diagram does not correctly represent the fact that all points are in fact equivalent.

M2 AT CONSTANT RADIUS

- Probe picture: obtained by acting with broken generators

M2 AT CONSTANT RADIUS

- Probe picture: obtained by acting with broken generators

$$
g\left(\rho_{0}\right)=\left(\begin{array}{cc}
\cosh \rho_{0} & \sinh \rho_{0} \\
\sinh \rho_{0} & \cosh \rho_{0}
\end{array}\right)
$$

- Can be seen as large coordinate transformation

$$
\begin{aligned}
\cosh ^{2} \tilde{\rho} & =\cosh ^{2}\left(\rho+\rho_{0}\right)-\sin ^{2} \frac{\psi}{2} \sinh 2 \rho \sinh 2 \rho_{0} \\
\tilde{x}_{+} & =x_{+}-x_{-}+\arg \left[\left(1+e^{i x}-\operatorname{coth} \rho_{0} \tanh \rho\right)\left(1+e^{i x}-\tanh \rho_{0} \tanh \rho\right)\right] \\
\tilde{x}_{-} & =\arg \left[\left(1+e^{i x}-\operatorname{coth} \rho_{0} \tanh \rho\right)\left(1+e^{-i x}-\tanh \rho_{0} \tanh \rho\right)\right]
\end{aligned}
$$

M2 AT CONSTANT RADIUS

- Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$
\begin{aligned}
\tilde{x}_{+} & =x_{+}+\mathcal{O}\left(e^{-2 \rho}\right) \\
e^{i \tilde{x}_{-}} & =\frac{\cosh \rho_{0} e^{i x_{-}}+\sinh \rho_{0}}{\sinh \rho_{0} e^{i x_{-}}+\cosh \rho_{0}}+\mathcal{O}\left(e^{-2 \rho}\right)
\end{aligned}
$$

M2 AT CONSTANT RADIUS

- Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$
\begin{aligned}
\tilde{x}_{+} & =x_{+}+\mathcal{O}\left(e^{-2 \rho}\right) \\
e^{i \tilde{x}_{-}} & =\frac{\cosh \rho_{0} e^{i x_{-}}+\sinh \rho_{0}}{\sinh \rho_{0} e^{i x_{-}}+\cosh \rho_{0}}+\mathcal{O}\left(e^{-2 \rho}\right)
\end{aligned}
$$

- Implements $e^{\rho_{0}\left(\tilde{L}_{-1}-\tilde{L}_{1}\right)}$

M2 AT CONSTANT RADIUS

- Propose to get the backreacted solution by similar coordinate transformation on M2 in center. Near the boundary it acts as

$$
\begin{aligned}
\tilde{x}_{+} & =x_{+}+\mathcal{O}\left(e^{-2 \rho}\right) \\
e^{i \tilde{x}_{-}} & =\frac{\cosh \rho_{0} e^{i x_{-}}+\sinh \rho_{0}}{\sinh \rho_{0} e^{i_{-}}+\cosh \rho_{0}}+\mathcal{O}\left(e^{-2 \rho}\right)
\end{aligned}
$$

- Implements $e^{\rho_{0}\left(\tilde{L}_{-1}-\tilde{L}_{1}\right)}$
- Acting on our solution, obtain new solution with

$$
\begin{aligned}
h= & 0 \\
\bar{h}= & -\frac{c}{24}\left[1-\epsilon \cosh 2 \rho_{0}\right. \\
& -\epsilon^{2}\left(2 \rho_{0} \cosh 2 \rho_{0}-e^{-4 \rho_{0}}{ }_{2} F_{1}^{(0,1,0,0)}\left(\frac{1}{2}, 2,1,1-e^{-4 \rho_{0}}\right)\right)+\ldots
\end{aligned}
$$

5D POINT OF VIEW

- Lift to 5D: solution with VMs and $\tau \in$ universal hyper excited:

$$
\begin{aligned}
d s_{5}^{2} & =\frac{l^{2}}{4}\left[-(d t+2 \Im m(\partial \Phi)+\Lambda)^{2}+\tau_{2} e^{-2 \Phi} d w d \bar{w}+d \theta^{2}+\sin ^{2} \theta(d \phi-\mathcal{A})^{2}\right] \\
\mathcal{A} & =d t+\Lambda, \quad d \Lambda=0, \quad \tau=\tau(w), \quad l=2\left(\frac{P^{3}}{6}\right)^{\frac{1}{3}} \\
F^{I} & =\frac{P^{I}}{2} \sin \theta d \theta \wedge(d \phi-\mathcal{A}), \quad Y^{I}=\frac{P^{I}}{l}
\end{aligned}
$$

5D POINT OF VIEW

- Lift to 5D: solution with VMs and $\tau \in$ universal hyper excited:

$$
\begin{aligned}
d s_{5}^{2} & =\frac{l^{2}}{4}\left[-(d t+2 \Im m(\partial \Phi)+\Lambda)^{2}+\tau_{2} e^{-2 \Phi} d w d \bar{w}+d \theta^{2}+\sin ^{2} \theta(d \phi-\mathcal{A})^{2}\right] \\
\mathcal{A} & =d t+\Lambda, \quad d \Lambda=0, \quad \tau=\tau(w), \quad l=2\left(\frac{P^{3}}{6}\right)^{\frac{1}{3}} \\
F^{I}= & \frac{P^{I}}{2} \sin \theta d \theta \wedge(d \phi-\mathcal{A}), \quad Y^{I}=\frac{P^{I}}{l}
\end{aligned}
$$

- Can be written as t-fibration over 4D base, which contains 3 ASD 2-forms with structure

$$
d \Phi^{ \pm} \mp i \frac{d \tau_{1}}{2 \tau_{2}} \wedge \Phi^{ \pm}=0
$$

$$
d \Phi^{3}=0 \quad \leftarrow \text { Kahler form }
$$

5D POINT OF VIEW

- In our solutions: base is toric Kahler with
- 1 translational Killing vector ∂_{ψ}
- 1 rotational Killing vector $\partial_{\phi} \leftarrow$ preserves τ

5D POINT OF VIEW

- In our solutions: base is toric Kahler with
- 1 translational Killing vector ∂_{ψ}
- 1 rotational Killing vector $\partial_{\phi} \leftarrow$ preserves τ
- requires generalization of Bellorin, Meessen, Ortin 2007, see JR, Van den Bleeken 2014

KILLING SPINORS

- Killing spinor analysis: all our sols preserve common 'zero-mode' Killing spinors

$$
G_{0}^{\beta \gamma}=e^{-\frac{i}{2} \beta \phi \sigma_{3}} e^{\frac{i \theta}{2} \gamma^{\hat{\phi}}} g_{0}^{\beta \gamma} \quad \beta, \gamma= \pm 1
$$

with $g_{0}^{\beta \gamma}$ certain constant spinors.

KILLING SPINORS

- Killing spinor analysis: all our sols preserve common 'zero-mode' Killing spinors

$$
G_{0}^{\beta \gamma}=e^{-\frac{i}{2} \beta \phi \sigma_{3}} e^{\frac{i \theta}{2} \gamma^{\hat{\phi}}} g_{0}^{\beta \gamma} \quad \beta, \gamma= \pm 1
$$

with $g_{0}^{\beta \gamma}$ certain constant spinors.

- Independent of AdS_{3} coordinates, in Ramond sector

KILLING SPINORS

- Killing spinor analysis: all our sols preserve common 'zero-mode' Killing spinors

$$
G_{0}^{\beta \gamma}=e^{-\frac{i}{2} \beta \phi \sigma_{3}} e^{\frac{i \theta}{2} \gamma^{\hat{\phi}}} g_{0}^{\beta \gamma} \quad \beta, \gamma= \pm 1
$$

with $g_{0}^{\beta \gamma}$ certain constant spinors.

- Independent of AdS_{3} coordinates, in Ramond sector
- Without the M2, all $4 G_{0}^{\beta \gamma}$, without the M2 only the 2 with $\beta=1$

KILLING SPINORS

- Killing spinor analysis: all our sols preserve common 'zero-mode' Killing spinors

$$
G_{0}^{\beta \gamma}=e^{-\frac{i}{2} \beta \phi \sigma_{3}} e^{\frac{i \theta}{2} \gamma^{\hat{\phi}}} g_{0}^{\beta \gamma} \quad \beta, \gamma= \pm 1
$$

with $g_{0}^{\beta \gamma}$ certain constant spinors.

- Independent of AdS_{3} coordinates, in Ramond sector
- Without the M2, all $4 G_{0}^{\beta \gamma}$, without the M2 only the 2 with $\beta=1$
- Further non-common (4 resp. 2) KS depending on x^{+}: extra ± 1 modes preserved by maximal R-charged Ramond groundstate

Outlook

Constructed backreacted super-egg. Consistent with R ground state in leftmoving sector. M2 charge turns on deformation in rightmoving sector. Some open question:

Outlook

Constructed backreacted super-egg. Consistent with R ground state in leftmoving sector. M2 charge turns on deformation in rightmoving sector. Some open question:

- Understand interpretation in MSW CFT better

OUTLOOK

Constructed backreacted super-egg. Consistent with R ground state in leftmoving sector. M2 charge turns on deformation in rightmoving sector. Some open question:

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_{0}>0$

OUTLOOK

Constructed backreacted super-egg. Consistent with R ground state in leftmoving sector. M2 charge turns on deformation in rightmoving sector. Some open question:

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_{0}>0$
- Missing ingredient: stretched F1-string

OUTLOOK

Constructed backreacted super-egg. Consistent with R ground state in leftmoving sector. M2 charge turns on deformation in rightmoving sector. Some open question:

- Understand interpretation in MSW CFT better
- Analyze closer what happens when $\bar{L}_{0}>0$
- Missing ingredient: stretched F1-string
- Full BH entropy from quantizing solution space? Unlikely in 5D/3D sugra, though expect to get scaling with D0-charge right. Perhaps in 11D?

OUTLOOK

OutLOOK

- Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)

Outlook

- Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)
- Make contact with superstrata upon duality, moving in moduli space, ...

Outlook

- Analyze singular D-brane sources using effective field theory methods (Polchinski et. al. 2014)
- Make contact with superstrata upon duality, moving in moduli space, ...
- M2 in center is prototype W-brane solution (Martinec, Niehoff 2015) conjectured to describe pure Higgs states

EXTRA: COMMENT ON BOUNDARY STRESS TENSOR

- Despite broken right-moving conformal invariance, our solutions have, surprisingly

$$
\left\langle T_{+-}\right\rangle=\partial_{+}\left\langle T_{--}\right\rangle=0
$$

- For sources of the type

$$
\Psi_{(0)}=\text { constant }, \quad \partial_{+} \tau_{1(0)}=\partial_{+} \mathcal{A}_{(0)-}=0
$$

derive holographic Ward identities

$$
\begin{aligned}
\left\langle T_{+-}\right\rangle & =0 \\
\partial_{-}\left\langle T_{++}\right\rangle & =0 \\
\partial_{+}\left\langle T_{--}\right\rangle & =-\frac{1}{2}\left\langle\mathcal{O}_{\tau_{1}}\right\rangle \tau_{1(0)}^{\prime}
\end{aligned}
$$

- Our solutions have vanishing $\left\langle\mathcal{O}_{\tau_{1}}\right\rangle$ and therefore $\partial_{+}\left\langle T_{--}\right\rangle=0$

