Electrodynamics problems

1. For simplicity, consider (1 + 1)-dimensional spacetime, and an inertial frame K with coordinates (2% ).

(a) Draw a spacetime diagram with z° being the vertical axis, and draw light cones s? = —(2%)? + (2!)? = 0.
Also, draw a curve s? = —(2%)? 4 (21)? =const. in the region " > 0 in the case of s> < 0 and in the region
x! > 0 in the case of s> > 0. Let each constant be 5?2 = —c272 for s? < 0 and s? = (2 for s? > 0.

(b) Consider another intertial frame K with coordinates (z°,%') which moves with the velocity v in the
positive direction of x'-axis of the inertial frame K. By making the origins of spacetime coordinates of these
two frames coincide with each other, and putting v = 0.5¢, draw the coordinate axises of the frame K in the
diagram.

(c) The world line = 0 corresponds to ! = vt = (v/c)2 in the frame K. Show that, along this world line, a
lapse of time 7 in the frame K is measured in the frame K as a lapse of time,

Since 7x > 7, this means “a moving clock runs more slowly than a stationary clock”, known as the time
dilatation effect.

(d) Consider a bar with length ¢ being at rest in the frame K. Assuming the left edge of this bar passes
through the origin at time 2 = 0, draw the world line of the right edge in the diagram. Show that its length
measured in the frame K is given by

lg =41 —(v/e)?,

which is known as the Lorentz contraction of a moving body.

2. Consider an inertial frame K with coordinates (2", 2'), and consider a second frame K; with (y°,y') moving

with velocity v! relative to the frame K in the positive direction of the z'-axis, and a third frame K, moving
with velocity v? relative to the frame K; in the positive direction of the y'-axis. Show that the velocity of the
frame K5 relative to K is given by

v1 + va

= ———~-— = ctanh
v 14 viva/c? ctanh(yy + 1)

where vy = ctanh ¢y, vo = ctanh .

3. For a Lorentz transformation 7 = A#,x®, let its inverse transformation be x* = (A=1)®,". A quantity with
n lower indices which transforms under the Lorentz transformation as

7 — -1 -1 —1ya,
Tuluzmun(x) = TOC1042"'Oén(x)(A )alul(A )%uz T (A )a Hn
is called a covariant tensor, and a quantity with n upper indices which transforms as
Tuluzmun(f) — AuloglAu2ocg . .AunanTOuOQ'“Om(x)

is called a contravariant tensor. A Lorentz transformation is characterized by the property that the
components of the Minkowski metric 5, = diag(—1, 1,1, 1) remain unchanged, i.e.,

ﬁuu = naﬁ(A_l)aN(A_l)ﬁV = 77;w .

(a) Let n*” be the components of the inverse matrix of 5,,, i.e., 5*”n,, = §%. Show that

TV = = A“aA”@no‘ﬁ ]



Thus »** is a Lorentz invariant contravariant tensor (n*” is called the contravariant metric).
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(b) Show that the partial derivative operator o (often denoted by 0,) behaves as a covariant tensor. Then
x

show that #*¥9,0, is a Lorentz invariant scalar operator. This operator is commonly denoted by O and called
the d’Alembertian.
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. If one

. Let a world line of a point mass be parametrized as 2*(A) with some parameter A and let #* =

regards A as ‘time’, the action functional S of a free particle with mass m can be expressed as

S:—mc/Ld/\; L=/—nuziz”.

(a) Show that the action is invariant under a transformation A — X = f(A) where f(}\) is an arbitrary
monotonically increasing function of A, i.e., df(A)/d\ > 0 for V.

(b) If one chooses A = 7 where 7 is particle’s proper time, one has L = /—n,,2#&" = ¢ along any world line
of the particle. Using this fact, show that another form of the action,

S = —% L2dr = %/nwi%”dr,

is equivalent to S, 1.e., S and S gives the same equations of motion.

. Using the proper time 7 as a time parameter along a world line of a particle with mass m, let us consider a
general form of the action with interaction. We assume the mass m to be constant. Let Sy be the action of a
free particle and let the total action be S = Sy + fLide.
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(a) Let Lint = Line(a#, u*) (u” = dx ), and let the equations of motion be of the form, m% =F,.
T T

Express F, in terms of Lip;.

b) Assuming that the force F,, contains only derivatives of x#(7) up to first order with respect to 7, show that
g 1
Lin: must have the form,

Line = ¢(z) + Ap(x)u? .

(¢) Recalling the normalization condition of the four velocity n,, u#u” = —c?, show that the term ¢(x) cannot
give a physically meaningful force, and hence the only possibility is the form, L;n = A, (x)u”.

(d) Show that adding the total time derivative of an arbitrary function f(x) to the Lagrangean is equivalent to

the change of A4, as A,(z) — flu = A,(z) + 0, f(x). Also show explicitly that the force F), remains invariant
under this transformation of A,,.

. Let €,,,0 be a totally antisymmetric tensor with epia3 = +1.

(a) Show the following equalities (remember that 123 = —1).

F gy =BG s = =2 (8405 — 3307

(b) Show that €,,45 remains invariant under an arbitrary Lorentz transformation, i.e., €408 = €uvap for
7 7
=T = AP et



7. For an anti-symmetric second rank tensor A,,, define *A,, by

* 1 o1
A = §euya@A .

* Ay 1s called the tensor dual to A, .

(a) Show that **A,, =* (*Au) = -4 .

(b) In terms of *F* and F*¥, the Maxwell equations in vacuum are expressed as
O, FH =0, G, F* =0.

Derive the second set of the equations above.

(c) Regarding Fuu = *F), as another electromagnetic field strength tensor, show that its electric field E and
magnetic field B are expressed in terms of the original fields as

E=-B B=E.

bl

8. In the Lorentz gauge, the source-free Maxwell equations expressed in terms of the four potential,
0v0,A, =0A4, =0, contain a residual gauge degree of freedom A, = A, = A, + 0, f where f is an arbitrary
function satisfying Of = 0. By expanding A, in the Fourier series, A,(z) = [ d®k a,(k) ethust
f(z) = [ &Pk f(k:) ethut (—kg = k° = |k|), show that the residual gauge freedom can be used to choose a
gauge in which Ay = 0 (called the Coulomb gauge).

9. An electromagnetic field with its amplitude slowly varying over a scale L sufficiently larger than its
characteristic wavelength A can be approximated by a plane wave. To do so, one chooses the Coulomb gauge

(OA =0, 9;A° = 0), sets A’(x) = a’(x) ¢"*(*) and assumes

i al _ Sy 1 S 1 S

where ¢ = A/L < 1. One can then derive equations at each order of ¢, which is called the geometric optics
approximation.

(a) From the equations of O(e=2) and O(e~1), derive
0,S0"S =0, d'9;8S=0, (1)
20,a'0"S +d'0S = 0. (2)

Eq. (1) shows that k, := §,S gives a 4-dimensional wavenumber vector on scales much smaller than [, and
has the property a’k; = 0, i.e., A® is transverse.

(b) Let |a|? = afa’. Show that Eq. (2) then gives
Ou(|a)?0"S) = 9, (N*) =0; N* :=l|a|*k". (3)

Also, define the 4-dimensional Poynting flux by S# := (pe, S%). Noting A = Re(ac’®) and w = k ¢, show that
the time average of S* is given by

w k*
<Su>timeaverage = . |Cl|2 oxw N,

Recalling that 7w gives the energy of a photon in quantum theory, Eq. (3) describes the photon number
conservation.



10. Show that the retarded Green function satisfying —O G g(x — ') = §*(x — 2’) can be concisely expressed as

11.

12.

13.

d4k’ eikw
G = =
r(®) / (2m)4 k2 — dek®’
where k* = —(k°)? + k%, ¢ is an infinitesimal positive constant, and the integral is over all real values of

(kY k' k2, k3). Similarly, show that the advanced Green function is expressed as

d4k’ eikw
Galz) = / (2m)* k2 + iek®

Solve the equations of motion of a charged particle,

dut q dx#
T pary,. p_ 4"
dr me e " dr
. dzt
under the following situations, with ¢'(0) = dff (0) = (v,0,0) as the initial condition at ¢t = 0.

(a) Under the presence of a homogeneous magnetic field along the z3-axis, B' = (0,0, B).

(b) Under the presence of a homogeneous electric field along the z!-axis, E* = (E,0,0).

dE 2¢° d
(c) Calculate the rate of the radiated energy, i 3%12“12& ( = d_) for each of the cases (a), (b) above.
e T

Under the slow motion approximation, the vector potential A# of the radiated field in the wave zone is
expressed in the Lorentz gauge (9, A" = 0) in the series form as

1 o . i
—/J“<tR+L,r’)d3r’ (tR::t—z, nlzr—)
cr C C T

1 1 (' \b o
- _ - _Nt /d3/.
cr/%ﬂ( ¢ ) 3tZJ(R’r) :
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We set
Q:/p(t,r) d3r, di(t) :/p(t,r) rdr,

where J? = pec. @Q is the total charge of the source and d’ is the electric dipole moment.

(a) Express A” = ¢ to the order £ = 1 in terms of @ and d'.

(b) Using the charge conservation law d,.J# = 0, express the order £ = 0 term of A’ in terms of d’.

(c) Show that there exists a gauge transformation that eliminates the order £ = 1 term of A° and derive A’ in
this gauge, say .

By emitting radiation, a reaction force acts on the particle. Assuming the effect of the reaction is small, it is
known that the equations of motion 1s modified to be

dut 2¢% /.. ut .
m—— =g+ Bl Flu=33 ( N ) '

The radiation reaction force Fﬁad 1s known as the Abraham-Lorentz-Dirac force.

(a) Show F*

rad%p = 0.
. S 2¢* . .
e rate of the energy-momentum radiated by the particle is given by = —uu u”dr. Assumin
b) The rate of th g t diated by th ticl g by dP* 350‘ Fdr. A g
c
the acceleration of the particle vanishes at 7 = o0, show

/ FruaddT: —/ dP" .



