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1. Introduction
e Horizon problem

ds* = —dt* + a*(t)d¥® +  Einstein eqgs.

a 4 :
= = (p+3p) ||p+3p>0 < decelerated expansion
a
Ifact",thenn(n—-1) <0 = 0<n<l1
2 2 2 =2 dt
ds* = a’(n) (—dn? 4+ dz?), dnz;.
(n: conformal time - - - maintains causality)

present

dn = +dx : light ray

: dt
last scattering = [— — 0 fort — O

surface a

> X




e Solution to the horizon problem

Existence of a stage a o< t" ||n > 1| in
the early universe

< p+3p <O

tdt
= /—:/d'n:oo!!
o a

e Entropy problem (= flatness problem)

A

present _,

last scattering
surface 7

Entropy within the curvature radius: N, ~ conserved

3
a T() 3 TO 3
N, =n ~(—] 1= —3/2>(—> ~ 1087
: ( Tm) (5) -2 o

T, ~ 107%V Hy ~ 10733V

Where does this big number come from?
“Huge entropy production in the early universe”



§2. Single-field slow-roll inflation

Universe dominated by a scalar field:

p =3¢+ V(e) ,
, S pt3p =2 — V(9)
p=5¢0*— V(o)

. a A7 G
if ¢ <V(p) = ;I—T(P+3P)>O

accelerated expansion ‘

* Chaotic inflation (or Creation of Universe from nothing)

(Linde, Vilenkin, Hartle-Hawking, - - -)

J\V(¢)
/. Pinitial S mf}l ~ (1019 GeV)4

- quantum gravitational

\ 4

if V'(¢) < m,, then ¢ > my



e Equations of motion:

b+ 8H$ +V'(¢p) =0 (H < my initially in chaotic inflation)

friction
, v ¢
= ~ — slow roll (1 == — | K1
b= ™) i
H = —4nG(p —|—p) = — 4G P>
= 2T ( +V(6)
3 \2
87G H 32
= H? ~ otential dominated (2 = —| =
Vie), (p (2)) 72~ avig) €
The slow-roll condition (1) is satisfied, provided that
\ Yl \ Vel H V2
<1, ~ <1

9H? ~ 247GV 3H?2  487GV?2

- Slow-roll inflation assumes that the above two are fulfilled.
(Note that these are not necessary but sufficient conditions.)

- There are models that violate either or both of the above two conditions.
(Need special care in the calculation of perturbations)



e e-folding number of inflation a oc e Y

_ K _ * H ~ *V _ 2 2 ¢ \°
g 1
1
slow roll V = §m2¢2

Vo)

7

For V(¢) ~ (10"GeV)*, N(¢) = 60 solves horizon & flatness problems

1
N(p) 260 at ¢ =23my for V = Emquz

Slow roll ends at ¢ < 0.2m, = Reheating (entropy generation)



§3. Generation of cosmological perturbations

1 1
Action: S = /d4ar; vV —g ( R — —g"¢ b, — V(qb)) .
167G 2

Cosmological perturbations are generated from quantum
(vacuum) fluctuations of the inflaton ¢ and the metric g,,.

e Scalar-type (density) perturbations
- g and ¢:

ds? = a? [—(1 1 2A4)dn? — 28,B dndz’ + <(1 + 2R + 2aiajHT> dwidmff],
o(t,x") = ¢(t) + x(t, 2")
A : Lapse function (~ time coordinate) perturbation

B : Shift vector (~ space coordinate) perturbation

Scalar perturbation has 2 degrees of coordinate gauge freedom.

(3) 4 (3)
R : Spatial curvature (potential) perturbation ( R=—FAR )
a

Hp : Shear of the metric (~ traceless part of the extrinsic curvature)

No dynamical degree of freedom in the metric itself.



* Action expanded to 2nd order (in the Hamiltonian form)

cf. Garriga, Montes, MS & Tanaka (1998)

52:/d’l’]d3$ <ZPGQ;—H3—ACA—BCB>

1
H, = —P? —4nG¢p'Prx +---, '=d/dn,
2a2 X
Ca=¢' P, +--- (Hamiltonian constraint),

Cp = Py, (Momentum constraint),
Q.={R,Hr,x}, P,={Momentum conjugate to Q,}.

- Gauge transformation [¢* = (T, 9;L)] is generated by C4 and Chp:

5,0 ={Q. [ (TCs+ LCx) d'a} (Q={Qu..P.})

P.B.



e Reduction to unconstrained variables a la Faddeev-Jackiw (1988)

1. Solve Cy = ¢'P, + --- = 0 with respect to P, and insert it into S;.

Also, insert Cp = P, = 0 into Ss.

2. The resulting S is a functional of {Pr, R, x}:

S; — S; [P’Ra R, X]

3. Since S, is gauge-invariant, S must be written solely in terms of gauge-

invariant variables. Indeed, we find

a’? 3)
AXxX, R:.=R-—-—x

S, =S,[P.,R.]; P.=P
2 2 | ] R+47TG¢’

This is in fact the same as choosing x = 0 gauge (called ‘comoving’ slicing).
i.e., R. is the curvature perturbation on the comoving hypersurface.

T =¥0 T

A energy flow line

R =0
= Y
_ \ — =
-
— \ —
|_
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e Useful geometrical gauge-invariant variables: = — =aH
a
op : : .
C:=R+ curvature perturbation on uniform density slices
3(p+ P)
(p = const.)
Re: =R+ H(v+ B) curvature perturbation on comoving slices

(hypersurface normal n* = u*")

{ = Re+ O(k?/H?a?)

® := R + H(B — Ht') curvature perturbation on Newtonian slices

(hypersurface shear = 0)

1
U:= A+ —[a(B— Hy)] Newton potential in Newtonian slices
a

* ¢ expressed in terms of & and W:

3SH® — 3H?V — ¢ 2V2®

= ¢ :
‘ 3H

3SH® — 3H2?U ,
(RR.~P— e on superhorizon scales




11

* S5 in the Lagrangean form:

a2¢/2 CL/
S*= [ dnd® R?2—(VR.)?); H=—=aH
2 / n L 2H2 ( c ( ) ) a a
. . . (3) 5
Equation of motion (for Fourier modes: A — —k*)
’ / ]
’R'c' + ZZ—R'C + kz’Rc =0; =z= ad — ad (ox a for slow-roll inflation) .
z H H

For k < H (& k/a < H),

R’

(&

z~! ~ decaying mode
0 ~ growing mode

- Growing mode of R, stays constant on super-horizon scales.

- This holds for adiabatic perturbations in general cosmological models.
(i.e., the existence of a constant mode)

But this does not mean that R. is constant on super-horizon scales.
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e Inflaton perturbation on flat slicing

Alternatively, in terms of x on R = 0 hypersurface (flat slicing),

ol @’
P ——R :——Rc
XF = X" H

a2
S = Silur) = [ dnd®e % (xo? = (Vxe)* - aPmi 3 )
a?(¢'/H)'Y d [V
mgff — —{ (¢"/H) } = 8;V—|— 16mG— (—)
a* (¢'/H) dt \ H
XF ~ minimally coupled almost massless scalar in de Sitter space

(. B;V < H?,167G(V/H) ~ 6 H < H? for slow-roll inflation.)

N.B. the sufficient conditions for slow roll were G;V < 3H? and H < 3H?Z.

- de Sitter approximation for the background:
1
—Hn

This is a good approximation for k > H (sub-horizon scale) modes.

H = const., a(n) = (—o0 <1 < 0)



e Canonical quantization
953 [x ]

5X3:‘(77’ Cl_f) ’ [XF(T’a f)97"-(7775)] = ’L(s(if — f)

77(77356) —

_ ik-Z . A~ AT M
/ (2 )3/2 ka:(n) € + h-C-) ) [aka a,‘g‘/] =4d(k — k')

2 .
.e . _* . — 2
<~ Xk+3HXk+(;+m§ff> Xt = 03 XEXk—X,;‘X;;’:g
(in terms of the cosmic proper time t)
slow roll = mgff <& H? ~ massless
de Sitter approximation:
( N 1 e—ikzn
H ] k/H—)OO '\/ Zka
= Xk = (i —kn)e™
(2k)3/2 H .
N e—lak
| k/H—0 /23
Ark3 H\?
2 U2\ — 2
<6¢ >k‘0n flat slice = <XF>k: — (27.‘.)3|Xk| — (%) for k S’ H
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- de Sitter approximation breaks down at k < 'H.
i.e., the time-variation of x; on super-horizon scales cannot be neglected.

- However, the corresponding k-mode of R. becomes constant on super-
horizon scales.

H H?(ty)  _,,
=  Rer(m) = Rer(mi) = ~% Xk (k) = NGTEAT )e k
k
log L
| N@p)
.-
t ' og a

t=1t, < mn=m < k=H(n) ---horizon crossing time



e Curvature perturbation spectrum (say, at n = ny)
Ak’ Ak’ H?2\?
R2) = Pr (kin) = Ror(n)? = . )
(R2), = GossPeclism) = s R = (5= |,
Since dN = — H dt,
ON H
0¢

0¢p 27 O0¢

That is, for single-field slow-roll inflation,

ON H ,
Re = 0N |i=y, = 8—¢5¢ . (0 = %) on flat slice

) ON H\* ON _ \° ,
- = <Rc>k — (— —> | ( qb) ‘ on flat slice
10 t=t, t=ty,

Only the knowledge of the homogeneous background is sufficient
to predict the perturbation spectrum. “0 N-formula”

If (R2), o k"~
n = 1 : scale-invariant (Harrison-Zeldovich) spectrum

n =1 — e (e K 1) for chaotic inflation (V (¢) o< ¢P).

15



e Large angle CMB anisotropy
10

(%T) (V5 m0) = (& + ©) (Ndecs € (Ndec)) + /n dn 9,09(n,Z(n))

dec

(Sachs-Wolfe) (Integrated Sachs-Wolfe)

¢+ ~ curvature perturbation on Pphoton = const. surfaces

O=v -9

?(ndec)

T no
/ dn is along the photon path.
n

\ 0 / dec
Last Scattering Surface

\/

16



For a dust-dominated universe at decoupling,

1 2
SW: (+0=~—_( ——Sa
¢ = ¢ = S
Cx ~ (initial) adiabatic curvature perturbation
5pd 35pr .
Sgr = — — — ~ entropy perturbation
pa 4 pr

For standard adiabatic perturbations,

50 + 3 5 1
PTG |, Py, - G+ O~ Y

Re(=C) = “3(p+p) 3

17



e CMB Observation vs Inflation Model
COBE-DMR: ApJ Lett. 464 (1996); WMAP: astro-ph/0306132

oT ’ —10 o
T ~ 10 at 0 ~ 10

J
k 1 1
<\Ilz>k ~ 10710 at =2 = H, ~ ~

ao 3000 Mpc  102%%cm

1
For V = 5m2¢2’

= (3) = () (25)

m ~ 1013GeV
V ~ (10'°GeV)*

2
m
R —5 N?%(¢)

kg
a

=H

e power-law index: nwyap = 0.93 4= 0.03 (for scalar perturbations)

Slight deviation from scale invariant spectrum (n = 1)
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e Tensor type perturbation

ds? = —dt*+ a*(t) (6;; + hyj) dz'dx?

h;; --- Transverse-Traceless
§°Se = : /d4$ a’® | hij — i(th'j)2
647G a?
1 1 1
= — d4wa3('2.——V 7;'2) s A —hz
2/ Pij a,2( 903) sy Pij BonCe J

¢i;j ~ massless scalar (2 degrees of freedom)

W= 2x (1)

T
2 H )\ 2 8 2
= (hj=2X321GX | —| =——
TJ 27 ™ my,
contribute to CMB anisotropy
T  tensor N (h?j o ¢_2

S scalar (R2) ~V

T
slow roll = 3 L1.

ko=aH

T 1
i 0.13 for V = §m2¢2 (small but non-negligible)



e Model dependence

* power-law inflation

V(¢) x exp[A¢p/my]| «— dilaton in string theories 7

167
axt* (a=—
2\2
T
= n<]., gZO.l

* hybrid inflation < supergravity-motivated 7

1 5 1 1
e.g., V(¢,%) = —— (M*—Mp*)" + -m?¢* + —g°py’
4\ 2 2
8wl
axellt, H?’=x~ T Vo when ¥ =0,¢ > M/g.

= n>1, S can be large or small.
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84. Perturbation spectrum in non-slow-roll inflation

Leach, MS, Wands & Liddle (2001)

Curvature perturbation on comoving slice:
2

Rel pina = Re(tr) = ( ) for slow-roll inflation
k=aH

quﬁ

What if slow-roll condition is violated?

e Reconsideration of EOM for R.:

z' d ap ag’ a’
R'+ 2R +k*R.=0; '=—, =z= ¢ _ad , H=—.
z dn H H a
Two independent solutions for k? — 0:
u(n) =~ const. .-+ ‘“growing mode”
UES d:r’,
v(n) = /n 2(7) -+« “decaying mode” (7. --- end of inflation)

e v — 0 as n — 1, by definition, but u is arbitrary.

e In slow-roll inflation, v(n) K v(nk) for n > n  (|kn| ~ k/H K 1)

e v may not decay right after horizon crossing in general.
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e Long-wavelength approximation

0. ©) Z,
u(n) = Z un(n) K, .+ 2;u;+1 = —u,, ug= const.
n=0

To O(k?),
u = ug + [Cy + C2Do(n) + F(n)] uo;

T / Zz(nk) .
Dy(n) = 3H(nx) dn 2(op) .-+ lowest order decaying mode
n =N
e dn U
F(n) =k / Ty z*(n")dn” .
n 22(0') Ju

F —0 as n —mn. (F behaves also like decaying mode)

* Convenient choice for the “growing mode”:
F

C,=0, C2:—D—§ Fk:F(nk)a Dk:DO(nk)
k

Dy(n)

u(ne) = u(n.) o' (m) = 3 Eulne) (Mo = )

=  u(n) =~ |1— Fy -I-F(??)]uo;
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x Decaying mode accurate to O(k?):

PR 2C) B v 2 () uR ()
vl = (n)f?(m:)’ D(n)_gﬁk/n M A yaR(r)

* (General solution for R.:

Re(m) = au(n) +pBv(n); a+B=1, Rdn) = u(n).

= Re(nx) = au(ny) = au(n) = aRe(nk)

3(1 — a)Hypu ()

R:;(le) = u' () —

D(le:)
= 1+ D [R,C u,]
o~ —_ .
3Hk RC u n=n
D, ,
= RC(n*) ~ (1 - Fk) RC(nk) + Rc(nk:)
3H

Rc(m)| > |Re(mr)| if Frp > 1 and/or D > 1




* Leach-Liddle model Leach & Liddle (2000)

Quartic potential with vacuum energy:

M* 6ar?
V@)= |1+B ¢ B=055
4 m l
D
4 | | | |
10— nane
- e _ O
10 l ' l " T T T
102_ 1 10
1074
O = e,
100k ————— N ] :
t .5, _ -
| | -
1072k ol _ ol
10 L
-10 -5 o . - 1o
N -
10—14

Inflation suspended
at ¢ ~ my;




To summarize,

e Spectral formula for non-slow-roll inflation:

Re(m) = (1— F) Re(m) + Dyer (kd Rcmk))

3Hk d’l7
1 2% ()
Mk z2(n’) ’

’ e\ 2
F, = kz/ dn’ /77 2(n")dn'" 22— %
— , —
u z%(n’) u H

® R.(n«) in linear combination of R/ (7;) and R.(n;) with coefficients
expressed in terms of background quantities.

* For slow-roll case, we have Dy ~ 1, F;, ~ 0 for k/H; < 0.1
= Re(ns) = Re(mr)-

* For non-slow-roll case, an enhancement of R. can occur:

- A sharp dip appears in the spectrum at Fj, ~ 1.
- A kink appears at Dy 2 1.

25
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§5. Extension to multi-field inflation MS & Tanaka (1998)

e n-component scalar field:

qu =— [d'z ?—g (glwvugg' Vu$+ V(QB)) 3

$.$:5pq¢pqﬁq (p,q:1,2,---

e Homogeneous background solutions:

(N as a time coordinate; a = e™)

G% =TY%: (units : 877G = 1)
1. 1 . do
H2(1- 8 ) =-V; = 7
< 6¢N> 3 PN =N

Scalar field equation :

+3 H2 ]qbp + VP =o0.

H
[dN dN

s ).
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General solution is parametrized by 2n parameters:

{6=000), # =70} (7 =He"¢y)
A ={N, A} (a=1~2n, a=2n~2n)

1
0 N = /4 = const.

—_—

A% can be regarded as a new set of phase space coordinates for the homoge-
neous solutions.

solution is labeled by A* (a = 2,3,---,2n)
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e Metric perturbation: (expanded in spherical harmonics)
ds® = a?(n) [—(1 + 2AY)dn? — 2BY, dyda?
+((1 +2H V)8 + 2HTY}j)da:idazj],

e Scalar field perturbation: ¢ — 5(77) +6pY

(3) 1
(A+K)Y =0, V; = -k~ 'V,Y, Y;; = k°V;V;Y + §5in-

—~

e Perturbed e-folding number IV:

~ L | , d
N = N + R — ko, | Y dn, -
10 3 dn

H
R = Hjp + ?T : curvature perturbation on 3(n)
ko, = H;, — kB : shear of X(n)

6N =0 for R' — tkoy, =0 (H;, = B = 0)

“Constant e-fold gauge”
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e Super-horizon scale perturbation on R’ — %kag — 0 slices

(constant e-fold (§IN = 0) gauge at k?/a? < H?)

A& bsd
0H H2pn - 60 V. 5P .
— = —A= O - 0PN + Vip0P < A is subject to d¢.
H 2V
[Hi (Hi> n 3H2i] S + VP 607 +2VIPA — H2¢E (B - 6BN) = 0.
dN \""dN dN a N
This turns out to be the same as the equation for 85/8)\0‘. Hence,
. dp d¢ 9
0p = c* 4 AY = {N,\}; ? o ? : time-translation mode
o™, o\l ON

55 in this gauge is completely decsribed by the knowledge of
(a congruence of) background solutions.
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R & ko

From §G°; = §T°; and traceless part of 6G*; = 6T";,

a NdN 3CaW(a)
R:CW(G) 3—, kO'g:—z;
Ny a H a
a’H? (don R — - df(a) _ const
@ = oy \dNn AT TN TGN ’

L, _ 94

X(a) = e

where W) = 0 and [V, is an arbitrary constant.

(One can always choose A such that W) # 0 and W(,) = 0 for a = 3 ~ 2n.)

* Perturbation in the constant e-fold gauge is parametrized by 2n + 1 param-
eters {IV,,c”}:

¢
o’

NdN 3c*W ()
— ko, = —.
a’H’ g

55200‘

a’

A= A@d), R =c"Wy /N
J

one gauge degree of freedom.
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e (Gauge mode
An infinitesimal change of time slicing:

N — N —§,N,

R — R+ 64N, ko, — ko, + O(k?),
8¢ — 0+ dnO N .
The condition R’ — %kag = (0 is maintained for 5gN — const. in the limit

k?/a® < H?.
= (0¢p,R,ko,) = (cpn,c,0) is pure gauge.
Time-Translation Mode

U

Necessary to construct gauge-invariant quantities such as R..

e Construction of R,

Comoving slice condition ¢ - (ciqg)C — 0 defines a surface in the phase space
as

S (IV,0) - (B(IN + AN, A") — G(N,0)) = $n(N,0) - (66 + GNAN) = 0.
L)

PN
AN depends on x* only through its dependence on A“.

= AN(A%) =




- Gauge transformation to the comoving slice:
Re(AY) = R(AY) + AN(XY); A% = A¥(x")
SN -0 PN X
TR &
XF = 0¢ — $dnNR

LG 4 o o6 5 /NdN
= c | =—— — W .
N axe  WIN | a3H

XF ~ 55 on flat slice (contains all the information)

— R —

- convenient quantity for evaluating quantum fluctuations

* Change of IV, is absorbed by the redefinition of c'.

¢! ~ adiabatic growing mode amplitude

CaW(a) (: (32W(2) with W(a) = 0 for a Z 3)
~ adiabatic decaying mode amplitude

The rest (c*; a > 3) are entropy perturbations

Generally R. varies in time even on super-horizon scales

32
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e Slow roll limit:

Vip

1
— — | 2 __
< |</5N| = N = SHZ (InV)?P, H* = 3V.

Dy

2
1,
N < dN

2n-d phase space = mn-d configuration space
* Slow roll kills all the decaying modes:
55 =Xr, R=ko; =0 on dN = 0 slice

0N = 0 slice becomes equivalent to flat (R = 0) slice in slow-roll limit.

> 5
= ’Rc:AN:—M where Yp=C"— @ (a=1~n)
7 oA

* R. expressed in terms of (Xr)n=n, (/Vi: horizon crossing time)

ON ce . 98¢ . [oxe
XF — = ON - o3 C

O P N=N, ©% o\ P

Xr|n=nN, : to be evaluated by quantization

x* R. = AN at the end of inflation (H? = %V —=const. at N = Ny)

RC(N) - =

%G| L fa=2em

qu.aqb:_Ban:O N Rc(Ne):_[

ON p] B [aN
O\e O\e N

agr X dr W]

Np,
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§5. Summary

e Super-horizon scale perturbations are described solely by
(a congruence of) homogeneous background solutions.

* Correlations among various quantities can be easily calculated.
(e.g., correlation between entropy and adiabatic perturbations)

e Curvature perturbation R. may vary in time on super-horizon scales
either for multi-field or non-slow-roll inflation.
* R.~ AN in the slow-roll case.

* Large enhancement on super-horizon scales can occur even for single-
field inflation.

U

- Simple (slow-roll) models predict scale-invariant spectrum, but other,
more complicated spectral shapes are possible.

e Tensor perturbations may be non-negligible.
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On-going and future observations

— SDSS .-- ~ 10° galaxies
— MAP, PLANK ... CMB anisotropy map with resolution of 8 < 10’

U

Inflaton potential may be determined

4

Understanding of physics of the early universe (= extreme high energy
physics)



