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§1. Disappearance of massive states in RS braneworld
Dubovsky, Rubakov and Tinyakov, PRD 62, 105011 (2000)

For a bulk scalar with M in a RS2 (single) braneworld,
O5 = M6 =0; ¢ = u(2)n(a")

= [-b7(2)0:0%(2)0. + M?6*(2)] un = mi un, [0y —m2] ¢, = 0.
b(z) : (conformal) warp factor

-m? -+ separation constant (=effective 4d mass?).

- Bound state at m? = 0 (zero mode) only for M?* = 0.

- All massive states belong to (continuous) KK spectrum.

- However, for ‘outgoing-wave’ boundary condition,
there exists a ‘quasi-normal mode’,
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- Imaginary part describes decay into bulk.

M3 (M*? < 1)



§2. Bound states on dS branes and effective potential
Himemoto, Tanaka and MS, PRD 65, 104020 (2002)

For a dS brane with Hubble H, a massive bound state exists if M? < H?,
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How far does this picture work?




§3. Bulk scalar coupled to brane tension

1
S= [ @0v=5 (gt - 5007~ Vi0)) - [ dev=aolo
87G5Vs(0) = Ay = —6 ¢*
* Friedmann equation on the brane: Maeda & Wands (2000)
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If valid, perhaps related to AdS/CFEFT correspondence.




84. Exact solutions

Cai et al. ('98), Chamblin & Reall ('99), Langlois & R-Martinez ('01), - - -

V(6) = Vhexp (—%w) | o(g) = pexp (—%w) |

This gives a bulk solution:

2\2
ds* = —h(R)dT? + m R>dR2 + R*da?;
/4:2‘/0/6 2
hMR) = — — CRY 2
3\
¢ = Vs In(R); k*=87Gj
and Friedmann equation on the brane:
H2 /{’4 2 2%/6 R—2)\2 4+ CR_4_)\2.
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This conforms to the effective potential picture with
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Energy flows onto the brane if \? < 2.

and




§5. Mode analysis in the case of quadratic potential and coupling

V(g) = M, o(6) = oy + 56

2
- Assumptions:
AdSs5 background with dS brane at r = ry:

ds* = dr® + H*(* sinh®(r /€)(—dt* + cosh® HtdS)3));

1
Hl =
sinh(ro /)

No back reaction of ¢ to the geometry:.

- mode decomposition; ¢ = wu,(2)y,(t) (2 = coshr/f):
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bound state < p < 0 with ma) = (9/4 — p?)H>.

u=0 atz=z2.



e critical values of «a:
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(2, M) = a(p = —3/2;2, M) = —M*#*

ans(z, M) = a(p = 0,2, M) = (22 = 1)Y2P,_5(2)

X V1+ H?
where 2z =2y = 77

L Range of a (aps > a > )
0.8 | as a function of z:
0.6 .
oal W o M?*> = —1 (short-dashed),
0ol VN - - T T M?¢* = 0 (continuous),

ﬂ/ 2\\ B M?¢* =1 (long-dashed).
~0.2} ~ - T = = —= = —_ .

* Negative o favors the existence of bound state (tachionic state).



e critical values of a expected from the effective potential
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- These values agree well with those by mode analysis for H?¢* < 1.
- The agreement is quite good even for H2¢* < 1.
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§6. Quasi-normal modes for quadratic potential and coupling

For H*0? < M*(? < 1 and H** < a < 1,
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—Im[m%4)]/(M4€2) as a function of M/ (lower: z = 50, upper: z = 1000).
Both for a = 0. The real curves are analytical estimates.
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60 : - Evolution in the complex u-plane
when M varies (a = 0, z = 10),
o - o up to M¢ = 10 for each branch.
The increment is A(M/?) = 1.
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Variation when o changes (for M¢ =5, z = 10). The increment Aa = 1.
The big dots (e) correspond to the modes for ac = 0.
The points in red correspond to negative « and in blue to positive .

- Thus, when M/{ 2 1, there appear additional quasi-normal modes and
the number of qnm’s increase as M ¥ increases.

- The behavior of the quasi-normal modes in the complex p-plane as a
function of « is quite complicated when M£Z > 1.
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§7. Summary

- Effective potential approach gives a good description of the dynamics
on the brane when H*(* < 1.

- Decay of the scalar field out to the bulk may be evaluated by the imag-
inary part of quasi-normal modes.

- Distribution of quasi-normal modes becomes quite complicated when
M?> 1.
— Need more studies to make quantitative predictions.

- Application to inflation?

- Dynamical self-tuning of cosmological constant?



