
非平衡系の統計力学を研究しています。
主な研究手法は解析計算と数値シミュレーションです。

マクロ散逸系(粉体等)の基礎理論や、量子系の輸送現象や
ソフトマター、量子情報幾何といったものまで幅広く扱っています。

半導体デバイスの微細加工によって得られ
る量子ドットなどのメゾスコピック系にお
ける輸送現象を研究しています。 例えば、
平均的には電位差の無い系に電流が流れる
量子ポンプと呼ばれる現象の解析を行って
います。

粉体

量子輸送・量子測定

粉体のレオロジーに関する研究を行って
います。現在、一様剪断下での高密度粉
体の温度や粘性率の表式を液体論を用い
て求める理論的研究を行っています。

さらに、量子情報幾何など、量子論の基礎
にも関心を持って研究を行っています。

また、分子動力学シミュレーションも活
用しています。

k

非ガウスノイズ

ソフトマター

液晶高分子に関する研究を行っています。
右下図は、液晶高分子に左下図のような断
熱的に変化する二方向剪断を加えたときの
x軸周りの高分子の回転に対応する ,    
のパラメータ空間でのベリー曲率です。平
均剪断率が0であったとしても、パラメー
タ空間内でパラメータの変化経路が囲む領
域でのベリー曲率の積分が0でないならば
液晶高分子は非自明な回転を起こします。
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FIG. 1. (Color online) The density dependence of (a) the shear viscosity η̃′ and (b) the granular temperature. The result
of the theory is shown in (blue) solid line, while that for the MD is shown in (red) triangles, (blue) diamonds, and (green)
rectangles for γ̇∗ = 10−3, 10−4, 10−5. (Inset) The log-log plots for the results near ϕJ = 0.639.
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rel. The result for the shear rate
γ̇∗ = 10−4 is shown in (blue) solid line for the theory and
(blue) diamonds for the MD simulation.

transient data of the temperature relaxing to the steady-
state. We see that Eq. (7) is quantitatively valid for
ϕ < 0.63.
Discussions.– From Eqs. (16) and (17), we see that the

theory is subjected to the Bagnold scaling. The result of
MD shows that the discrepancy from the Bagnold scal-
ing becomes significant for ϕ > 0.635. Hence, there is
room for improving the theory to cover the non-Bagnold
regime. From the phenomenological scaling of jammed
granules, the viscosity exhibits η ∼ |ϕJ − ϕ|yφ(1−2/yγ),
where yφ and yγ are the scaling exponents for σxy ∼
(ϕ − ϕJ )yφ for ϕ > ϕJ and σxy ∼ γ̇yγ at ϕ = ϕJ [18].
If we assume yφ = 1 as in Refs. [2, 3, 18, 19], we have
yγ = 4/7, which is close to the value of Ref. [17] [63] . For
strongly dissipative situations, higher-order terms might
alter the exponents of the divergences. Such a contribu-
tion will be discussed elsewhere.

Concluding Remarks.– We have developed a theory for
jammed frictionless granular particles subjected to a uni-
form shear with the aid of an approximate nonequilib-
rium steady-state distribution function, and have shown
that it remarkably agrees with the result of the MD simu-
lation below the jamming point without introducing any
fitting parameter. There are many future tasks for the
application of our theory, such as the emergence of the
shear modulus above the jamming point [2–5], the effect
of friction for grains where the discontinuous shear thick-
ening appears [64], the drag force acting on the pulling
tracer [65–69], etc. Moreover, we should stress that the
framework of our theory is quite generic. Indeed, we
believe that the divergence of the viscosity for colloidal
suspensions, η ∼ (ϕJ − ϕ)−2 [70], can be understood by
our framework. Therefore, the theory is expected to be
applicable to a wide variety of phenomena in nonequilib-
rium processes.
The authors are grateful to S.-H. Chong and M. Otsuki

for their contributions in the early stage of this work
and extensive discussions. They also thank M. Fuchs,
M. E. Cates, M. Wyart, K. Saitoh, A. Ikeda, and K.
Kanazawa for fruitful discussions and comments, and M.
Otsuki and S. Takada for providing the prototype of the
program for the MD simulation. This work was partially
supported by Grant-in-Aids for scientific research (Grant
Nos. 25287098). The MD simulation for this work has
been carried out at the computer facilities at the Yukawa
Institute for Theoretical Physics, Kyoto University.

Appendix A: Microscopic starting equations

We introduce the system we consider, i.e. a three-
dimensional system of N smooth granular particles of
mass m in a volume V subjected to stationary shearing
characterized by the shear-rate tensor γ̇µν = γ̇δµxδνy.
The time evolution of the system is determined by the
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transient data of the temperature relaxing to the steady-
state. We see that Eq. (7) is quantitatively valid for
ϕ < 0.63.
Discussions.– From Eqs. (16) and (17), we see that the

theory is subjected to the Bagnold scaling. The result of
MD shows that the discrepancy from the Bagnold scal-
ing becomes significant for ϕ > 0.635. Hence, there is
room for improving the theory to cover the non-Bagnold
regime. From the phenomenological scaling of jammed
granules, the viscosity exhibits η ∼ |ϕJ − ϕ|yφ(1−2/yγ),
where yφ and yγ are the scaling exponents for σxy ∼
(ϕ − ϕJ )yφ for ϕ > ϕJ and σxy ∼ γ̇yγ at ϕ = ϕJ [18].
If we assume yφ = 1 as in Refs. [2, 3, 18, 19], we have
yγ = 4/7, which is close to the value of Ref. [17] [63] . For
strongly dissipative situations, higher-order terms might
alter the exponents of the divergences. Such a contribu-
tion will be discussed elsewhere.

Concluding Remarks.– We have developed a theory for
jammed frictionless granular particles subjected to a uni-
form shear with the aid of an approximate nonequilib-
rium steady-state distribution function, and have shown
that it remarkably agrees with the result of the MD simu-
lation below the jamming point without introducing any
fitting parameter. There are many future tasks for the
application of our theory, such as the emergence of the
shear modulus above the jamming point [2–5], the effect
of friction for grains where the discontinuous shear thick-
ening appears [64], the drag force acting on the pulling
tracer [65–69], etc. Moreover, we should stress that the
framework of our theory is quite generic. Indeed, we
believe that the divergence of the viscosity for colloidal
suspensions, η ∼ (ϕJ − ϕ)−2 [70], can be understood by
our framework. Therefore, the theory is expected to be
applicable to a wide variety of phenomena in nonequilib-
rium processes.
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program for the MD simulation. This work was partially
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Nos. 25287098). The MD simulation for this work has
been carried out at the computer facilities at the Yukawa
Institute for Theoretical Physics, Kyoto University.

Appendix A: Microscopic starting equations

We introduce the system we consider, i.e. a three-
dimensional system of N smooth granular particles of
mass m in a volume V subjected to stationary shearing
characterized by the shear-rate tensor γ̇µν = γ̇δµxδνy.
The time evolution of the system is determined by the

非ガウスノイズに関する研究を行っていま
す。下図は色のついた点が実験によって得
られたコロイド粒子の変位の分布で、黒い
線が我々が導入したモデルから理論的に求
めた分布です。変位が小さい領域でのガウ
ス分布と、大きい領域での指数分布をよく
再現しています。
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FIG. 1. Time-evolution of (a) the mean-square displacement (MSD), and (b) the non-Gaussian parameter (NGP). The MSD saturates
for a steady cage (solid black line), corresponding to a vanishing NGP. (c) Comparison of the theoretical prediction of the distribution of
displacement with that of colloidal particles at density ' = 0.429 taken from [10]. (d) Theoretical distribution of displacement scaled
by the standard deviation of the central Gaussian part corresponding to a binary Lennard-Jones glass-forming mixture for different
temperatures at the ↵ relaxation time [35]. See the details in [36].

fer to such a process as a directed event, by contrast to the
passive diffusion of the particle within the cage.

We consider a particle confined within a harmonic cage
of typical size �. We introduce the time scale ⌧R quantify-
ing the time needed by the particle to explore the cage. The
fluctuations of the particle in the cage are driven by a noise
of amplitude D = �

2
/⌧R. To account for structural rear-

rangements, we assume that the central position of the cage
is subjected to random shifts. This is to mimic the modifi-
cation of the metastable state explored by the particle. The
cage hops instantaneously by a random distance, which
is exponentially distributed with a characteristic hopping
length ". The time between two consecutive hops is also
exponentially distributed, with a mean value ⌧0. After a
cage rearrangement, the particle relaxes towards the new
cage position. We regard such relaxation as an equilibrium
process. The fluctuation-dissipation theorem enforces that
the relaxation time should equal the typical time of explo-
ration ⌧R. We end up describing the one-dimensional dy-
namics of the particle position x as

dx
dt

= �x(t)� x0(t)

⌧R

+ ⇠G(t),
dx0

dt
= ⇠NG(t), (1)

where ⇠G is a zero-mean Gaussian white noise with corre-
lations h⇠G(t)⇠G(t

0
)i = 2D�(t� t

0
). More realistic higher-

dimensional generalizations do not induce any physical dif-
ference with the one-dimensional modeling we adopt here.

Our motivations for the explicit form of the noise ⇠NG act-
ing on the cage are twofold. One the one hand, we expect
the rare intermittent events behind the ↵ relaxation to be
unable to build up uncorrelated Gaussian statistics. On the
other hand, we choose a specific form which has the ad-
vantage of allowing for a closed form analytic solution that
will ease the subsequent analysis. It leads us to consider a
zero-mean non-Gaussian white noise with cumulants

h⇠NG(t1) . . . ⇠NG(t2n)iC
= (2n)!

"

2n

⌧0
�2n(t1, . . . , t2n). (2)

We decouple caging and hopping dynamics, so that ⇠G and
⇠NG are uncorrelated processes. For symmetry reasons, only
the 2n-time correlation functions of ⇠NG are non zero. We
will give arguments on the robustness of our results with
respect to the noise statistics, as long as the absence of per-
sistence time is conserved. We will explicitly demonstrate
that the scale invariance of the small displacement distribu-
tion is indeed insensitive to the specifics of the hop distri-
bution, but the exponential crossover regime to a Gaussian
rests on a typical exponential distribution of cage hops.

We distinguish the passive and active fluctuations of the
particle. The former are associated with the confined mo-
tion of the particle in a steady cage, as measured by D.
The latter are induced by the cage hops, thus describing the
motion in a non-confined environment characterized by the
diffusion coefficient DA = "

2
/⌧0. The coexistence of both

Gaussian and non-Gaussian noises is crucially important to
enhance non-Gaussian nature [37].

Mean-square displacement and non-Gaussianity.—As a
first insight into the dynamics of our model, we study the
time evolution of the mean-square displacement (MSD),
controlled by three independent parameters {D,DA, ⌧R}.
It is diffusive at short and long times with diffusion coeffi-
cients D and DA, respectively [Fig. 1(a)]. The predictions
for a steady and a hopping cage coincide at times shorter
than t

⇤
= ⌧RD/DA = ⌧0(�/")

2, referred to as the pas-
sive regime. This shows that the effect of the active fluc-
tuations is hidden as long as the typical distance covered
by the cage "

p
t/⌧0 is smaller than the cage size �. Be-

tween the two diffusions, a plateau regime appears when
DA ⌧ D, as an evidence of the cage effect, and we ob-
serve a transient superdiffusion if DA � D. The time
when the MSD deviates from the plateau, equal to t

⇤, can
be shifted to an arbitrary large value. Conversely, the time
when superdiffusion arises, also equal to t

⇤, can be arbi-
trarily short [30, 36]. Our model contains the existence of
ballistic directed events, as assessed by the superdiffusion,


