### ブラックホール時空の

### 幾何学と

### 流体的記述

#### 棚橋 典大

中央大学理工学部

ブラックホール時空の 幾何学と流体的記述

#### ■特殊相対性理論: 光と時計の理論

時間+空間 → 時空

#### ■一般相対性理論: 重力(~ 時空のゆがみ)の理論

- 基礎方程式: アインシュタイン方程式
- 代表的な解: ブラックホール解

#### ◆ブラックホールの性質

- 時空の因果構造、ブラックホールの定義
- ・ブラックホール地平面の幾何学的性質(極小曲面)
- ブラックホール地平面の流体的記述



- I. 特殊・一般相対性理論
- 2. ブラックホール時空
- 3. ブラックホール地平面の性質
  - ・事象の地平面 (event horizon)
  - ・見かけの地平面 (apparent horizon) ~ 極小曲面
- 4. ブラックホール地平面の流体的記述
  - ・一般相対性理論の Large D 極限

• 特殊相対性原理

「すべての<mark>慣性系</mark>は物理的に等価である」

・慣性系: 速度一定の(座標)系



• ニュートンカ学: ガリレイ変換に対して不変な理論

$$\begin{cases} t' = t \\ x' = x - v t \\ y' = y \end{cases} \quad \frac{d^2 \vec{x}}{dt^2} = \frac{\vec{F}}{m} \text{ in } 0 \quad \Leftrightarrow \quad \frac{d^2 \vec{x'}}{dt'^2} = \frac{\vec{F}}{m} \text{ in } 0'$$

「混相流」勉強会第2回

- 特殊相対性原理
  - 「すべての慣性系は物理的に等価である」
  - → 「光の速さは任意の慣性系で一定である」 (光速度不変の原理)
- ・慣性系: 速度一定の(座標)系



・ガリレイ変換と光速度不変の原理は両立しない

 $\begin{cases} t' = t \\ x' = x - v t \\ y' = y \end{cases} \quad O 系の光速 c \Rightarrow O'系での光速 c' = c - v \neq c \end{cases}$ 

- 特殊相対性原理
  - 「すべての慣性系は物理的に等価である」
  - → 「光の速さは任意の慣性系で一定である」 (光速度不変の原理)
- ・慣性系: 速度一定の(座標)系



・ローレンツ変換:光速度不変の原理を守る座標変換

 $\begin{cases} t' = \gamma(t - v x/c^{2}) \\ x' = \gamma(x - v t) \\ y' = y \end{cases} \rightarrow 0$ 系の光速  $c \Rightarrow 0$ '系での光速 c' = c  $\checkmark$  特殊相対性原理 = 「物理法則はローレンツ不変」  $\gamma = 1/\sqrt{1 - (v/c)^{2}}$  ✓ 時間 + 空間  $\rightarrow$  時空

- 特殊相対性原理
  - 「すべての<mark>慣性系</mark>は物理的に等価である」
  - → 「光の速さは任意の慣性系で一定である」 (光速度不変の原理)
- ・世界間隔、Minkowski計量

微小に離れた2点  $x_1^{\mu} = (ct_1, x_1, y_1, z_1), x_2^{\mu} = (ct_2, x_2, y_2, z_2)$ の間の 世界間隔  $ds^2$ を次で定義(距離の一般化。ローレンツ不変量)  $ds^2 = -(c dt)^2 + dx^2 + dy^2 + dz^2 \equiv \sum_{\mu,\nu=0}^{3} \eta_{\mu\nu} dx^{\mu} dx^{\nu} \equiv \eta_{\mu\nu} dx^{\mu} dx^{\nu}$  $\eta_{\mu\nu} \equiv \text{Diag}[-1,1,1,1]$ : Minkowski計量

・光円錐

ある地点から出る光がなす波面上で  $c dt = \sqrt{dx^2 + dy^2 + dz^2} \Leftrightarrow ds^2 = 0$ 2点の因果関係:  $ds^2 \begin{cases} < 0: 「時間的」 a \\ = 0: 「光的(ヌル)」b \\ > 0: 「空間的」 c \end{cases}$ 





#### 一般相対性原理

「すべての基準系は物理的に等価である」 慣性系だけでなく、非慣性系(加速度系)でも物理法則は不変



・等価原理

「局所的には、重力と加速度運動による見かけの力は等価」



#### · 一般相対性原理

「すべての<mark>基準系</mark>は物理的に等価である」 慣性系だけでなく、<mark>非慣性系(加速度系)でも物理法則は不変</mark>

・等価原理

「局所的には、重力と加速度運動による見かけの力は等価」

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$
  

$$\eta_{\mu\nu} \equiv \text{Diag}[-1,1,1,1]$$
  

$$\dot{P} = x^{\mu}(x'^{\nu})$$
  

$$ds'^{2} = g_{\mu\nu} dx'^{\mu} dx'^{\nu}$$
  

$$g_{\mu\nu}(x'^{\alpha}) = \eta_{\rho\sigma} \left(\frac{\partial x^{\rho}}{\partial x'^{\mu}}\right) \left(\frac{\partial x^{\sigma}}{\partial x'^{\nu}}\right)$$

 $\blacktriangleright$  「曲がった」時空  $g_{\mu\nu}(x^{\rho})$  を導入する必要が生じる

▶ 重力場中の粒子の運動 = 曲がった時空中の「直線」運動



#### 一般相対性原理 +等価原理

→ 重力理論 = 曲がった時空の物理理論

◆曲がった時空を記述するための道具 = リーマン幾何学

◆時空の曲がり具合を決める方程式 = Einstein方程式

・一般相対性原理 +等価原理
 → 重力理論 = 曲がった時空の物理理論

◆曲がった時空を記述するための道具 = リーマン幾何学 ◆時空の曲がり具合を決める方程式 = Einstein方程式

✓ スカラー φ, ベクトル V<sup>μ</sup>, テンソル T<sup>μν</sup>:  
座標変換x<sup>μ</sup> = x<sup>μ</sup>(x<sup>νν</sup>)に対する変換性で定義
$$\phi(xμ) = \phi(xμ(xνν)) \equiv \phi'(xνν), \quad Vμ = \left(\frac{\partial xμ}{\partial xνν}\right) Vνν, \quad Tμν = \left(\frac{\partial xμ}{\partial xνρ}\right) \left(\frac{\partial xν}{\partial xνσ}\right) Tνρσ$$
✓ 計量テンソル g<sub>μν</sub>:  $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$  (V<sub>μ</sub> ≡  $g_{\mu\nu} V^{\nu}$  etc.)
✓ 共変微分 V<sub>μ</sub>: 曲がった空間における微分

$$\begin{aligned}
\nabla_{\mu}g_{\nu\rho} &= 0 \qquad \left(\nabla_{\mu}g_{\nu\rho} = \frac{\sigma}{\partial x^{\mu}}g_{\nu\rho} - \Gamma^{\sigma}_{\mu\nu}g_{\sigma\rho} - \Gamma^{\sigma}_{\mu\rho}g_{\nu\sigma}\right) \\
\checkmark & \text{曲率テンソル} R_{\mu\nu\rho\sigma} : g_{\mu\nu}(index) \\
& (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu})v^{\rho} = R_{\mu\nu}^{\rho}{}_{\sigma}v^{\sigma} \qquad \left[R_{\mu\nu\rho\sigma} = -\frac{1}{2}\partial_{\mu}\partial_{\rho}g_{\nu\sigma} - \cdots\right]
\end{aligned}$$

·一般相対性原理 +等価原理

→ 重力理論 = 曲がった時空の物理理論

◆曲がった時空を記述するための道具 = リーマン幾何学

◆時空の曲がり具合を決める方程式 = Einstein方程式

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$G: = 2\pi - 1 + 2\pi D = 2\pi D$$

- ・計量 $g_{\mu\nu}$ とその微分 $R_{\mu\nu\rho\sigma}$ で与えられるテンソル方程式のうち、
  - ✓ 重力場が弱いときにニュートン重力の方程式に帰着する
  - ✓ 保存則を満たす 等といった条件を満たす式として導出される。
- 真空についてのEinstein方程式:  $R_{\mu\nu} = 0$  (リッチ平坦)



I. 特殊・一般相対性理論

### 2. ブラックホール時空

### 3. ブラックホール地平面の性質

・ 事象の地平面 (event horizon)

・見かけの地平面 (apparent horizon) ~ 極小曲面

4. ブラックホール地平面の流体的記述

・一般相対性理論の Large D 極限

ブラックホール時空

◆真空Einstein方程式  $R_{\mu\nu} = 0$ の解の代表例

- 平坦(Minkowski)時空  $g_{\mu\nu} = \eta_{\mu\nu}$   $[R_{\mu\nu\rho\sigma}(\eta_{\alpha\beta}) = 0]$
- シュバルツシルト時空  $\begin{bmatrix} R_{\mu\nu\rho\sigma}(g_{\alpha\beta}) \neq 0 \end{bmatrix}$  $\begin{bmatrix} ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(d\theta^2 + \sin^2\theta \, d\phi^2) \\ f(r) = 1 - \frac{2GM}{r} \equiv 1 - \frac{r_g}{r} \qquad (r_g: シュバルツシルト半径) \end{bmatrix}$

ある地点から出る光がなす波面の接ベクトル  $V^{\mu}$  について  $g_{\mu\nu}V^{\mu}V^{\nu} = 0$ 電磁波(=光)の運動方程式:  $g^{\mu\nu}\partial_{\mu}\partial_{\nu}\phi + \cdots = 0$ ⇒ 電磁波の伝搬面について  $g^{\mu\nu}n_{\mu}n_{\nu} = 0$ 

2点の因果関係: $g_{\mu\nu}V^{\mu}V^{\nu}$   $\begin{cases} < 0: 「時間的」 \\ = 0: 「光的(ヌル)」 \\ > 0: 「空間的」 \end{cases}$ 



 $-g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}g_{\mu\nu} + \dots = 0$ 

ブラックホール時空 ◆シュバルツシルト時空の因果構造  $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$  $f(r) = 1 - \frac{2GM}{r} \equiv 1 - \frac{r_g}{r}$  (r\_g: シュバルツシルト半径) ・ r = 0 で曲率が発散 ( $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \sim 1/r^6$ ): 曲率特異点 

•  $r = r_q$ での発散を取り除く座標変換 $(t,r) \rightarrow (T(t,r), X(t,r))$ をかける

$$\left(\frac{r}{r_g} - 1\right)e^{r/r_g} = X^2 - T^2, \qquad \frac{t}{r_g} = \ln\left(\frac{X+T}{X-T}\right)$$

 $\Rightarrow ds^{2} = \frac{4r_{g}^{3}e^{-r/r_{g}}}{r}(-dT^{2} + dX^{2}) + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$ [クルスカル座標] 

$$\checkmark r = r_g \iff X^2 - T^2 = 0$$

ブラックホール時空

● この時空における光の軌道について調べる。
 ✓ 光の経路 = ヌル方向

✓ 動径方向の光の軌道を以下のように指定: (T, X) = (T, X(T))

⇒ 
$$ds^2 \propto -dT^2 + dX^2 = (-1 + \dot{X}^2(T)) dT^2 = 0$$
  
∴  $X(T) = X_0 \pm T$  が光の経路(外向き:+符号)

- ✓ 光の起点について分類
  - a:  $r > r_g$ の地点から出発
  - **b**: r = r<sub>g</sub>から出発
  - **c**: 0 < *r* < *r<sub>g</sub>*から出発

X

 $X_0$ 

 $T_0$ 

ブラックホール時空

● 動径方向の光の軌道: X(T) = X<sub>0</sub> + T
 ✓ 光の起点について分類
 a: r > r<sub>g</sub>の地点から出発: X(T) = X<sub>0</sub> + T (X<sub>0</sub> > 0) \
 この軌道に対応するr(T)は

$$\binom{r}{r_g} - 1 e^{r/r_g} = X^2 - T^2 = X_0^2 + 2X_0 T$$
時間経過(T /)で $r(T)$  / : 無限遠に飛び去る光

b:  $r = r_g$ から出発 c:  $0 < r < r_g$ から出発  $T_0$ 

 $X_0$ 

ブラックホール時空

● 動径方向の光の軌道: X(T) = X<sub>0</sub> + T ✓ 光の起点について分類 a: 時間経過(*T* ↗) でr(*T*) ↗: 無限遠に飛び去る **b**:  $r = r_a$ から出発: X = T $(r/r_{g} - 1)e^{r/r_{g}} = X^{2} - T^{2} = 0 \implies r(T) = r_{g}$ 光は半径  $r = r_g$ にとどまり続ける **c**:  $0 < r < r_g$ から出発:  $X = T - T_0$  $(r/r_a - 1)e^{r/r_g} = X^2 - T^2 = T_0(T_0 - 2T)$ 曲率特異点 r = 0 に有限時間  $T = \frac{1}{2} \left( T_0 + \frac{1}{T_0} \right)$  で到達



ブラックホール時空

 $r > r_g$ から無限遠まで信号を送ることは可能

⇒  $r \leq r_q$ :ブラックホール

 $r = r_g$ :事象の地平面 (event horizon, EH)





I. 特殊・一般相対性理論

2. ブラックホール時空

### 3. ブラックホール地平面の性質

- ・事象の地平面 (event horizon)
- ・見かけの地平面 (apparent horizon) ~ 極小曲面
   4. ブラックホール地平面の流体的記述

### ・一般相対性理論の Large D 極限

ブラックホール地平面の性質

#### ・BH領域の定義

無限遠と因果的曲線(時間的か光的曲線)で 結ぶことのできない時空領域

#### ・事象の地平面の性質

- ✓ 事象の地平面は光的超曲面
- ✓ 無限遠を含めた時空全体の構造が分からないと 事象の地平面の位置は決まらない



✓ 典型的には、BH領域は光もとらえるような強い 重力場によって生成される

#### ・ブラックホール時空に関連する定理

✓ 一意性定理: 漸近平坦かつ真空における静的BH解はシュバルツシルト解のみ、等

- ✓ 面積増大定理:物理的に自然な仮定(物質のエネルギーが正など)の下で、
   BHの表面積 A<sub>BH</sub>(t)は時間について非減少 (dA<sub>BH</sub>(t)/dt ≤ 0)
- ✓ 特異点定理: BH内部領域で、因果的な測地線は無限に伸びることはない (BH内部には特異点が必ず存在し、有限時間でそれに到達する)

✓ **正質量定理**: ブラックホールの(ADM)質量は必ず正/質量ゼロの時空は平坦時空のみ

## ブラックホール地平面の性質

◆見かけの地平面 (apparent horizon,AH)

- ・**事象の地平面の欠点** 時空全体の情報がないと決められない
- ・時空(計量)の局所的な情報だけで決める ことができて、事象の地平面と類似の性質 を持つ面があると便利



- ・ 見かけの地平面
  - ✓ 極小曲面を一般化したような定義(後述)
  - ✓ 計量の局所的な情報(値とその微分)さえあればAHの位置を決定できる
  - ✓ 定常な時空ではAHとEHは一致
  - ✓ 一般の時空でも、AHが存在すればその外側にEHが必ず存在する
     → EHの代用物としてAHを使える
  - ✓ 数値相対論などでしばしば用いられる (cf. <u>SXS collaboration movie</u>) 2022/4/2 「混相流」勉強会第2回

ブラックホール地平面の性質

- ◆見かけの地平面 (apparent horizon,AH)
- 定義のための準備
- ✓時刻(t)一定面 Σ
- $\checkmark \Sigma$ 上の閉曲面 S
- ✓ Sに垂直な外向き光的ベクトル n<sup>µ</sup>
   (Sから外向きに出る光波面の接ベクトル)

 $n^{\mu} = \alpha(x^{\mu})(t^{\mu} + r^{\mu})$ 

- $\Sigma$ に垂直な時間的単位ベクトル  $t^{\mu}$
- $\Sigma$ 上の空間的単位ベクトル  $r^{\mu}(\bot S)$

✓ Σ上の誘導計量 
$$\tilde{g}_{\mu\nu} (g_{\mu\nu} E\Sigma N)$$
  
 $\tilde{g}_{\mu\nu} = g_{\mu\nu} + t_{\mu}t_{\nu}$   
✓ S上の誘導計量  $h_{\mu\nu} (g_{\mu\nu} ES N)$   
 $h_{\mu\nu} = g_{\mu\nu} + t_{\mu}t_{\nu} - r_{\mu}r_{\nu}$ 





ブラックホール地平面の性質

◆見かけの地平面 (apparent horizon,AH)

- Sから出る光線  $n^{\mu} = \alpha(x^{\mu})(t^{\mu} + r^{\mu})$
- Sから発する光的測地線束(光線の束)
- この光的測地線束の膨張率 Â (面積増加率)

$$\hat{\theta} \equiv h^{\mu\nu} \nabla_{\mu} n_{\nu}$$
  
= \dots = \alpha \left( K - K\_{\mu\nu} r^{\mu} r^{\nu} + k\_{\mu}^{\ \mu} \right)

ただし

 $K_{\mu\nu} = \tilde{g}_{\mu\rho} \tilde{g}_{\nu\sigma} \nabla^{\rho} t^{\sigma}$ : t一定面  $\Sigma$  の外的曲率  $k_{\mu\nu} \equiv h_{\mu\rho} h_{\nu\sigma} \nabla^{\rho} r^{\sigma}$ : 閉曲面Sの外的曲率

 閉曲面 S 上全体で膨張率がゼロ (θ̂ = 0)となる とき、S を見かけの地平面 (AH) と呼ぶ。
 (光をその表面から飛ばしても、面積が広がらない ような閉曲面)





ブラックホール地平面の性質

◆見かけの地平面 (apparent horizon,AH)

光的測地線束の膨張率 Â (面積変化率)

 $\hat{\theta} \equiv h^{\mu\nu} \nabla_{\mu} n_{\nu}$  $= \dots = \alpha \left( K - K_{\mu\nu} r^{\mu} r^{\nu} + k_{\mu}^{\mu} \right)$  $K_{\mu\nu} = \tilde{g}_{\mu\rho} \tilde{g}_{\nu\sigma} \nabla^{\rho} t^{\sigma} : t - \text{cd} \Sigma \mathcal{O} \text{外的曲} \\ k_{\mu\nu} \equiv h_{\mu\rho} h_{\nu\sigma} \nabla^{\rho} r^{\sigma} : 閉曲面S \mathcal{O} \text{外的曲}$ 



 ●閉曲面 S 上全体で膨張率がゼロ (θ̂ = 0)となる とき、S を見かけの地平面 (AH) と呼ぶ。

#### ● AHの性質

✓ AHが存在するとき、その外側に必ずEHが存在
 (::) 光的測地線に沿って

$$\frac{d\hat{\theta}}{d\hat{t}} = -\frac{1}{2}\hat{\theta}^2 - R_{\mu\nu}n^{\mu}n^{\nu} - ( \mathrm{IE} \mathcal{O} \mathrm{I} \mathrm{I} \mathrm{I} ) < 0$$

- $\Rightarrow \hat{\theta}(\hat{t}) \leq 0 \Rightarrow S の表面積は非増大$
- $\Rightarrow$  Sから出る光は無限遠に到達できない  $\Rightarrow$  AH ⊂ EH



ブラックホール地平面の性質

◆見かけの地平面 (apparent horizon,AH)

光的測地線束の膨張率 Â (面積変化率)

 $\hat{\theta} \equiv h^{\mu\nu} \nabla_{\mu} n_{\nu}$  $= \cdots = \alpha \left( K - K_{\mu\nu} r^{\mu} r^{\nu} + k_{\mu}^{\mu} \right)$  $K_{\mu\nu} = \tilde{g}_{\mu\rho} \tilde{g}_{\nu\sigma} \nabla^{\rho} t^{\sigma} : t - \overline{c} \overline{a} \Sigma \mathcal{O} \mathcal{P} \mathcal{O} \mathcal{D} \mathcal{D}$  $k_{\mu\nu} \equiv h_{\mu\rho} h_{\nu\sigma} \nabla^{\rho} r^{\sigma} : 閉 \oplus \overline{a} S \mathcal{O} \mathcal{P} \mathcal{O} \mathcal{D} \mathcal{D}$ 



 ● 閉曲面 S 上全体で膨張率がゼロ (θ̂ = 0)となる とき、S を見かけの地平面 (AH) と呼ぶ。

#### ● AHの性質

✓ AHが存在するとき、その外側に必ずEHが存在 / 定常時空では AH = EH
 ✓ Σ が時空の時間反転対称面のとき、AHはΣ上の極小曲面

(::)  $\Sigma$  が時空の時間反転対称面  $\Leftrightarrow$   $K_{\mu\nu} \simeq \partial_t \tilde{g}_{\mu\nu} = 0$  $\Rightarrow$  AHの定義式  $\hat{\theta} = 0 \Leftrightarrow k_{\mu}{}^{\mu} = 0$  (Sの膨張率がゼロ)

ブラックホール地平面の性質

#### ● AHの性質

✓ AHが存在するとき、その外側に必ずEHが存在 / 定常時空では AH = EH
 ✓ Σ が時空の時間反転対称面のとき、AHはΣ上の極小曲面
 例)シュバルツシルト時空

$$ds^{2} = \frac{4r_{g}^{3}e^{-r/r_{g}}}{r} \left(-dT^{2} + dX^{2}\right) + r^{2}\left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}\right)$$
$$= \frac{d\Omega_{I}}{\left(\frac{r}{r_{g}} - 1\right)}e^{r/r_{g}} = X^{2} - T^{2}, \qquad \frac{t}{r_{g}} = \ln\left(\frac{X + T}{X - T}\right)$$

T = 0 面は時間反転対称面の一つ
T = 0 面上の誘導計量は
$$ds^2 = \frac{4r_g^3 e^{-r(X)/r_g}}{r(X)} dX^2 + r(X)^2 d\Omega_{II}$$
 $\left(\frac{r}{r_g} - 1\right) e^{r/r_g} = X^2$ 
X 一定面は半径  $r(X)$  の球面  $(S^2)$ .
T = 0 面上の極小曲面は  $r = r_g$ .
 $\Rightarrow$  AH (= EH) は  $r = r_g$  面



I. 特殊・一般相対性理論

2. ブラックホール時空

3. ブラックホール地平面の性質

• 事象の地平面 (event horizon)

・ 見かけの地平面 (apparent horizon) ~ 極小曲面

### 4. ブラックホール地平面の流体的記述

・一般相対性理論の Large D 極限

# The Large D limit of General Relativity

Ref:

Emparan, Suzuki, Tanabe "The large D limit of General Relativity" arXiv: 1302,0382

Emparan, Shiromizu, Suzuki, Tanabe, Tanaka "Effective theory of Black Holes in the I/D expansion" arXiv:1504.06489 Emparan, Izumi, Luna, Suzuki, Tanabe "Hydro-elastic Complementarity in Black Branes at large D" arXiv:1602.05752

田邊、鈴木「一般相対性理論における次元無限大極限」日本物理学会誌 2016年10月号

Emparan, Herzog "Large D limit of Einstein's equations" arXiv:2003.11394

- *D* = number of dimensions
- Apply 1/D expansion to the Einstein equation
- Drastic simplifications in various problems:
  - Static solution construction
  - Perturbation of black objects (quasinormal modes, stability)
  - Dynamical solution construction
- Elastic and hydrodynamic description of BH horizon

- I. Motivation
- 2. How it works
  - a. Idea
  - b. Effective theory of black holes
- 3. Application
- 4. Summary

- General relativity in 4 dim.
  - BH uniqueness theorem  $\rightarrow$  Stationary BH in vacuum is (charged) Kerr BH



- General relativity in  $D \ge 5$  dim.
  - No BH uniqueness theorem ightarrow Various stationary black objects exist



• Need intensive analytic/numerical calculations to study them

ex.) Gregory-Laflamme instability of black string [Gregory-Laflamme 1993] cf.) Plateau-Rayleigh instability of fluid column





[Lehner-Pretorius 2010]

- ✓ Full numerical relativity calculations
- I00,000 CPU hours over 2 months

ex.) Gregory-Laflamme instability of black string [Gregory-Laflamme 1993] cf.) Plateau-Rayleigh instability of fluid column





[Lehner-Pretorius 2010]

Full numerical relativity calculations
 100,000 CPU hours over 2 months

• Using the large D limit, it is one second on a laptop.



• Using the large D limit, it is one second on a laptop.



#### I. Motivation

- 2. How it works
  - a. Idea
  - b. Effective theory of black holes
- 3. Application
- 4. Summary

• Schwarzschild BH in 4 dim.

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{2}^{2}$$
$$f(r) = 1 - \frac{r_{0}}{r}$$



• Schwarzschild BH in D dim.

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{D-2}^{2} \qquad \sim r^{-(D-3)}$$

$$f(r) = 1 - \left(\frac{r_{0}}{r}\right)^{D-3}$$
<sub>38</sub>

• Scalar field around BH in D = n+3 dim.

 $\begin{aligned} \nabla_{\mu} \nabla^{\mu} \Psi &= 0 \quad \text{with} \quad \Psi = e^{-i\omega t} \psi(r) \mathbf{Y}^{\ell}(\theta) \\ \Leftrightarrow & \left[ \left[ \frac{d^2}{dr_*^2} + \left( \omega^2 - V(r) \right) \right] \left( r^{\frac{n+1}{2}} \psi(r) \right) = 0 \quad \left[ r_* \equiv \int \frac{dr}{f(r)} \right] \\ & V(r) = \frac{f^2(r)}{4r^2} \left[ (2\ell + n)^2 - 1 + (n+1)^2 \left( \frac{r_0}{r} \right)^n \right] \end{aligned}$ 



• Scalar field around BH in D = n+3 dim.



✓ For waves with  $\omega$ =O(  $D^0$ ), the inner and outer regions decouples:

- Outer region : ~ flat space
- Inner region : waves on curved background in  $r r_0 \sim O(r_0 / D)$
- ✓ Similar decoupling occurs for gravitational perturbations
- $\checkmark$  Horizon dynamics is governed by waves in the inner region

- I. Motivation
- 2. How it works
  - a. Idea
  - b. Effective theory of black holes
- 3. Application
- 4. Summary

Derive equations for static black hole horizon,

that can describe deformed BH horizon.

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

 $\rightarrow$  BH horizon is given by a surface obeying

 $\sqrt{-g_{tt}} K = 2\kappa$  : Young–Laplace equation

in the background spacetime.

Extension to dynamics of black hole horizon

[Emparan, Izumi, Luna, Suzuki, Tanabe 2016]

→ Deformation of BH horizon obeys (almost) EoMs of viscous compressible fluid  $\int \frac{\partial_t \rho + \partial_i \left(\rho v^i\right) = 0}{\partial_t \left(\rho v^i\right) + \partial_j \left(\rho v^i v^j + \tau^{ij}\right) = 0}$ 

42

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

I. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon

$$ds^{2} = N^{2}(\rho, x) \frac{d\rho^{2}}{(D-1)^{2}} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$



[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

I. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon 2. Decompose Einstein equations



[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- 1. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$

$$\mu\nu: \quad \frac{D-1}{N} \partial_{\rho} K^{\mu}_{\ \nu} + K K^{\mu}_{\ \nu} = R^{\mu}_{\ \nu} + \frac{D-1}{\ell^2} \delta^{\mu}_{\ \nu} - \frac{1}{N} \nabla^{\mu} \nabla_{\nu} N$$

*K* def.:  $K_{\mu\nu} \equiv \frac{D-1}{2N} \frac{\partial g_{\mu\nu}}{\partial \rho}$ 



[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- 1. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$



[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- I. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$

Solution: Black *p*-brane with  $\mathcal{Z}$  -dependence

 $ds^{2} = r_{0}^{2}(z) \left( -4\tilde{\kappa}^{2} \tanh^{2}(\rho/2)dt^{2} + \frac{d\rho^{2}}{n^{2}} \right) + \left( \gamma_{ab}(z) + \mathcal{O}(D^{-1}) \right) dz^{a} dz^{b} + \mathcal{R}^{2}(z) \cosh^{\frac{4}{n}}(\rho/2) d\Omega_{n+1}^{2}$ 



47

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- I. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon
- 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$  $ds^2 = r_0^2(z) \left( -4\tilde{\kappa}^2 \tanh^2(\rho/2) dt^2 + \frac{d\rho^2}{n^2} \right) + \left( \gamma_{ab}(z) + \mathcal{O}(D^{-1}) \right) dz^a dz^b + \mathcal{R}^2(z) \cosh^{\frac{4}{n}}(\rho/2) d\Omega_{n+1}^2$
- 4. Remaining EoM gives the effective equation on  $\rho$ =const. surface



48

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.



[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

$$\sqrt{-g_{tt}} \, K = 2 \kappa \quad : \ {
m Young-Laplace \ equation}$$

Procedure to construct a static black object in large D limit:

- I. Find a surface satisfying the Young-Laplace equation
- 2. Replace the interior of the surface with the large-D BH solution:

 $ds^{2} = r_{0}^{2}(z) \left( -4\tilde{\kappa}^{2} \tanh^{2}(\rho/2)dt^{2} + \frac{d\rho^{2}}{n^{2}} \right) + \left( \gamma_{ab}(z) + \mathcal{O}(D^{-1}) \right) dz^{a} dz^{b} + \mathcal{R}^{2}(z) \cosh^{\frac{4}{n}}(\rho/2) d\Omega_{n+1}^{2}$ 

ex.) Schwarzschild, (non-uniform) black string, ...



[Emparan, Izumi, Luna, Suzuki, Tanabe 2016]

Extension to dynamical black p-brane

$$ds^{2} = -\left(1 - \frac{\rho(t,z)}{\mathsf{R}}\right)dt^{2} + 2dtdr - \frac{2}{n}\frac{p_{i}(t,z)}{\mathsf{R}}dz^{i}dt + \frac{1}{n}\left(\delta_{ij} + \frac{1}{n}\frac{p_{i}p_{j}}{\rho\mathsf{R}}\right)dz^{i}dz^{j} + r^{2}d\Omega_{n+1}^{2}$$

$$(\mathsf{R} = r^{n})$$

where  $\rho$  and  $p_i$  obeys

$$\begin{cases} \partial_t \rho + \partial_i \left(\rho v^i\right) = 0\\ \partial_t \left(\rho v^i\right) + \partial_j \left(\rho v^i v^j + \tau^{ij}\right) = 0 \end{cases}$$
$$\begin{cases} p_i = \rho v_i + \partial_i \rho\\ \tau_{ij} = P \delta_{ij} - 2\eta \left(\partial_{(i} v_{j)} - \frac{1}{p} \delta_{ij} \partial^k v_k\right) - \zeta \partial^k v_k \delta_{ij} - \rho \partial_i \partial_j \ln \rho\\ P = -\epsilon \rho, \quad \eta = \rho, \quad \zeta = (1 + \epsilon) \eta / \rho \quad \begin{bmatrix} \epsilon = +1: \text{ Asymptotically flat}\\ \epsilon = -1: \text{ Asymptotically AdS} \end{bmatrix} \end{cases}$$
(almost) EoMs of viscous compressible fluid

- I. Motivation
- 2. How it works
  - a. Idea
  - b. Effective theory of black holes
- 3. Application
- 4. Summary

- Uniform black string is unstable
- $\rightarrow$  evolves into a non-uniform black string

-22

2

-1

2

53

$$\begin{cases} \partial_t \rho + \partial_i (\rho v^i) = 0\\ \partial_t (\rho v^i) + \partial_j (\rho v^i v^j + \tau^{ij}) = 0 \end{cases}$$

$$eq1 = \partial_{t}m[t, z] - \partial_{z,z}m[t, z] + \partial_{z}p[t, z];$$

$$eq2 = \partial_{t}p[t, z] - \partial_{z,z}p[t, z] - \partial_{z}m[t, z] + \partial_{z}\frac{p[t, z]^{2}}{m[t, z]};$$

$$pde = \{eq1 == 0, eq2 == 0\}; tmax = 600; k = .98; L = \frac{2\pi}{k};$$

$$\delta m = 0.01 Exp[-4 z^{2}]; \delta p = 0;$$

$$icbc = \left\{m[0, z] == 1 + \delta m, p[0, z] == \delta p,$$

$$m[t, -\frac{L}{2}] = m[t, \frac{L}{2}], p[t, \frac{-L}{2}] = p[t, \frac{L}{2}]\right\};$$

$$sol = NDSolve[\{pde, icbc\}, \{m, p\}, \{t, 0, tmax\}, \{z, -\frac{L}{2}, \frac{L}{2}\}];$$

$$[Emparan, Suzuki, Tanabe 2015]$$

- Uniform black string is unstable
- $\rightarrow$  evolves into a non-uniform black string

$$\begin{cases} \partial_t \rho + \partial_i (\rho v^i) = 0\\ \partial_t (\rho v^i) + \partial_j (\rho v^i v^j + \tau^{ij}) = 0 \end{cases}$$

$$eql = \partial_{t}m[t, z] - \partial_{z,z}m[t, z] + \partial_{z}p[t, z];$$

$$eq2 = \partial_{t}p[t, z] - \partial_{z,z}p[t, z] - \partial_{z}m[t, z] + \partial_{z}\frac{p[t, z]^{2}}{m[t, z]};$$

$$pde = \{eql == 0, eq2 == 0\}; tmax = 600; k = .98; L = \frac{2\pi}{k};$$

$$\delta m = 0.01 Exp[-4 z^{2}]; \delta p = 0;$$

$$icbc = \left\{m[0, z] == 1 + \delta m, p[0, z] == \delta p,$$

$$m[t, -\frac{L}{2}] = m[t, \frac{L}{2}], p[t, \frac{-L}{2}] = p[t, \frac{L}{2}]\right\};$$

$$sol = NDSolve[\{pde, icbc\}, \{m, p\}, \{t, 0, tmax\}, \{z, -\frac{L}{2}, \frac{L}{2}\}];$$

$$[Emparan, Suzuki, Tanabe 2015]$$



• Riemann problem in large D limit [Herzog, Spillane, Yarom 2016]

Shock waves / rarefaction waves based on

$$\begin{bmatrix} \partial_t \rho + \partial_i (\rho v^i) = 0 \\\\ \partial_t (\rho v^i) + \partial_j (\rho v^i v^j + \tau^{ij}) = 0 \end{bmatrix}$$



• Turbulence on the black hole horizon in large D limit

[Rozali, Sabag, Yarom 2017]



#### Vorticity of 2-dim. fluid

#### wz $\omega_x$ $= 0\tau$ -2 -1 $0.5\tau$ Ш -7.5 -2.5 -5 2.5 $= 10\tau$

Vorticity of 3-dim. fluid

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025

# Summary: Large D limit in GR

- $\checkmark 1/D$  expansion of the Einstein equation
- $\checkmark$  Powerful tool for various problems in GR
  - Static solution construction
  - Perturbation of black objects (quasinormal modes, stability)
  - Dynamical solution construction

 $\checkmark$  Elastic and hydrodynamic description of BH horizon

Applications to gauge/gravity correspondence, condensed matter physics, ...

Any other interesting dynamics of black objects?

ブラックホール時空の 幾何学と流体的記述

- I. 特殊・一般相対性理論
- 2. ブラックホール時空
- 3. ブラックホール地平面の性質
  - 事象の地平面 (event horizon)
  - ・ 見かけの地平面 (apparent horizon) ~ 極小曲面

### 4. ブラックホール地平面の流体的記述

・一般相対性理論の Large D 極限



• Scalar field around BH in D = n+3 dim.

 $\nabla_{\mu}\nabla^{\mu}\Psi=0 \quad \text{ with } \quad \Psi=e^{-i\omega t}\psi(r)\mathbf{Y}^{\ell}(\theta)$  $\diamondsuit \left\{ \begin{bmatrix} \frac{d^2}{dr_*^2} + \left(\omega^2 - V(r)\right) \end{bmatrix} \left( r^{\frac{n+1}{2}} \psi(r) \right) = 0 \qquad \left[ r_* \equiv \int \frac{dr}{f(r)} \right] \\ V(r) = \frac{f^2(r)}{4r^2} \left[ (2\ell + n)^2 - 1 + (n+1)^2 \left(\frac{r_0}{r}\right)^n \right] \right]$  $\omega^2 \sim O(D^0)$  $r_*$ 6 2  $r_{\rm peak} - r_0 = O(r_0 / D)$ 60

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- I. Large gradient near BH  $\rightarrow$  Use  $\rho$  coordinate zooming up the BH horizon 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$

$$\begin{split} ds^2 &= N^2(\rho, x) \frac{d\rho^2}{(D-1)^2} + g_{\mu\nu} dx^{\mu} dx^{\nu} \\ &= N^2(\rho, x) \frac{d\rho^2}{(D-1)^2} - V^2(\rho, x) dt^2 + g_{ab}(\rho, z) dz^a dz^b + \mathsf{R}^2(\rho, z) d\Omega_{n+1}^2 \end{split}$$

Compare with black *p*-brane (
$$n = D - p - 3$$
):  

$$ds^{2} = r_{0}^{2} \left( -4\tilde{\kappa}^{2} \tanh^{2}\left(\frac{\rho}{2}\right) dt^{2} + \frac{d\rho^{2}}{n^{2}} \right) + \delta_{ab} dz^{a} dz^{b} + \mathcal{R}_{0} \cosh^{\frac{4}{n+1}}\left(\frac{\rho}{2}\right) d\Omega_{n+1}$$

Assume the same behavior as the black *p*-brane:

$$N, V, \mathcal{R}, K^{a}_{\ b}, K^{i}_{\ j} = \mathcal{O}\left(D^{0}\right), \quad K^{t}_{\ t}, K = \mathcal{O}\left(D^{1}\right)$$

[Emparan, Shiromizu, Suzuki, Tanabe, Tanaka 2015]

We derive equations for static black hole horizon,

that can describe deformed BH horizon.

- I. Large gradient  $\perp$  BH horizon  $\rightarrow$  Use adapted coordinates
- 2. Decompose Einstein equations
- 3. Apply I/D expansion, and integrate in  $\rho$  to get  $K_{\mu\nu}$ , then  $g_{\mu\nu}$

$$\mu\nu: \quad \frac{D-1}{N} \partial_{\rho} K^{\mu}_{\ \nu} + K K^{\mu}_{\ \nu} = R^{\mu}_{\ \nu} + \frac{D-1}{\ell^2} \delta^{\mu}_{\ \nu} - \frac{1}{N} \nabla^{\mu} \nabla_{\nu} N$$

*K* def.:  $K_{\mu\nu} \equiv \frac{D-1}{2N} \frac{\partial g_{\mu\nu}}{\partial \rho}$ 



[Emparan, Izumi, Luna, Suzuki, Tanabe 2016]

- Extension to dynamical black p-brane
- Correspondence between elastic and hydrodynamic eqs.: (hydrodynamic) effective equations are equivalent to

$$\sqrt{-g_{tt}}K = n + 1 - \left(\ln\rho + \frac{\partial_j\partial^j\rho}{\rho} - \frac{\partial_j\rho\partial^j\rho}{2\rho^2}\right)$$
$$\begin{bmatrix} -\rho\partial_i\left(\sqrt{-g_{tt}}K\right) = \partial_t\left(\rho v_i\right) + \partial^j\left(\rho v_i v_j - 2\rho\partial_{(i}v_{j)}\right) \\ \rho\partial_t\left(\sqrt{-g_{tt}}K\right) = \partial_i\left(\rho v^i + \rho\partial^i\frac{\partial_j\left(\rho v^j\right)}{\rho}\right) \end{bmatrix}$$

For static solutions, they reduces to the elastic effective equation.

• Extension to charged black hole horizons [Emparan et al. 2016]

$$\begin{cases} \partial_t \rho + \partial_i \left( \rho v^i \right) = 0 \\ \partial_t \left( \rho v^i \right) + \partial_j \left( \rho v^i v^j + \tau^{ij} \right) = q \partial^i V \\ \partial_t q + \partial_i j^i + \partial_i \left( \rho \partial^i V \right) = 0 \end{cases}$$

where  $A_t = \frac{1}{\sqrt{n}} \left( V(t,z) - \frac{q(t,z)}{\mathsf{R}} \right), \quad j_i = qv_i - \rho \partial_i \left( q/\rho \right)$ 

• Polarizing brane in AdS spacetime: [lizuka, Ishibashi, Maeda, Tanabe, NT, in progress] Apply an external field  $V(z) = \frac{a}{1+z^2}$  to charged BH horizon  $V(z) = \frac{a}{1+z^2} = \frac{a$ 

• Extension to charged black hole horizons: [Emparan et al. 2016]

$$\begin{cases} \partial_t \rho + \partial_i \left( \rho v^i \right) = 0 \\ \partial_t \left( \rho v^i \right) + \partial_j \left( \rho v^i v^j + \tau^{ij} \right) = q \partial^i V \\ \partial_t q + \partial_i j^i + \partial_i \left( \rho \partial^i V \right) = 0 \end{cases}$$

where  $A_t = \frac{1}{\sqrt{n}} \left( V(t,z) - \frac{q(t,z)}{\mathsf{R}} \right), \quad j_i = qv_i - \rho\partial_i \left( q/\rho \right)$ 

• Polarizing brane in AdS spacetime: [lizuka, Ishibashi, Maeda, Tanabe, NT, in progress] Apply an external field  $V(z) = \frac{a}{1+z^2}$  to charged BH horizon  $V(z) = \frac{a}{1+z^2} = \frac{a$  • Polarizing brane in AdS spacetime:

[lizuka, Ishibashi, Maeda, Tanabe, NT, in progress]



• Polarizing brane in AdS spacetime:

[lizuka, Ishibashi, Maeda, Tanabe, NT, in progress]

