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Abstract

In this review, we introduce the following two facts:

1. In a certain situation, the black hole event horizon can be regarded as a minimal surface
on a spacelike hypersurface.

2. For a particular class of black hole solutions in higher-dimensional spacetime, the event
horizon becomes a surface with constant mean curvature embedded in background spacetime
(which can be flat spacetime).

We will review basics of the theory of general relativity and black holes solutions, and then
explain more precise meaning and implications of the above claims.
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1 Introduction: special and general relativity

We use the natural unit in which the speed of light is equal to the unity (c = 1), but keep it in the
following unless otherwise noted just for reference. We consider four-dimensional asymptotically flat
spacetime, and later on generalize the argument to higher dimensions in section 3.
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Most part of this review is based on references [1, 2, 3] and standard textbooks of general relativity
such as [4, 5]. Section 3 is based on [6].

We define the symbols for symmetrization and anti-symmetrization of the indices of a tensor Tµν
as

T(µν) =
1

2
(Tµν + Tνµ) , T[µν] =

1

2
(Tµν − Tνµ) . (1)

1.1 Special relativity

The special theory of relativity is a theory of physics constructed based on the principle of relativity
claiming that “the laws of physics are invariant in all inertial (non-accelerating) systems” and that
“the speed of light in vacuum is constant for all (inertial) observers”. We can construct this theory
by using a scale and a clock that measures the distances in space and time directions and studying
the propagation of light with them.

The distance between two points in spacetime is called spacetime interval ds, which is calculated
by

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2, (2)

where µ, ν = 0, 1, 2, 3, (x0, x1, x2, x3) = (t, x, y, z) and ηµν = Diag(−c, 1, 1, 1) the metric of the flat
(Minkowski) spacetime. The special relativity assumes that this interval is invariant even when we
switch from the rest frame to an inertial frame that is moving at a constant velocity relative to the
rest frame. This switching of the frame is equivalent to applying the Lorentz transformation to the
coordinates, hence the special relativity studies physical phenomena that are invariant under Lorentz
transformation.

In this theory, the physical quantities are expressed as tensors (scalar, vector, 2-tensor, ...). For
example, the velocity of a particle is expressed as a vector vµ and the electromagnetic field strength is
expressed by an anti-symmetric 2-tensor Fµν . Various phenomena such as the time delay due to the
large velocity and the conversion between electric and magnetic fields can be derived by applying the
Lorentz transformation to these tensor quantities.

1.2 General relativity

The general theory of relativity, the general relativity (GR) is a theory of physics constructed
based on the principle of general relativity claiming that “the laws of physics are invariant in any
(including non-inertial) systems” and the equivalence principle stating that “the gravitational force is
equivalent the pseudo-force in accelerated system”. Instead of explicitly introducing the gravity as a
force, this theory assumes that the spacetime may be curved and the gravitational force acting on a
free-fall observer is generated by the curvature of the spacetime.

We consider four-dimensional Lorentzian spacetime. We describe the (generally curved) spacetime
by means of the metric tensor gµν (µ, ν = 0, 1, 2, 3), which is a symmetric 2-tensor with Lorentzian
signature related to the spacetime interval as

ds2 = gµνdx
µdxν . (3)

The metric admits the unique derivative operator ∇µ for which the metric is constant ∇ρgµν = 0
and called the covariant derivative. We can always find a coordinate transformation with which the
covariant derivative coincides with the partial derivative. In this new coordinates the metric (3)
reduces to the flat metric (2). Physically, the coordinate frame corresponding to these coordinates
correspond to the free-falling frame (local inertial frame) in which the gravitation is canceled locally
by the acceleration of the coordinate frame.
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In general the metric does not coincide with (2), in which case the spacetime is curved. The
spacetime curvature is quantified by the Riemann tensor Rµνρσ, which is defined by

(∇µ∇ν −∇ν∇µ) v
ρ = Rµν

ρ
σv

σ, (4)

where vµ is an arbitrary vector. The indices are raised and lowered by the metric gµν and its inverse
gµν satisfying gµρg

ρν = δνµ (e.g. Rµν
ρ
σ = Rµνρ′σg

ρ′ρ). Indeed, the Riemann tensor is given in terms of
the metric as

Rµνρσ = −1

2
[∂µ∂ρgνσ + ∂ν∂σgµρ − (µ↔ ν)] + (terms involving g, ∂g). (5)

In GR, the spacetime metric, not only the physical objects (particles and fields) in the spacetime,
becomes dynamical. More precisely, the components of the metric tensor depend on time, and their
time evolution is governed by the Einstein equation

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (6)

where G is the Newton constant, Rµν ≡ gρσRµρνσ is the Ricci tensor and Tµν is a symmetric 2-tensor
(called the stress-energy tensor) describing physical matter present in the spacetime.

One way to see that this equation is a wave equation is to consider a situation where the spacetime
is sufficiently close to a flat one (2). Decomposing the metric gµν to the flat metric ηµν and deviation
from it:

gµν = ηµν + hµν , (7)

the Einstein equation (6) at the order linear in hµν reduces to1

ηρσ∂ρ∂σψµν =
(
−c−2∂2t +∆

)
ψµν = −16πG

c4
Tµν , (8)

where

ψµν ≡ hµν −
1

2
hηµν , h ≡ ηµνhµν , ∆ ≡ ηij∂xi∂xj (i, j = 1, 2, 3). (9)

Equation (8) is a wave equation for the metric perturbation hµν , and implies that the wave at the
initial moment propagates at the speed of light.

In this review, we focus on the vacuum spacetime Tµν = 0. In this case the Einstein equation
simplifies as

Rµν −
1

2
Rgµν = 0 ⇔ Rµν = 0. (10)

Spacetime satisfying this equation is called Ricci-flat.

2 Black hole spacetime

2.1 Schwarzschild solution

One trivial example of the Ricci-flat spacetime is the flat metric ηµν given by Eq. (2). A simple
but nontrivial solution of this equation is the so-called Schwarzschild solution given by

ds2 = gµνdx
µdxν = −f(r)c2dt2 + dr2

f(r)
+ r2dΩ2

II, f(r) = 1− rg
r
, (11)

where dΩ2
II = dθ2 + sin2 θdϕ2 is the line element on S2, and rg is a constant called the gravitational

radius or Schwarzschild radius. Although this metric is Ricci-flat, it is curved in the sense that the
Riemann tensor does not vanish. It also has the curvature singularity at r = 0 where the coordinate
invariant made of curvature diverges RµνρσR

µνρσ ∝ 1/r4.
1We need to choose the coordinates in which ∂µψ

µ
ν vanishes to derive Eq. (8).
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2.2 Basics of causality

As Eq. (8) implies, waves of the spacetime metric propagates at the light speed c = 1. More
precisely, the characteristic hypersurface (physically the boundary of the causal region or the surface
of the fastest propagation allowed in the theory) is given by a null hypersurface with respect to the
metric ηµν appearing in Eq. (8), that is, a tangent vector V µ of such a hypersurface obeys ηµνV

µV ν = 0.
When the background spacetime is curved, waves of the metric and also light propagates along

a hypersurface whose tangent vector V µ satisfies gµνV
µV ν = 0. A vector satisfying this is called

a null vector, and the hypersurface tangent to it is called a null hypersurface. It is confirmed that
any physical particles found so far does not propagate faster than the light speed. Hence a null
hypersurface gives a boundary of causal contact. The null hypersurface emanating from a spacetime
point forms a cone of three-dimensional hypersurface, which is usually called a light cone.

Keeping this in mind, we may classify a vector V µ according to the sign of its norm as

gµνV
µV ν


< 0 (timelike)

= 0 (null or lightlike)

> 0 (spacelike)

. (12)

Timelike and spacelike vectors stemming on the tip of a light cone reside inside and outside of the
light cone, respectively. Two spacetime point can be causally connected if they can be connected by
a timelike or null curve, while not when they are spacelike separated.
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Figure 1: A light cone and timelike, null and spacelike vectors.

Also a free-falling observer and light moves along a timelike or null geodesic curves that satisfy

T µ∇µT
ν = 0, (13)

where T µ is the tangent of the curve. This equation is called the geodesic equation. In flat spacetime, a
timelike and null geodesics is simply given by a straight line in timelike and null directions, respectively.

2.3 Causal structure of Schwarzschild spacetime

In the flat spacetime (2), light ray just propagate along a null direction and reach the infinity. In
a curved spacetime, the light ray bends according to the background spacetime curvature and then
the causal structure of the spacetime may become nontrivial. Let us study the causal structure of the
Schwarzschild spacetime (11) below and introduce the event horizon associated with it.

The metric of the Schwarzschild solution is singular at r = rg. It is not a curvature singularity but
merely a coordinate singularity, and can be resolved by switching to new coordinates appropriately.
Skipping all of the details, let us introduce new coordinates T,X implicitly by the following relationship
(where c = 1):(

r

rg
− 1

)
er/rg = X2 − c2T 2,

ct

rg
= ln

(
cT +X

X − cT

)
= 2 tanh−1

(
cT

X

)
. (14)
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The gravitational radius r = rg corresponds to a curve X2 − c2T 2 = 0. In the (T,X) coordinates
(called the Kruskal coordinates), the spacetime metric (11) becomes manifestly regular at r = rg and
is given by

ds2 = −f(r)c2dt2 + dr2

f(r)
+ r2dΩ2

II =
4r3ge

−r/rg

r

(
−c2dT 2 + dX2

)
+ r2dΩ2

II. (15)

Since this spacetime is spherically symmetric, its causal structure can be found by studying the null
lines along which radial light rays propagate.
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Figure 2: The Schwarzschild spacetime in the Kruskal coordinates and the three light rays studied
below.

Let us consider the following three kinds of light rays.

1. X = X0 + cT (X0 > 0):

The radial position r(T ) of this light ray obeys(
r

rg
− 1

)
er/rg = X2 − c2T 2 = X0

2 + 2cX0T.

T → ∞ ⇒ r → ∞, hence this light ray escapes to the infinity in the asymptotic future.

2. X = cT : (
r

rg
− 1

)
er/rg = X2 − c2T 2 = 0 ⇔ r = rg,

hence this light ray stays at r = rg forever, and particularly it cannot escape to the infinity
r → ∞.

3. X = c(T − T0) (0 < T0 < c−1):(
r

rg
− 1

)
er/rg = X2 − c2T 2 = c2T0(T0 − 2T ).

After starting from (T,X) = (T0, 0), the light ray hits X2 − c2T 2 = −1 ⇔ r = 0 at T =
1
2

(
T0 +

1
c2T0

)
. Hence the light ray in this region dives into the curvature singularity within

finite time T although it is propagating outward (toward X direction).
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2.4 Event horizon

As shown by the analysis above, r = rg marks the border of outer communication by means of
radial outgoing light rays. In this sense the two-sphere at r = rg is called the event horizon. Events
on and inside the event horizon is not invisible from the exterior observer.

More generally, a black hole is defined as follows.

A black hole (BH) is the spacetime region that is not connected to the (null) infinity by
causal curves. The boundary of this region is called an event horizon (EH).
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Figure 3: A schematic of an event horizon.

This definition implies the following.

• An EH is a null hypersurface.

• Black hole is (not necessarily but) typically generated by strong gravity that prohibit light
escaping to infinity. Particularly it is not a star, but a region in which any signals including
light are incarcerated.

• EH is determined according to the global structure of the spacetime, that is, we need to know
the whole spacetime including the future and light propagation therein to find an EH.

Some other basic properties of a black hole are the following (not to be explained in this review):

• Singularity theorem: Causal geodesics inside BH hits singularity within finite time parameter.

• Black hole area theorem: dABH(t)/dt ≥ 0 if the null energy condition is satisfied.

• Positive mass theorem: In asymptotically flat spacetime, the ADM energy is not negative as long
as the dominant energy condition is satisfied. The energy becomes zero only for the Minkowski
spacetime.

• Uniqueness theorem: In an asymptotically flat vacuum spacetime, static black hole solution is
uniquely given by the Schwarzschild solution.

2.5 Apparent horizon

One problem to find an event horizon is that it cannot be determined locally and need to know
the global structure of the spacetime. Then it is desirable to have an alternative to the EH that can
be determined locally. Motivated by this, we introduce the apparent horizon (AH) which can be used
for such purpose.

To define AH, we first introduce a congruence of null geodesics and its expansion. Let S a two-
dimensional spacelike surface on a three-dimensional spacelike hypersurface Σ (say a time=constant
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surface). Then consider the ingoing null vector nµ
− and outgoing null vector nµ

+ emanating from S.
Using timelike and spacelike unit vectors tµ and rµ such that

−tµtµ = 1 = rµrµ, tµrµ = 0, (16)

nµ
± are given by

nµ
± = α± (tµ ± rµ) , (17)

where α± are functions. We assume that tµ and rµ are orthogonal and tangent to Σ, respectively. The
induced metric on S, hµν , is given by

hµν = gµν + tµtν − rµrν . (18)
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(a) Surfaces and vectors
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(b) Expansion for S2

Figure 4: Panel (a): surfaces and vectors used in the derivation. Panel (b): expansion of the null
geodesic congruence emanating from S2.

Then we define the expansion of the null geodesic congruence by

θ̂ = hµν∇µn
+
ν = α+h

µν∇µ (tν + rν)

= α+ (hµν∇µtν + hµν∇µrν)

= α+ [(gµν + tµtν − rµrν)∇µtν + hµν∇µrν ]

= α+

(
K −Kµνr

µrν + kµµ
)
, (19)

where Kµν ≡ (gµρ + tµtρ)(gνσ + tνtσ)∇ρtσ and kµν ≡ hµρhνσ∇ρrσ are the extrinsic curvature tensors

of Σ and S, respectively. The expansion θ̂ quantifies the divergence of the null geodesic congruence
along its propagation in the outgoing null direction. Also it is related to the area increase rate of S
as ȦS =

∫
S
θ̂dS.

For later use let us derive also the evolution equation of the expansion. We first assume that
nµ
+ obeys the geodesic equation nµ

+∇µn
ν
+ = 0, and quantify the deformation of the null geodesic

congruence by

B̃µν = hµ
ρhν

σ∇σn
+
ρ =

1

2
θ̂hµν + σµν + ωµν , (20)

where σµν ≡ B̃(µν) − 1
2
θ̂hµν and ωµν ≡ B̃[µν] are the shear and the rotation of the null geodesic
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congruence, respectively. Then the derivative of the expansion along nµ
+ is given by

nµ
+∇µθ̂+ = nµ

+∇µ

(
hµν∇µn

+
ν

)
= nµ

+∇µ∇νn
ν
+

= nµ
+

(
∇ν∇µn

ν
+ −Rµνn

ν
+

)
= −

(
∇µn

ν
+

)
(∇νn

µ
+)−Rµνn

µ
+n

ν
+

= −B̃µ
νB̃ν

µ −Rµνn
µ
+n

ν
+

= −1

2
θ̂2 − σµνσ

µν + ωµνω
µν −Rµνn

µ
+n

ν
+. (21)

Hence we obtain
dθ̂

dλ
= −1

2
θ̂2 − σµνσ

µν + ωµνω
µν −Rµνn

µ
+n

ν
+, (22)

where we parameterized the null geodesic by assuming nµ
+ = (d/dλ)µ. This equation is called the

Raychaudhuri equation. By Frobenius theorem ωµν = 0 initially, and it can be shown that it is zero
if it is initially zero. Then, rewriting Rµν by the energy-momentum tensor, we find

dθ̂

dλ
= −1

2
θ̂2 + ωµνω

µν − 8πGTµνn
µ
+n

ν
+ ≤ −1

2
θ̂2, (23)

where we assumed the strong energy condition Tµνk
µkν ≥ 0 for any null vector kµ. Equation (23)

guarantees that θ̂ ≤ 0 along a null geodesic if it is non-positive initially, and it diverges at finite λ
(θ → −∞ at λ ≤ −1/2θ̂0).

Now we define a trapped surface and the apparent horizon as follows.

An outer trapped surface on Σ is a closed two-dimensional surface s.t. for outgoing null
geodesics orthogonal to S, θ̂ < 0 everywhere on S. We call the portion of Σ that contains
trapped surfaces a trapped region T . Then the apparent horizon (AH) is defined as the
boundary of the trapped region ∂T .

An AH satisfies the following property.

1. θ̂ = 0 everywhere on AH. Hence it is called also a marginally trapped surface.

2. When an AH exists, an EH always exists outside AH. They coincide with each other when the
spacetime is stationary (because horizon area is invariant in time and it implies θ̂ = 0).

3. (Union of the time evolution of) AH is a spacelike hypersurface.

4. The topology of an AH is S2 in four-dimensional spacetime if the dominant energy condition is
satisfied.

5. On a time-symmetric hypersurface Σ, an AH becomes a minimal surface embedded in Σ.

• The property 2 follows from the fact that the expansion is non-positive on and inside the AH
(as guaranteed by the Raychaudhuri equation (23)), hence the light ray within AH cannot reach
the infinity at which the expansion must be positive. implies that an AH is a good approximation
of an EH when the spacetime is close to a stationary one. Since AH can be found based only
on the local structure of the spacetime, it is widely used in studies on general relativity such as
the numerical relativity.
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• For the property 4, let us introduce a simple proof under some assumptions. We assume that
the spacetime metric is given by

ds2 = −2e−2fdudv + hABdx
AdxB (24)

and take nµ
+ = (∂u)

µ and nµ
− = (∂v)

µ. The (rescaled) expansion for these null vectors are defined
as

θ̂± = hAB∇An
±
B. (25)

Then, the uv component of the Einstein equation is given by

Rµνn
µ
+n

µ
− +

1

2
e2fR = 8πGTµνn

µ
+n

µ
−, (26)

in which the left-hand side is equal to 1
2
e2fhABRAB. Decomposing the Ricci tensor Rµν into the

two-dimensional part (2)RAB and the other parts that depend on f , Eq. (26) can be reduced to

(2)R = −2e−2f θ̂+θ̂− + 2D2f + 2 (Df)2 − 2e−2f∂vθ̂+ + 16πGe−2fTµνn
µ
+n

ν
−, (27)

where DA is the covariant derivative with respect to hAB. Integrating this equation on the AH,
we have ∫

AH

(2)RdS =

∫
dS

[
2 (Df)2 − 2e−2f∂vθ̂+ + 16πGe−2fTµνn

µ
+n

ν
−

]
. (28)

The right-hand side is positive since ∂vθ̂+ < 0 follows from the definition of the AH (at which
θ̂ = 0 and θ̂+ < 0 inside), and the third term is guaranteed to be positive if we assume (a slightly
extended version of) the dominant energy condition. Also the left-hand side is equal to 8π(1−g)
(g: genus of AH) by Gauss-Bonnet theorem. Then Eq. (26) gives

1− g > 0, (29)

which implies that g = 0, that is, the topology of AH must be S2.

• About the property 5, a time-symmetric hypersurface is defined as a three-dimensional space-
like hypersurface on which the extrinsic curvature vanishes (Kµν = 0) everywhere.2 Then the
defining equation (19) of the AH reduces to kµµ = 0, that is, the mean curvature is S is vanishing
and then it is a minimal surface on Σ.

In the case of the Schwarzschild solution, any t = constant hypersurface is time-symmetric. Let
us focus on the T = 0 hypersurface in Eq. (15) for an example. The induced metric on this
hypersurface is given by

dℓ2 =
4r3ge

−r/rg

r
dX2 + r2dΩ2

II,

(
r

rg
− 1

)
er/rg = X2. (30)

On this three-dimensional space, a minimal surface is found at r = rg (X = 0), which is just at
the event horizon as it should be.

2Note that the extrinsic curvature is expressed also as Kµν = 1
2∂tg̃µν , where t is related to tµ as tµ = (dt)µ and

g̃µν ≡ gµν + t
µtν is the induced metric on Σ. ∂tg̃µν = 0 everywhere on a time-symmetric surface Σ, hence the spacetime

is momentarily static at Σ, and the time evolution to the future and to the past from Σ are symmetric with each other.
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Figure 5: Geometry on the T = 0 surface of the Schwarzschild spacetime. S2 at r = rg, where the EH
is present, is a minimal surface.

3 Black holes in higher-dimensional spacetime

In this section we consider the general relativity in higher-dimensional spacetime, and show that
the event horizon of black hole of certain type becomes an analogue of constant mean curvature surface
embedded in background spacetime, which we can freely prescribe. For example, we can take the flat
spacetime and consider black holes in it, in which case the event horizon becomes a version of constant
mean curvature surface in flat spacetime.

3.1 Black objects in higher-dimensional spacetime

In D-dimensional vacuum spacetime, the Einstein equation is given by the same equation as that
in four-dimensional spacetime (10).

In four-dimensional asymptotically flat spacetime, there is the black hole uniqueness theorem
stating that a stationary black hole in must have an event horizon with S2 topology. In D-dimensional
spacetime with D > 4, we have an analogue of this theorem when the spacetime is asymptotically
flat and static, in which case a black hole solution is the higher-dimensional Schwarzschild solution
with SD−2 horizon. However, in more general situations (stationary, not asymptotically flat, nonzero
cosmological constant, ...) the uniqueness of the black hole solutions is lost and there can be variety
of black objects with nontrivial horizon topology, e.g. SD−3 × R, S1 × SD−3 etc..

. . .

SD-2 SD-3 ×ℝ SD-3 × S1

Figure 6: Examples of black objects in D-dimensional spacetime.

3.2 Large-D limit (1/D expansion) of general relativity

In higher-dimensional spacetime there are various solutions describing black hole solutions, and it
becomes more and more difficult to solve the Einstein equation to find all those solutions. Hence it
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is desirable to have a method that facilitate studies on higher-dimensional gravity and black object
solutions.

An example of such method to analyze the higher-dimensional gravity is the Large-D limit of
general relativity [7], which focuses on particular class of black hole solutions and expand the Einstein
equation with respect to 1/D ≪ 1. In some cases this expansion simplifies the equation drastically
and enables us to study black objects in higher-dimensional spacetime analytically and/or simple
numerical analysis.

3.3 Basic idea

The basic idea behind the large-D limit is the separation of scales between rg ≫ rg/D and
decoupling between the near-horizon region and the far region where the gravitation due to the black
hole becomes very weak.

Such decoupling is best understood by focusing on the behavior of the metric function f(r) of the
Schwarzschild solution and comparing that in four dimensions to that in higher dimensions. f(r) in
four-dimension is given by Eq. (11), while in higher dimensions it becomes

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

D-2, f(r) = 1−
(rg
r

)D−3

, (31)

where dΩ2
D-2 is the line element on SD−2. Physically, Φ(r) ≡ f(r) − 1 = − (rg/r)

D−3 corresponds to
the gravitational potential generated by the black hole. We focus on the behavior of Φ(r) outside the
event horizon. When D ≫ 1, Φ(r) develops a sharp peak near r ≳ rg, and the peak is localized in the
region rg < r ≲ rg + r0/D.3
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Figure 7: r and D dependence of the gravitational potential Φ.

Having this in mind, we can separate the horizon exterior region into the following two parts:

• Far region r − rg ≫ rg/D:

The spacetime in this region is close to the flat spacetime since |Φ(r)| = (rg/r)
D−3 ≲ D−D

rapidly approaches zero.

• Near-horizon region r − rg ≪ rg:

Gravitation becomes nontrivial in this region particularly when r − rg ≲ rg/D where ϕ(r) ≳ 1.

3This length scale can be inferred from Φ(r)/Φ′(r) = −rg/(D − 3).
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Then we can solve the Einstein equation in the near-horizon region where we can regard rg/D as a
small parameter, and then connect the solution to that in the far region where gµν − ηµν becomes
small. Particularly, we can derive the effective equation governing the shape and dynamics of the
black hole horizon by expanding the Einstein equation w.r.t. 1/D and solving it order by order.

3.4 Effective theory of black holes

The effective equation that governs the horizon dynamics can be derived as follows [6]. In the large
D limit, the spacetime develops a very sharp feature near the horizon. Hence we take a coordinate
adapted to it as

ds2 = N2(ρ, x)
dρ2

(D − 1)2
+ gµν(ρ, x)dx

µdxν , (32)

and let us focus on black objects whose metric is given by

ds2 = N2 dρ2

(D − 1)2
− V 2(ρ, z)dt2 + gab(ρ, z)dz

adzb + R2(ρ, z)dΩ2
n+1, (33)

where a, b = 1, . . . , p, n = D − p− 3 and dΩ2
n+1 is the line element on Sn+1.

Figure 8: Coordinates adapted to the horizon in the large-D limit.

Then, the Einstein equation can be decomposed into the following components:

ρρ : K2 −Kµ
νK

ν
µ = R (34)

ρµ : ∇νK
ν
µ −∇µK = 0 (35)

µν :
D − 1

N
∂ρK

µ
ν +KKµ

ν = Rµ
ν −

1

N
∇µ∇νN. (36)

where Kµν is the extrinsic curvature of ρ-constant surfaces:

Kµν =
D − 1

2N

∂gµν
∂ρ

. (37)

The µν components (36) can be regarded as a second-order differential equation for gµν , and they can
be integrated w.r.t. ρ to find the function forms of Kµν and gµν . The integration constants can be
fixed by imposing the ρρ component (34). Then the ρµ components require that certain combination
of the metric function is constant. Its explicit form is given by

√
−gttK

∣∣
horizon

= 2κ, (38)

where κ is a constant called the surface gravity of the black hole horizon. Equation (38) formally takes
form of the soap-film equation where the surface has a constant mean curvature, though a ρ-constant
surface contains t direction and not Euclidean. Equation (38) also determines ρ-constant surfaces
are embedded to the spacetime of the far region. For example, we can set the spacetime in the far
region to be D-dimensional Minkowski spacetime. Then the black hole horizon will be given by a
hypersurface with constant mean curvature obeying Eq. (38) in flat spacetime.
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4 Future problems

• Classification of black hole solutions

• Properties of black hole solutions (stability, end point of instability growth, ...)

• Solutions with matter fields (Einstein-Vlasov system, ...)

• Astrophysical applications (gravitational wave, ...)

• Applications to string theory (D-branes ∼ black holes in supergravity, ...)

• Gravitation theories other than the general relativity (modified gravity theories)
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