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Introduction

I Fractional Chern Insulators (FCIs) generalize the FQHE to
systems with non-trivial Chern number, C .

I The Harper-Hofstadter model has provided some of the
first examples of FCIs (Sørensen et al., 2005), and hosts a
fractal energy spectrum with any desired Chern number.

I Examine states of the composite fermion (CF) series predicted
by Möller & Cooper, 2015.

I Generalize the nφ → 0 continuum limit to the effective
continuum limit at nφ → 1/|C | (Möller & Cooper, 2015).

I Investigate the stability (i.e. robustness in the effective
continuum limit) of the many-body gap, ∆.
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Harper-Hofstadter Model

We consider N spinless particles hopping on an Nx × Ny square
lattice with a constant effective magnetic flux.
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∑
i ,j

[
tij

hopping parameter

eφij

magnetic translation-invariant phase

c†j ci + h.c.
]

+ PLB

lowest-band projection operator

∑
i<j

Vij

interaction potential

:ρ(ri )ρ(rj):

PLB

• bosons ⇒ on-site interactions

• fermions ⇒ nearest-neighbour interactions
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Composite Fermion Theory

Predicted filling fraction from CF theory on the lattice for a
well-isolated lowest band (Möller & Cooper, 2015):

ν =
r

|kC |r + 1
≡ r

s
, where r and s are co-prime

I C = Chern number of the band

I k = number of flux quanta attached to the particles

I |r | = number of bands filled in the CF spectrum

I sgn(r) = sgn(C ∗) for the CF band relative to C

I |s| = ground state degeneracy
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Scaling & Stability

Aim to consider 2D isotropic limit ⇒ demand Nx = Ny .

◦ Note: Nbr. Sites
Nbr. MUCs = q is a measure of MUC size.

Scaling relations (Bauer et al., 2016):

∆ ∝ q−1 for bosons (contact interactions),

∆ ∝ q−2 for fermions (NN interactions).

Investigate stability (robustness of many-body gap)...

1. ...in the effective continuum limit: q →∞.

2. ...in the thermodynamic limit: N →∞.
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Harper-Hofstadter Model
Approaching the Effective Continuum
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Basic Method
e.g. N = 8 fermions in the |C | = 2 band at ν = 1/3 filling

1. Plot the many-body energy spectrum for a particular
{C , r ,N} configuration and for a variety of MUC sizes, q.
Identitify the ground states, predicted by CF theory.

2. Read off the many-body gap, ∆, for each energy spectrum.

3. Plot ∆ against q. Read off limq→∞(q(2)∆).

4. Plot limq→∞(q(2)∆) against N. Read off limN,q→∞(q(2)∆).
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Constraints

1. We are only interested in filled CF levels:

N must be a multiple of r .

2. ν = N/Nc ⇒ N = νNc:

Nc must be a multiple of s.

3. Isolated lowest Chern number C band at

nφ =
p

|C |p − sgn(C )
≡ p

q
, p ∈ N.

4. Consider 2D systems ⇒ approximately unit aspect ratios:∣∣∣∣1− Nx

Ny

∣∣∣∣ ≤ ε, for small ε.

5. Limited computation time:

dim{H} < 107.
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Approaching the Thermodynamic Effective Continuum
Q: In which order should we take the N → ∞ and q → ∞ limits?

A: Doesn’t matter. We take the effective continuum limit first.
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Figure: Finite-size scaling of the gap for Laughlin states
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Warm-up: |C | = 1 Band
Bosons - Stability in the Continuum
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agrees with Bauer et al. X

ν = 2 DMRG BIQHE:
more than just LLL involved

in stabilizing the state
(He et al., 2017)

ν = 2 competition expected
from continuum results

(Cooper & Rezayi, 2007)
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Warm-up: |C | = 1 Band
Bosons - Pair Correlation Functions
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Warm-up: |C | = 1 Band
Fermions - Stability in the Continuum
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Warm-up: |C | = 1 Band
Fermions - Pair Correlation Functions
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|C | = 2 Band
Bosons - Stability in the Effective Continuum
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|C | = 2 Band
Bosons - Correlation Function
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in the (kx , ky ) = (0, 0) momentum sector
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|C | = 2 Band
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|C | = 2 Band
Bosons - Correlation Functions & Entanglement Spectra
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|C | = 2 Band
Fermions - Stability in the Effective Continuum
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|C | = 2 Band
Fermions - Correlation Functions & Entanglement Spectra
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|C | = 3 Band
Bosons - Stability in the Effective Continuum
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|C | = 3 Band
Bosons - Correlation Functions
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Stability in the Effective Continuum
Summary
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(a) bosons

|C | r ν limN,q→∞(q∆)

1 1 1/2 0.64± 0.01
2 1 1/3 0.27± 0.005
3 1 1/4 0.13± 0.01

−1 1/2 0.18± 0.07

(b) fermions

|C | r ν limN,q→∞(q2∆)

1 1 1/3 2.56± 0.02
−2 2/3 2.56± 0.02

2 1 1/5 0.46± 0.02
−1 1/3 0.65± 0.16

Table: States with (effective) continuum limits that could be
extrapolated to the thermodynamic limit



Introduction Theory Method Results for |C | = 1, 2, 3 Conclusion

Conclusion

I Scaling to the effective continuum limit at fixed aspect ratio
converges faster than scaling at fixed flux density.

I Vast majority of finite-size spectra produce the ground state
degeneracy predicted by CF theory.

I Laughlin-like states with ν = 1/(|kC |+ 1) are the most
robust, and yield a clear gap in the effective continuum limit.

I Instability may be caused by competing topological phases,
charge density waves, or finite-size effects.

I Stable FCIs found with clear entanglement gaps in |C | > 1
bands - largest gaps seen for |C | = 2 fermions.

I Pair-correlations are smooth functions modulated by |C | sites
along both axes, giving rise to the appearance of |C |2 sheets.

ご清聴ありがとうございました！
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ご清聴ありがとうございました！
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Approaching the Effective Continuum
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Warm-up: |C | = 1 Band
Bosons & Fermions - Scaling of the Gap with MUC Size
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|C | = 2 Band
Bosons - Rectangular Geometries
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|C | = 3 Band
Bosons - Rectangular Geometries
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|C | = 3 Band
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