Theory 000 Method 0000 Results for |C| = 1, 2, 300000000000 Conclusion

Stability of Fractional Chern Insulators in the Effective Continuum Limit of |C| > 1Harper-Hofstadter Bands

Bartholomew Andrews & Gunnar Möller

TCM Group, Cavendish Laboratory, University of Cambridge

October 31, 2017

arXiv:1710.09350

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

Outline

Introduction

Theory

Harper-Hofstadter Model Composite Fermion Theory Scaling of Energies

Method

Effective Continuum Limit Thermodynamic Effective Continuum

Results for |C| = 1, 2, 3

Many-body Gaps Correlation Functions Particle Entanglement Spectra

Conclusion

Introduction	Theory 000	Method 0000	Results for $ C = 1, 2, 3$	Conclusion
Introduction	n			

- Fractional Chern Insulators (FCIs) generalize the FQHE to systems with non-trivial Chern number, C.
- ► The Harper-Hofstadter model has provided some of the first examples of FCIs (Sørensen *et al.*, 2005), and hosts a fractal energy spectrum with any desired Chern number.
- Examine states of the composite fermion (CF) series predicted by Möller & Cooper, 2015.
- Generalize the n_φ → 0 continuum limit to the effective continuum limit at n_φ → 1/|C| (Möller & Cooper, 2015).
- Investigate the stability (i.e. robustness in the effective continuum limit) of the many-body gap, Δ.

Introduction

Theory ●○○ Method 0000 Results for |C| = 1, 2, 300000000000 Conclusion

Harper-Hofstadter Model

We consider N spinless particles hopping on an $N_x \times N_y$ square lattice with a constant effective magnetic flux.

magnetic translation-invariant phase interaction potential $H = \sum_{i,j} \begin{bmatrix} t_{ij} e^{\phi_{ij}} c_j^{\dagger} c_i + \text{h.c.} \end{bmatrix} + \underbrace{\mathcal{P}_{\text{LB}}}_{i < j} \begin{bmatrix} \sum_{i < j} V_{ij} : \rho(\mathbf{r}_i) \rho(\mathbf{r}_j) : \end{bmatrix} \mathcal{P}_{\text{LB}}$

hopping parameter

lowest-band projection operator

- bosons \Rightarrow on-site interactions
- fermions \Rightarrow nearest-neighbour interactions

Conclusion

Composite Fermion Theory

Predicted **filling fraction** from CF theory on the lattice for a well-isolated lowest band (Möller & Cooper, 2015):

$$u = \frac{r}{|kC|r+1} \equiv \frac{r}{s}, \text{ where } r \text{ and } s \text{ are co-prime}$$

- C =Chern number of the band
- k = number of flux quanta attached to the particles
- |r| = number of bands filled in the CF spectrum
- $\operatorname{sgn}(r) = \operatorname{sgn}(C^*)$ for the CF band relative to C
- |s| = ground state degeneracy

Introd	luction	

Scaling & Stability

Aim to consider **2D** isotropic limit \Rightarrow demand $N_x = N_y$.

• Note:
$$\frac{\text{Nbr. Sites}}{\text{Nbr. MUCs}} = q$$
 is a measure of MUC size.

Scaling relations (Bauer et al., 2016):

 $\Delta \propto q^{-1}$ for bosons (contact interactions), $\Delta \propto q^{-2}$ for fermions (NN interactions).

Investigate stability (robustness of many-body gap)...

1. ...in the effective continuum limit: $q \to \infty$.

2. ...in the thermodynamic limit: $N \to \infty$.

Introduction	Theory
	000

Method ●○○○ Results for |C| = 1, 2, 3

Conclusion

Harper-Hofstadter Model Approaching the Effective Continuum

- e.g. N = 8 fermions in the |C| = 2 band at $\nu = 1/3$ filling
 - 1. Plot the many-body energy spectrum for a particular $\{C, r, N\}$ configuration and for a variety of MUC sizes, q. Identitify the ground states, predicted by CF theory.
 - 2. Read off the many-body gap, Δ , for each energy spectrum.
 - 3. Plot Δ against q. Read off $\lim_{q\to\infty} (q^{(2)}\Delta)$.

- e.g. N = 8 fermions in the |C| = 2 band at $\nu = 1/3$ filling
 - 1. Plot the many-body energy spectrum for a particular $\{C, r, N\}$ configuration and for a variety of MUC sizes, q. Identitify the ground states, predicted by CF theory.
 - 2. Read off the many-body gap, Δ , for each energy spectrum.
 - 3. Plot Δ against q. Read off $\lim_{q\to\infty} (q^{(2)}\Delta)$.
 - 4. Plot $\lim_{q\to\infty} (q^{(2)}\Delta)$ against *N*. Read off $\lim_{N,q\to\infty} (q^{(2)}\Delta)$.

Introduction

Theory

Method ○0●○ Results for |C| = 1, 2, 300000000000 Conclusion

Constraints

1. We are only interested in filled CF levels:

N must be a multiple of r.

2.
$$\nu = N/N_c \Rightarrow N = \nu N_c$$
:

 $N_{\rm c}$ must be a multiple of s.

3. Isolated lowest Chern number C band at

$$n_{\phi} = rac{p}{|C|p - \operatorname{sgn}(C)} \equiv rac{p}{q}, \ \ p \in \mathbb{N}.$$

4. Consider **2D systems** \Rightarrow approximately unit aspect ratios:

$$\left|1 - \frac{N_x}{N_y}\right| \le \epsilon, \quad \text{for small } \epsilon.$$

5. Limited computation time:

 $dim\{\mathcal{H}\}<10^7.$

Q: In which order should we take the $N \to \infty$ and $q \to \infty$ limits?

(a) $\nu = 1/2$ bosons (b) $\nu = 1/3$ fermions Figure: Finite-size scaling of the gap for Laughlin states

A: Doesn't matter. We take the effective continuum limit first.

 $N, q \rightarrow \infty$ limits commute! (if both limits can be taken)

(a) $\nu = 1/2$ bosons (b) $\nu = 1/3$ fermions Figure: Finite-size scaling of the gap for Laughlin states

Results for |C| = 1, 2, 3••••••• Conclusion

Warm-up: |C| = 1 Band Bosons - Stability in the Continuum

Figure: Finite-size scaling of the gap to the thermodynamic continuum limit at fixed aspect ratio

Figure: Finite-size scaling of the gap to the thermodynamic continuum limit at fixed aspect ratio

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Conclusion

Warm-up: |C| = 1 Band

Fermions - Stability in the Continuum

Figure: Finite-size scaling of the gap to the thermodynamic continuum limit at fixed aspect ratio

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 2 Band Bosons - Stability in the Effective Continuum

Figure: Finite-size scaling of the gap to the thermodynamic effective continuum limit at fixed aspect ratio

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 2 Band Bosons - Stability in the Effective Continuum

Figure: Finite-size scaling of the gap to the thermodynamic effective continuum limit at fixed aspect ratio

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Conclusion

|C| = 2 Band

Bosons - Correlation Functions & Entanglement Spectra $|\Psi\rangle = \sum_{k,n} \lambda_{k,n} |\Psi_{k,n}^A\rangle \otimes |\Psi_{k,n}^B\rangle$

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector, and correponding entanglement spectra

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 2 Band Fermions - Stability in the Effective Continuum

Figure: Finite-size scaling of the gap to the thermodynamic effective continuum limit at fixed aspect ratio

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 2 Band Fermions - Correlation Functions & Entanglement Spectra

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector, and correponding entanglement spectra

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 3 Band Bosons - Stability in the Effective Continuum

Figure: Finite-size scaling of the gap to the thermodynamic effective continuum limit at fixed aspect ratio

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 3 Band Bosons - Correlation Functions

Figure: Pair correlation functions for the lowest-lying ground state in the $(k_x, k_y) = (0, 0)$ momentum sector

Introduction		Theory 000	Method 0000	Resul	ts for C	= 1, 2, 3 ⊙●	Conclusion
Stability in the Effective Continuum							
$\lim_{q \to \infty} (q\Delta)/10^{-1}$	$\begin{array}{c} C \\ C $	0.150.2	$\begin{bmatrix} -1 & -7 & -7 & -7 & -7 & -7 & -7 & -7 &$	F	igure: gap a bos	Finite- t fixed sonic La	size scaling of the aspect ratio for aughlin states
(a) bosons				(b) fermions			
C	r	ν	${\sf lim}_{N,q ightarrow\infty}(q\Delta)$	C	r	ν	${\sf lim}_{N,q ightarrow\infty}(q^2\Delta)$
1	1	1/2	0.64 ± 0.01	1	1	1/3	2.56 ± 0.02
2	1	1/3	0.27 ± 0.005		-2	2/3	2.56 ± 0.02
3	1	1/4	0.13 ± 0.01	2	1	1/5	$\textbf{0.46} \pm \textbf{0.02}$
	-1	1/2	0.18 ± 0.07		-1	1/3	0.65 ± 0.16

 Table:
 States with (effective) continuum limits that could be extrapolated to the thermodynamic limit

Introd	luction

Theory

Method 0000 Results for |C| = 1, 2, 300000000000 Conclusion

Conclusion

- Scaling to the effective continuum limit at fixed aspect ratio converges faster than scaling at fixed flux density.
- Vast majority of finite-size spectra produce the ground state degeneracy predicted by CF theory.
- Laughlin-like states with v = 1/(|kC| + 1) are the most robust, and yield a clear gap in the effective continuum limit.
- Instability may be caused by competing topological phases, charge density waves, or finite-size effects.
- Stable FCIs found with clear entanglement gaps in |C| > 1 bands - largest gaps seen for |C| = 2 fermions.
- Pair-correlations are smooth functions modulated by |C| sites along both axes, giving rise to the appearance of |C|² sheets.

Introd	luction

Theory

Method 0000 Results for |C| = 1, 2, 300000000000 Conclusion

Conclusion

- Scaling to the effective continuum limit at fixed aspect ratio converges faster than scaling at fixed flux density.
- Vast majority of finite-size spectra produce the ground state degeneracy predicted by CF theory.
- Laughlin-like states with v = 1/(|kC| + 1) are the most robust, and yield a clear gap in the effective continuum limit.
- Instability may be caused by competing topological phases, charge density waves, or finite-size effects.
- Stable FCIs found with clear entanglement gaps in |C| > 1 bands - largest gaps seen for |C| = 2 fermions.
- Pair-correlations are smooth functions modulated by |C| sites along both axes, giving rise to the appearance of |C|² sheets.

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

Supplementary Slides

- 1. Approaching the Effective Continuum
- 2. Warm-up: |C| = 1 Band: Bosons & Fermions Scaling of the Gap with MUC Size
- 3. |C| = 2 Band: Bosons Rectangular Geometries
- 4. |C| = 3 Band: Bosons Rectangular Geometries

Conclusion

Approaching the Effective Continuum Q: Should we fix n_{ϕ} or fix aspect ratio?

hollow symbols \Rightarrow fixed n_{ϕ} filled symbols \Rightarrow fixed aspect ratio

Conclusion

Approaching the Effective Continuum Q: Should we fix n_{ϕ} or fix aspect ratio?

A: Fix aspect ratio

hollow symbols \Rightarrow fixed n_{ϕ} scaling at fixed aspect ratio is more robust! filled symbols \Rightarrow fixed aspect ratio

Conclusion

Warm-up: |C| = 1 Band

Bosons & Fermions - Scaling of the Gap with MUC Size

Figure: Finite-size scaling of $q^{(2)}\Delta$ to a constant value in the continuum limit for 8-particle Laughlin states

Method

Results for |C| = 1, 2, 3

Conclusion

Introduction

Theory

Figure: Finite-size scaling of $q^{(2)}\Delta$ to a constant value in the continuum limit for 8-particle Laughlin states

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 2 Band Bosons - Rectangular Geometries

Figure: Magnitude of the gap for the 12-particle state at $\nu = 2/3$

Theory

Method 0000 Results for |C| = 1, 2, 3

Conclusion

|C| = 3 Band Bosons - Rectangular Geometries

Figure: Magnitude of the gap for the 6-particle state at $\nu = 3/8$

