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On the importance of disorder

近藤さん



Disorder can be useful…

Quantum Hall Plateaux John Bardeen
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 Direct Magneto-electric Coupling: Anisotropic Spin Precession 
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2D rotations Jz = Lz + Sz [H, Jz] = 0 [U(1) group]
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Symmetry arguments are fine, but what are the mechanisms?



Let us elaborate on the physics here in greater detail. If
the adatom were in isolation, continuous rotation symme-
try would further restrict !jmj to be independent of m and
require that !0

so ¼ !so. In this case, the !so, !
0
so terms

above simply encode an isotropic L " S spin-orbit interac-
tion that split the orbitals into a lower j ¼ 1=2 doublet and
a j ¼ 3=2 quadruplet that is higher in energy by 3!so.
Crystal-field effects arising from the graphene environ-
ment lead to m-dependence of !jmj and allow !0

so to differ
from !so. Note also that we have assumed that the ada-
tom’s s orbitals (and all other inner levels) are far in energy
from the Dirac points and can be safely neglected. This is
indeed justified by our supercell DFT calculations for both
indium and thallium, where the 5s and 6s electrons con-
tribute significantly to the density of states only at several
eV below the Dirac points. We have further ignored four-
fermion interaction terms in Ha. This, too, is justified for
indium and thallium, since both elements donate their
outer p electron to graphene and form nonmagnetic con-
figurations. In a perturbative tight-binding picture, elec-
trons hopping onto the adatom from graphene therefore
lead to a singly occupied p orbital, for which Coulomb
repulsion is expected to be unimportant. Finally, we note
thatHa is even under Rz symmetry even though we did not
enforce this. In other words, the fact that the adatom is
displaced away from the graphene sheet leads to no addi-
tional terms in the Hamiltonian Ha compared to the (ficti-
tious) case for an H-position adatom residing directly in the
ðx; yÞ plane. This fact is crucial for the irrelevance of
induced Rashba terms for graphene, as we discuss further
below.

For the graphene-only part of the Hamiltonian, we posit
that the usual nearest-neighbor hopping model Ht is modi-
fied primarily through a change in chemical potential for
the six sites adjacent to the adatom:

Hg ¼ Ht % "#
X6

j¼1

cyrjcrj : (A11)

ClearlyHg is invariant under not only R$=3, Rx, andT , but
also under Rz, despite this symmetry’s being broken by the
adatom. (Terms that violate Rz necessarily involve spin-
orbit coupling, which we have justifiably neglected be-
cause it is exceedingly weak.)

Since the adatom generically modifies the bond lengths
between carbon atoms in its vicinity, the hopping ampli-
tudes will be modulated as well near the adatom.
According to our DFT calculations, however, perturbations
to graphene’s lattice structure are quite small. (The carbon
bond lengths in the immediate vicinity of either indium or
thallium change by less than 1%.) We thus expect this
effect to be minor and have neglected it for simplicity.
We have also neglected in Hg any spin-orbit terms that
directly couple the carbon atoms, which are orders of
magnitude weaker than the spin-orbit interaction indirectly
mediated by the adatom.

In contrast, the induced chemical potential "# is not a
weak effect—we find that our tight-binding simulations
best reproduce the DFT band structure when "# is on the
order of 1 eV. Physically, "# appears because the indium
or thallium adatoms donate their outer p-orbital electron to
the graphene sheet, leaving behind a net positive charge.
Electrons in the graphene sheet thus prefer to conglomerate
in its vicinity in order to screen the positively charged
adatom. We note that, of course, there is no fundamental
reason why the induced chemical potential should be con-
fined only to the six sites nearest to the adatom. Our DFT
simulations demonstrate, however, that the induced charge
modulation occurs very locally around the adatom, so that
this is expected to be a good approximation. As an illus-
tration, consider the geometry with one thallium adatom
in a 4& 4 supercell. Figure 5 displays the induced charge
density "% ' %ðgraphene+thalliumÞ % %ðgrapheneÞ %
%ðthalliumÞ relative to the charge densities obtained
when graphene and thallium decouple completely. Here,
the yellow and blue regions correspond to isosurfaces
with "% ¼ (0:01 eV= #A3. Clearly, the charge modulation
occurs predominantly within the first two ‘‘rings’’ of
carbon sites surrounding the adatom.
Finally, let us discuss the Hamiltonian Hc that allows

electrons to tunnel between the adatom and the graphene
sheet. For simplicity, we allow only for tunneling events

FIG. 5. Adatom-induced charge modulation. (a) Top and
(b) side views of the charge density induced by a thallium
adatom in a 4& 4 supercell. Yellow (blue) surfaces correspond
to a positive (negative) induced charge density (relative to the
case where graphene and thallium decouple completely). The
charge modulations relax rather rapidly away from the adatom
and occur mostly within the two innermost ‘‘rings’’ of carbon
sites near the adatom.
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Motivation: Functionalized Graphene
Chemisorption: H, F, … Physisorption:

Cu, Ag, Au, Th, In,… 

C Weeks et al  Phys Rev X  (2012)

Substrates:
Z Wang et al Phys. Rev. (2016)
B Wang et al  2D Mater (2016)

3

0 20 40-20-40
Vg (V)

σ 
(m

S)

R
 (k
Ω

)

0

2

0

5

10

20

15

25

4

6

On WSe2

0-30-60-90
Vg (V)

R
 (k
Ω

)

0

2

4

6

σ 
(m

S)

0

2

4

8

6

108

On MoS2

SiO2

Graphene
TMD

Si

(a) (b) (c)

(d) (e)

σ 
(m

S)

0

2

4

8

6

R
 (k
Ω

)

0

1

2

3

4

0 25 50-25-50
Vg (V)

On WS2

(f)

24-30
Vg (V)

B
 (T

)

0

14
R
xx

 (k
Ω

)

0

0.7
(g)

σ x
y (

e2 /h
)

0

2

4

6

R
xx

 (k
Ω

)

0

1

2

3

4

0 10 20-10-20
Vg (V)

-30

5

-2

-4
-6

(h)

Figure 1. (Color online) Basic characterization of graphene on TMD substrates. (a) Schematic cross section of the devices. The
graphene layer (green) is transferred onto a TMD crystal (pink) that has been previously exfoliated on a substrate consisting
of highly doped Silicon (gray) covered by 285-nm-thick SiO

2

(light blue). The silicon substrate is operated as a back-gate.
(b-c) AFM images of a graphene Hall-bar device before and after the AFM-ironing process (scale bar is 2 µm long). (d-f)
Gate-voltage (V

g

) dependence of the resistance (R ; red curves) and the conductivity (� ; blue curves) of monolayer graphene
on WSe

2

(d), MoS
2

(e) and WS
2

(f), measured at 4.2 K. The carrier mobility in the three cases is 110,000, 33,000, and 23,400
cm2/Vs, respectively. In all devices, the conductance saturates at large enough V

g

away from charge neutrality point, when
charges start to be accumulated at the SiO

2

-TMD interface. The black line in (f) represents the V
g

-dependent conductivity
�(V

g

) before AFM-ironing (the corresponding mobility is approximately two times smaller than for the blue curve). (g-h)
Integer quantum-Hall effect (QHE) observed in high-quality graphene-on-WSe

2

at T = 250 mK whose basic characterization
is shown in (d). The color map of the longitudinal resistance (R

xx

) versus V
g

and B (g) and the V
g

-dependence of R
xx

(red
curves) and the Hall conductance (�

xy

; blue curves) measured at B = 12 T (h) clearly confirm the occurrence of the vanishing
R

xx

and concomitantly quantized �
xy

= ⌫ ⇥ e2/h at integer values of filling factor (⌫ ⌘ nh/eB). In panel (h), the QH plateaus
at ⌫ = ±1, -3, -4, -5 due to the full degeneracy lifting of the N = 0, 1 Landau levels in monolayer are clearly visible.

shows an AFM image of a device at the end of fabrication
and Fig. 1(c) another image of the same device taken af-
ter the “ironing” step. The difference –the extremely small
corrugation that is measured on graphene after the “iro-
ning” process– is clear. In our studies we have measured
16 different devices, in which –depending on their area,
cleaning procedure adopted, density of “bubbles”, etc.–
the carrier mobility extracted from measurements of the
conductivity and of Hall effect ranged between 3,000 and
160,000 cm2/Vs.

Figs. 1(d-f) shows the gate voltage dependence of the
resistance (red curves) and of the corresponding conduc-
tivity (blue curves) measured on three representative de-
vices, respectively on WSe

2

, MoS
2

, and WS
2

. As compa-
red to our earlier work on graphene-on-WS

2

, in which no
AFM ironing was done [18], in the current generation of
higher-quality devices the charge neutrality point is “ex-

posed” in all cases : it is possible to shift the Fermi level
(EF ) both in the valence and in the conduction band by
acting on the back gate. Whereas for graphene on WS

2

and MoS
2

only a small range of energies in the conduc-
tion band can be accessed, for WSe

2

, EF can be shifted
over a rather large interval in both the valence and the
conduction band. Hence, WSe

2

allows the systematic in-
vestigation of SOI in the conduction band without the
need to use a top gate electrode, something that could
not be done in previous work. Finally, Figs. 1(g-h) show
that all integer quantum Hall effect (QHE) states are vi-
sible, including the symmetry broken states caused by
the presence of electron-electron interactions [38], which
is indicative of the high quality of the devices (in the best
cases, symmetry broken states become already visible for
applied magnetic fields as low as approximately 1 Tesla).

TMD = WSe2, MoS2

Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2
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We demonstrate clear weak anti-localization (WAL) effect arising from induced Rashba spin-orbit coupling
(SOC) in WS2-covered single-layer and bilayer graphene devices. Contrary to the uncovered region of a shared
single-layer graphene flake, WAL in WS2-covered graphene occurs over a wide range of carrier densities on
both electron and hole sides. At high carrier densities, we estimate the Rashba SOC relaxation rate to be
⇠ 0.2ps�1 and show that it can be tuned by transverse electric fields. In addition to the Rashba SOC, we also
predict the existence of a‘valley-Zeeman’ SOC from first-principles calculations. The interplay between these
two SOC’s can open a non-topological but interesting gap in graphene; in particular, zigzag boundaries host four
sub-gap edge states protected by time-reversal and crystalline symmetries. The graphene/WS2 system provides
a possible platform for these novel edge states.

Introduction. Electron pseudospin in graphene and the as-
sociated chirality yield remarkable transport consequences in-
cluding the half-integer quantum Hall effect [1] and intrinsic
weak anti-localization (WAL) [2]. Physical spin, by contrast,
is often largely a spectator that couples weakly to momentum
due to carbon’s low mass, leading to much longer spin diffu-
sion lengths ( > 1µm at room temperature) than normal con-
ductors [3, 4]. Graphene’s extremely weak spin-orbit coupling
(SOC) clearly has merits, yet greatly hinders the observation
of important spin-dependent phenomena including the quan-
tum spin Hall effect [5] and quantum anomalous Hall effect
[6]. Fortunately, the open two-dimensional honeycomb struc-
ture allows tailoring the SOC strength by coupling to foreign
atoms or materials [7–13]. Several experiments have pursued
approaches of graphene hydrogenation [14, 15] or fluorina-
tion [16] as well as heavy-adatom decoration [17, 18]; these
methods tend to decrease the transport quality, and moreover
the induced SOC appears either difficult to reproduce [14, 15]
or to detect [16–18]. A different approach has recently been
employed by several groups: placing graphene on target sub-
strates featuring heavy atoms. Proximity to the substrates not
only provides desirable properties such as ferromagnetic or-
dering and large SOC, but also reduces adverse effects on the
target materials [19–22].

Here we employ magneto-conductance (MC) measure-
ments to demonstrate enhanced SOC in graphene proximity-
coupled to multilayer WS2. We quantify the spin-relaxation
rate caused by Rashba SOC by fitting to WAL data, and
further show that the Rashba strength is tunable via trans-
verse electric fields. Guided by first-principles calculations,
we also predict that WS2-covered graphene additionally fea-
tures a prominent ‘valley-Zeeman’ SOC that mimics a Zee-
man field with opposite signs for the two valleys. The inter-
play between these two SOC terms opens a non-topological
gap at the Dirac point that supports symmetry-protected sub-
gap edge states along certain boundaries. Though the gap is
too small to be detected in our experiments, theory suggests

that graphene/WS2 may provide a simple model system for
studying such an unusual gapped phase.

Experimental Setup. Figure 1(a) sketches the dual-
gated graphene devices used in our study. Both single-layer
graphene and multilayer WS2 flakes were first exfoliated from
their respective bulk materials and subsequently placed onto
a Si/SiO2 (280 nm) wafer. Since multilayer WS2 flakes can
be much thicker and are less likely deformed, we chose to
transfer the WS2 flake instead of graphene to avoid trapped
bubbles in between, thereby yielding a larger effective overlap
area. Figure 1(b) shows an optical image of the device prior
to top-gate fabrication. Notice that only part of the graphene
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FIG. 1. (a) Device geometry. Bottom to top: SiO2, graphene, WS2,
h-BN, and Au top-gate. h-BN serves as the dieletric for the top gate,
and is transferred onto graphene/WS2 after deposition of Au con-
tacts. (b) Optical image of graphene/WS2 before h-BN transfer. Two
parallel graphene devices share the same WS2 flake (dark blue) and
each has WS2-covered and uncovered channels that can be probed
independently. All single-layer-graphene data shown in this paper
were taken from the lower device. (c) Top: conductivity of un-
covered (red) and WS2-covered (blue) graphene devices. Bottom:
Shubnikov-de Haas oscillations of WS2-covered graphene measured
at 2K and 10T. The evenly spaced peaks up to the 4th order on both
sides confirm the absence of carrier-density saturation.
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Extrinsic Mechanisms for SHE

elastic channel
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Nimp

Quantum Side Jump Skew Scattering (nimp ⪡ 1)

Nagaosa, Sinova, Onoda, MacDonald, Ong, Rev. Mod. Phys. (2010)

nimp < 1%



Extrinsic SHE: Mott’s Scattering
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Graphene: Resonant Enhancement
Graphene

γ  = spin Hall angle (T  = 0)
Graphene is very prone 
to resonant scattering

A Ferreira, T Rappoport, MAC, 
AH Castro Neto Phys Rev Lett (2014)

Linear Density of  States

Yang et al. Science (2013)

⇢(✏) ⇠ |✏|



SHE in CVD Graphene

J Balakrishnan et al Nat. Comm. (2014)

Spin Hall Angle

18

they scatter from SOC potentials (see Ref. 19 for a comprehensive review on the QSJ). Our 

calculations (not shown) show that QSJ provides corrections to ! up to 30%. However, we were 

not able to find consistent parameter ranges for which QSJ would dominate over SS (this would 

require dirty samples with much larger "#$). For this reason, we are lead to conclude that SS is 

the driving mechanism for the large spin Hall angles reported in this work.

Figure S13 shows the Fermi energy dependence of the longitudinal (charge) conductivity at 
room temperature for the Cu-CVD graphene sample. The (solid) orange line shows the 
theoretical value of the conductivity as computed from Eq. 4. The excellent qualitative 
agreement shows that fit parameters are consistent with charge transport characteristics of the 
system. (Parameters as in Fig. S12.)

References

1 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. 
Nature Nanotech. 5, 574 (2010).

2 Lin, Y. C. et al. Graphene annealing: how clean can it be? Nano Letters 12, 414 (2012).
3 Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature 

Nano. 5, 722 (2010).

Electric Conductivity
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!(") and #$$(") (see Fig. 2). The obtained values—% & 2.5 nm, n' & 3.84 × 10)*cm+, and -./ & 1.04 × 10))cm+,—are consistent with preparation methods of the CVD graphene 

samples. The estimated concentration of SOC active dilute Cu clusters -./ & 1.04 × 10))cm+,
is one order of magnitude larger than the lower bound set by the AFM images.

Figure S12 shows the Fermi energy dependence of the spin Hall coefficient (angle) at room 
temperature for the Cu-CVD graphene sample. The (dashed) blue line is the ideal spin Hall angle 
as generated by SOC active dilute Cu clusters in otherwise perfect graphene generated via SS. 
The (solid) orange line shows the realistic ! taking into account other sources of disorder 
(modelled here as resonant scatterers). Calculations performed at room temperature; other 
parameters as given in main text.

Driving mechanisms for the spin Hall effect: The quality of the fits shown in Fig. S12 and 

S13, as well as their consistency with the main characteristics of the Cu-CVD graphene sample, 

emphasizes the importance of skew scattering (SS) in the experiment. We should note, however, 

that transverse spin currents could also arise from another mechanism, namely the quantum side 

jump (QSJ). The latter results from the shift of wave-packets associated with charge carriers as 

(a) (b) (c)

Figure 1: J. Balakrishnan et al . 

Model: Kane-Mele SOC impurities 

plus scalar resonant scatterers
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Indirect DMC: Eldestein Effect

K Shen, G Vignale & R Raimondi   PRL (2014)
R Raimondi, P Schwab, C Gorinni, and G Vignale

Ann Phys (Berlin)  2012

J

Two-step process

J z

SHE

Figure 1 shows the qualitative picture of the IEE for the
paradigmatic case of the Rashba spin-orbit coupling, i.e., a
spin-orbit coupling of the form αðz × pÞ · σ, where z is the
unit vector perpendicular to the plane of the electrons, α is
the Rashba velocity, and p is the momentum of the electron.
If spin injection could be selectively done at fixed
momentum, it would be, then, obvious in order to produce
a charge current along the x direction to inject and extract
electrons at (−kF, 0) and (kF,0), respectively, where the
Rashba field αðz × pÞ aligns the spin in the y direction (see
Fig. 1). This may happen at the surface of a topological
insulator, where momentum and spin are locked [36].
However, in the Rashba model, y-polarized spin injection
may occur at any momentum, irrespective of the direction
of the internal field αðz × pÞ. Take, for instance, the
apparently least favorable case at (0, kF) or (0, −kF).
Under the action of the Rashba field αðz × pÞ, the spin of
an injected electron, initially pointing along y, acquires a z
component that is positive or negative according to whether
py is positive or negative. The resulting correlation between
py and Sz is the signature of a spin current Jzy. At this point,
the regular inverse spin Hall effect takes hold [37],
converting part of the spin current to a perpendicular
charge current Jx. This shows, as we will derive later in
a quantitative way, that spin density in the Rashba model is
intimately related to both spin and charge currents in such a

way that the final result is a direct proportionality between
Jx and the incoming current of Sy spin

Jx ¼ λIEEJ
y
s; (1)

where λIEE connects an areal current density to a volume
spin current density and, therefore, has the dimensions of a
length if, as we do in this Letter, we express both charge
and spin in the same units (this is achieved by multiplying
the spin by −ℏ=e). In the simplest case of the pure Rashba
model we find λIEE ¼ ατ, where τ is the momentum
relaxation time.
In this Letter, we provide a precise formal definition of

the IEE in terms of the Kubo formula for the response of the
current Jx to the B

:

y field, which is the Onsager reciprocal of
the electric field Ex. We also develop the drift-diffusion
theory of the IEE along the lines of Refs. [27–29] in the
presence of both intrinsic and extrinsic (but linear in k)
spin-orbit coupling. In the pure Rashba limit, these equa-
tions yield Eq. (1). Finally, we make contact with the recent
experimental work on the generation of a charge current by
spin injection into a Ag-Bi interface [31] and identify the
proper relaxation time to be used in the expression for λIEE
as the momentum relaxation time.
Formal definition of IEE.—The direct Edelstein effect is

defined by the proportionality

SyðωÞ ¼ σDEEðωÞExðωÞ; (2)

where we have allowed a periodic variation of the field
and the induced density at a frequency ω. To formalize the
calculation of the Edelstein conductivity σDEEðωÞ, we
introduce the Kubo response function of the homogeneous
spin density Sy to a vector potential Ax, such that
Ex ¼ −A

:

x. Since Ax couples linearly to the current density,
we denote this response by hhŜy; Ĵxiiω, where Ĵx is the
operator of the physical current (obtained by differentiating
the Hamiltonian with respect to Ax) and Ŝy is the operator
of the spin density. The double bracket denotes the Kubo
product hhÂ; B̂iiω ≡ −ði=ℏÞ

R
t
0h½ÂðtÞ; B̂ð0Þ%eiωtdt. Since

the electric field is related to the vector potential by
EðωÞ ¼ iωAðωÞ, we immediately see that

σDEEðωÞ ¼
hhŜy; Ĵxiiω

iω
. (3)

In the dc limit, the numerator vanishes by gauge invariance
because a static and uniform vector potential does not
change Sy. Then we obtain the dc Edelstein conductivity

σDEEð0Þ ¼ lim
ω→0

ℑmhhŜy; Ĵxiiω
ω

; (4)

which is a real quantity.
The inverse Edelstein effect is similarly defined by the

proportionality

kx

ky

x

y

z

x

y

z

k

δSz

δSz

(a)

(b)

FIG. 1 (color online). Schematic description of the Rashba
model and of the generation of a spin current from injected spin in
the y direction. The thick arrows denote the Rashba field around
which the spin (thin arrow) precesses. The two insets (a) and
(b) zoom in on the dynamics of the spin near points (0, kF) and (0,
−kF) in momentum space. In the first case the spin, initially
pointing in the y direction, acquires a positive z component and
travels in the þy direction. In the second case, the spin acquires a
negative z component and travels in the −y direction.

PRL 112, 096601 (2014) P HY S I CA L R EV I EW LE T T ER S
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Rashba SOC
HR = BR(k) · s

BR(k) = ↵R (ẑ ⇥ k)

present in both effects) is applied along the x direction,
Eqs. (10)–(12) read

δSy
:

¼ −2mαJzy −
δSy

τEY
þ χsB

: y; (13)

Jzy ¼ 2mαDδSy þ σsEz
y þ ~γJx; (14)

Jx ¼ σDEx − ~γJzy. (15)

In the first equation, χsB
: y is the spin injection rate. For the

pure Rashba model the spin-Hall angle is ~γ ¼ −2mα2τ [41],
which corresponds to the ωcτ of the classical magnetotran-
sport theory, where the cyclotron frequency ωc is replaced
by 2mα2. When λ ≠ 0, the parameter ~γ gets additional
contributions proportional to λ, due to the so-called side-
jump and skew-scatteringmechanisms.We refer to Ref. [29]
for details. Clearly, the spin Hall effect is a consequence of
the Hall-like term with ~σSHE ¼ ~γσD [42].
Solving the coupled Eqs. (13)–(15) yields expression for

δSy, Jzy, and Jx, which capture the phenomenology of the
direct and inverse Edelstein effects and spin Hall effects,
including the effects of extrinsic impurity scattering,
which are quite nonintuitive in the case of the DEE (see
Refs. [28,29]). In particular, setting Ex ¼ Ez

y ¼ 0 yields

δSy ¼
τsχsB

:

y

1 − iωτs
; (16)

Jzy ¼ 2mαD
τsχsB

:

y

1 − iωτs
; (17)

Jx ¼ −
2π
e
α ~σSHE

τsχsB
:

y

1 − iωτs
; (18)

where the total relaxation time is given by τs ¼ 1=ðτ−1EY þ
τ−1DPÞ with τ−1DP ¼ ð2mαÞ2D the standard D’yakonov-Perel’
spin relaxation time. In the low-frequency limit, the
coefficient of the IEE reads

σIEE ¼ 2

e
αmτs ~σSHE. (19)

In the most interesting regime in which the Rashba
spin precession dominates extrinsic processes, the EY spin
relaxation process is negligible and the spin-Hall conduc-
tivity is given by ~σSHE ≃ −ðe=8πÞð4τ=τDPÞ. In this regime,
which is directly relevant to the experiments of Rojas
Sánchez et al. [31], we obtain

σIEE ¼ −αmτ=π. (20)

This is the result that would have been obtained by
computing the anomalous part of the current Jx in the
presence of Rashba coupling, using for the expectation

value of δSy the nonequilibrium spin polarization injected
by the source χsB

: y. Although derived for the diffusive
regime, this result remains valid in the ballistic regime, due
to the cancellation of the spin relaxation rate contained in
δSy against the one contained in the denominator of ~σSHE.
Discussion of experiments.—In a recent experiment,

Rojas Sánchez et al. [31] observed the inverse Edelstein
effect at the Ag/Bi interface. The Ag/Bi interface hosts a
2DEG of surface density n≃ 6 × 1013 cm−2, correspond-
ing to a Fermi wave vector kF ≃ 0.2 Å−1 [43,44]. These
electrons reside in states bound to the interface and
propagate only in the plane of the interface with an effective
mass m% ≃ 0.35m [43]. They are subjected to an unusually
large Rashba spin-orbit field, ℏα≃ 1 eVÅ, and they are
well described by the Rashba 2DEGHamiltonian of Eq. (8).
In practice, rather than using a time-dependent magnetic
field as we proposed above, Rojas Sánchez et al. inject the
nonequilibrium spin polarization by a spin current gener-
ated by ferromagnetic resonance of a remote NiFe layer. It is
believed [31] that the injected spin current perpendicular
to the interface does not propagate but is almost entirely
absorbed, leading to a nonequilibrium spatially uniform
spin accumulation at the interface. Thus, the observed in-
plane charge current cannot be explained by the ISHE of the
interfacial electron gas (the signal is demonstrated to not be
due to the ISHE in the bulk Ag or Bi [31]). Because the spin
accumulation is uniform, the spatial derivatives vanish and
no boundary condition is needed.
Obviously, in the absence of external magnetic field,

the equilibrium distribution is unpolarized, i.e., δSy ≡ Sy.
Moreover, the spin pumping term in Eq. (13), χsB

:

y, should
be replaced by the injected spin current density Jys
(polarized along the y direction). Notice that this latter
spin current density is three dimensional (i.e., related to
number of electrons per unit volume) in contrast to the
charge current density, which is a surface density. Hence,
the ratio Jx=J

y
s must have the dimensions of a length.

Therefore, the induced charge current is expressed by

Jx ¼ −
2π
e
ατs ~σSHEJ

y
s →

Intrinsic

dominant
ατJys . (21)

The result in the intrinsic limit is similar to that suggested
by the simple two-band model in the experimental paper,
Jx ¼ ατsJ

y
s [31]. Whereas in Ref. [31] it is suggested that

the relaxation time in this formula effectively takes into
account the coupled spin-momentum dynamics, our theory
provides a full microscopic derivation of it. In particular, our
theory shows that the relaxation time present in the ratio
between induced charge current and injected spin current
should be the momentum relaxation time, even though the
magnitude of the spin polarization itself is proportional to
the spin relaxation time [see Eq. (16)]. This property is also
demonstrated by our calculation from Kubo’s formula (not
shown). The underlying physics is that the generation of
charge current from a spin polarization is mediated by an
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FIG. 4. Plots a) and b) describe the spin relaxation rate of the Elliott-Yafet type ⌧�1
EY and Dyakonov-Perel type ⌧�1

DP for di↵erent
strength of Rashba SOC. Note that the DP spin relaxation rate becomes negative for a window of chemical potential when
↵2
R < ↵2

sk. Both scattering rates show resonant enhancements near the vicinity of Dirac point (i.e. µ = 0). At large µ, the EY
scattering rate dominates the DP scattering rate. c) Relaxation time as a function of chemical potential for weak Rashba SOC.
In these calculations, we assume identical impurities and zero temperature; for a random distribution of impurity strengths
and/or finite temperatures, these resonant features will be further smoothed out. The parameters are the same as in Fig. 2

is important. The first term in Eq. (7) behaves as an
e↵ective (impurity-generated and momentum-depedent)
magnetic field which respects time-reversal invariance.
This impurity generated magnetic field is precisely the
hermitian part of the self-energy correction:

⌃R

k

=
nimp

2
(T +

kk

+ T �
kk

). (8)

For impurity potentials that do not act upon the spin
degree of freedom, this term is normally absorbed by
redefining the chemical potential. Optionally, we could
add an energy-independent constant to Eq. (8), in or-
der to describe Rashba SOC in the bandstructure arising
from encapsulation51 or an out-of-plane applied electric
field52. Finally, the last two terms in Eq. (7) are the
quantum analogues of the “scattered-in” and “scattered-
out” terms in the semiclassical Boltzmann equation. In
the first Born approximation, T ±

kp

! V

kp

(where V is
the single-impurity potential), and the collision integral
I[�n

k

] would reduce to the more familiar form found in
Refs. 39, 53, and 54.

Assuming the impurities are time-reversal invariant
(i.e., non-magnetic impurities),

T �
pk

=
h
T +

kp

i†
. (9)

Next, we perform the parameterization �n

k

= ⇢

k

1+m

k

·�
(where ⇢

k

and m

k

represent the charge and spin density)
and T +

kp

= A

kp

1 + B

kp

· �. This yields
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0
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= I2[⇢k

,mk].

(11)

Note that the term involving B

kk

in Eq. (11) comes from
the self-energy correction ⌃R

k

; we have moved this term to
the left-hand side of the equation to emphasis the resem-
blance between the impurity SOC-generated magnetic

field B

kk

and the real magnetic field H. The collision
terms on the right of Eqs. (10) and (11) describe how
charge and spin are scattered by (time-reversal invari-
ant) impurities, and are given by:

I1[⇢k

,mk] =
nimp

2⇡~

Z
d

2
p


c1(⇢p
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k
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(13)

where the real-valued c1, c2, c3 and K are given by:

c1 =|A
kp

|2 + |B
kp

|2 ; c2 = 2Re (A
kp

B

⇤
kp), (14)

c3 =iB

kp

⇥ B

⇤
kp

, (15)

K =2Im(A
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+ 2B⇤
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⇥ (B
kp

⇥ m
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)

+ 2iIm(B
kp

· m
p

)B⇤
kp

. (16)

The various terms in the integrals in Eqs. (12) and (13)
correspond to second-order scattering processes with spe-
cific physical interpretation [see Fig. 1(b)]. The c1 terms
describe conventional elastic scattering, and give rise to
the Drude relaxation time. The c2 terms give the skew
scattering rate ↵sk, which couples the charge current to
the spin current and is thus responsible for the extrin-
sic SHE55. The terms in K contribute to the scattering
rate induced by Rashba SOC ↵R; the physical interpre-
tation of these terms depends on the symmetry of the
T -matrix and the dimensionality of the system. For a
3D electron gas with parity, rotational and time-reversal
symmetry, the first (second) term in K corresponds to
the swapping spin current (EY spin relaxation) while the
last term vanishes56. On the other hand, in a 2D non-
relativistic electron gas with the same symmetry, K gives
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scattering rate dominates the DP scattering rate. c) Relaxation time as a function of chemical potential for weak Rashba SOC.
In these calculations, we assume identical impurities and zero temperature; for a random distribution of impurity strengths
and/or finite temperatures, these resonant features will be further smoothed out. The parameters are the same as in Fig. 2

is important. The first term in Eq. (7) behaves as an
e↵ective (impurity-generated and momentum-depedent)
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For impurity potentials that do not act upon the spin
degree of freedom, this term is normally absorbed by
redefining the chemical potential. Optionally, we could
add an energy-independent constant to Eq. (8), in or-
der to describe Rashba SOC in the bandstructure arising
from encapsulation51 or an out-of-plane applied electric
field52. Finally, the last two terms in Eq. (7) are the
quantum analogues of the “scattered-in” and “scattered-
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the first Born approximation, T ±
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The various terms in the integrals in Eqs. (12) and (13)
correspond to second-order scattering processes with spe-
cific physical interpretation [see Fig. 1(b)]. The c1 terms
describe conventional elastic scattering, and give rise to
the Drude relaxation time. The c2 terms give the skew
scattering rate ↵sk, which couples the charge current to
the spin current and is thus responsible for the extrin-
sic SHE55. The terms in K contribute to the scattering
rate induced by Rashba SOC ↵R; the physical interpre-
tation of these terms depends on the symmetry of the
T -matrix and the dimensionality of the system. For a
3D electron gas with parity, rotational and time-reversal
symmetry, the first (second) term in K corresponds to
the swapping spin current (EY spin relaxation) while the
last term vanishes56. On the other hand, in a 2D non-
relativistic electron gas with the same symmetry, K gives
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FIG. 1. a) The dopants in the quantum well create a
smooth disorder landscape upon which the carriers in the two-
dimensional electron gas move. The perpendicular (parallel)
component of the electric field gives rise to a SOC potential
of the Rashba (Mott) type. b) The Feynman diagrams for the
self-energy are obtained from three types of scattering vertices
describing the scattering events with the disorder potential:
a spin-independent scalar vertex, a Mott scattering vertex
�M(k̂, p̂) = (k̂ ⇥ p̂) · � (conserving spin in the z-direction)
and the Rashba SOC vertex �R(p̂) = (� ⇥ p̂) · ẑ, inducing
spin-flip processes.

Here, v0 is the strength of the impurity potential while
n
s

has dimension of inverse area and it is usually iden-
tified with the impurity density. However, since in our
model the electrons are scattered by a random – albeit
smooth – potential, it is di�cult to clearly identify n

s

as an impurity density. In what follows, n
s

should be
understood as parametrizing the smoothness of the dis-
order landscape, depending itself on microscopic param-
eters such as the density of donors, the distance between
the doping layer and the 2DEG, and the Thomas-Fermi
screening length21.

III. QUANTUM BOLTZMANN EQUATION

In this section we obtain the quantum Boltzmann
equation describing coherent spin transport by means
of the SU(2) Schwinger-Keldysh formalism developed in

Refs. 30 and 31 [see also the appendix A for details]. Un-
der the influence of an electric (E) and magnetic field
(Ha), the (matrix) distribution function np(r, t) satisfies
the following equation:

⇣

r
t

np +
p

m
·rrnp

⌘

+
1

2
{Fp, @pnp} = I[np]. (8)

Here Fp = eE + p
m

⇥ (eB) is the force acting on
the electrons moving with velocity p/m, and B =
(8m2↵2/e2)ẑ�z is the e↵ective “magnetic field” induced
by the uniform Rashba SOC; rr and r

t

are covariant
derivatives accounting for spin precession induced by the
SOC and the magnetic fields30,31:

r
t

np(r, t) =@
t

n(p, r, t)� i[(��Ha �a), np(r, t)], (9)

r
r

np(r, t) =@rn(p, r, t) + i[eAa�a, np(r, t)], (10)

where � is the gyromagnetic ratio. The left hand side
of Eq. (8) describes the drift and di↵usion of spin and
charge due to both the uniform SOC and the external
field. The right hand-side of Eq. (8) is the so-called col-
lision integral. We assume that the disorder induced,
spin-orbit coupling strength is weak (�

xy

⇠ �
z

⌧ 1) and
therefore omit terms that are proportional to third and
higher order in �

xy

,�
z

, and v30 �xy

, v30�z

. In the stan-
dard, semiclassical Boltzmann equation, I[np] is assumed
to be independent32 of E. However, this assumption ne-
glects quantum interference e↵ects between the electric
field and the SOC potential. The side-jump contribution
to spin-Hall e↵ect precisely arises as a quantum mechan-
ical correction to the velocity operator6 p/m. For these
reasons, terms in the collision integral I[np] up to linear
order in the components of electric field E �

z

and E �
xy

must be retained. Furthermore, in the derivation of the
right hand-side of Eq. (8), we assumed a weak uniform

SOC strength, that is, ↵ ⌧ v
F

, where v
F

= p
F

/m is
the Fermi velocity. Therefore, we neglect any corrections
to I[np] arising from the uniform SOC potential (↵ or
A). Within the above approximations, we find that the
collision integral can be associated with seven distinct
classes of self-energy diagrams shown in Fig. 2. In the
absence of an external magnetic field (i.e. for H = 0),
and for a uniform external electric field E, the quantum
Boltzmann equation in the steady state takes the form:

i
⇥

eAa�a · p
m

, np

⇤

+
1

2
{eE+ p⇥ (ẑ!

c

�z), @pnp}
= ID[np] + IEY[np] + IRS[np] + ISS[np] + ISJ[np]

+ IASP[np]. (11)

Note that the covariant space derivative does not van-
ish even for the uniform steady state where np is inde-
pendent of r but contributes a spin-precession term in-
duced by the uniform SOC30. Here we have parametrized
the strength of the e↵ective SOC magnetic field using
!
c

= e|B|/m = 8m↵2, which is the cyclotron frequency
induced by the uniform SOC. The collision integrals on
the right hand side of Eq. (11) correspond respectively to:

Keldysh: Smooth weak disorder
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FIG. 2. Self-energy diagrams used in the evaluation of the collision integrals. The self-energy diagrams consist of three types of
vertices: S, M, R. Note that the diagrams that contain di↵erent vertices lead to intriguing spin-charge conversion mechanism.
In this sense, the conversion between spin and charge results from quantum interefence between di↵erent components of the
spin-orbit coupling potentials. Neglecting diagrams containing the �R vertex, we recover the results of Ref. 30 and 31. Note
that the ⇤ diagram vanishes for a non-polarized spin fermi liquid.

Drude relaxation, Elliott-Yafet relaxation, Rashba Scat-
tering, skew scattering, side-jump and anisotropic spin
precession scattering. Their evaluation is described in
Appendix B.

IV. LINEAR RESPONSE MATRIX

As discussed in e.g. Refs. 16 and 33, in the steady state
the quantum Boltzmann equation can be solved using the
following ansatz :

np = nFD [✏
p

� p · v
c

� ( (p · v
s

) n̂1 + h0 n̂0) · �] . (12)

Here nFD(✏) =
⇥

e(✏�µ)/kT + 1
⇤�1

is the Fermi-Dirac dis-
tribution function, ✏

p

= p2/2m the electron kinetic en-
ergy, v

c

(v
s

) the drift velocity of the charge (spin) degrees
of freedom, h0 is proportional to the magnitude of the
magnetization, and n̂0 and n̂1 are respectively the direc-
tions of the magnetization and the spin current. We are
interested in evaluating the non-equilibrium spin polar-
ization M = (Mx,My,Mz), the charge current density
J = (J

x

, J
y

) and the spin current density J a = (J a

x

,J a

y

)
(a = x, y, z is the spin orientation). At zero tempera-

ture, these observables are related to the parameters of
the ansatz (12) as follows:
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p

Tr [�anp] = N0 h0 n̂
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0 , (13)
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2
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p

Tr
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m
np

i

= N0 ✏F
(v

s

)
i

n̂a

1

2
, (15)

were N0 =
P

p

�(✏
p

� µ) = m/2⇡ is the density of states
of the 2DEG. In order to make contact with the results
of Ref. 16, we shall measure the spin and charge currents
in the same units and we rescale the magnetization by
defining M = v

F

M . Substituting Eq. (12) into Eq. (11)
and setting E = E

x

x̂, we finally obtain the following
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incorporating coherent spin dynamics into the transport
equations by treating both types of extrinsic SOC on
equal footing. Such a theory can serve as a guide to fu-
ture experiments and numerical simulations, especially
by helping to generate predictions regarding phenomena
other than the SHE (such as current-induced spin polar-
ization, discussed below).

This paper presents a theory of spin-coherent transport
for extrinsic SOC in graphene, based on the linearized
Quantum Boltzmann Equation (QBE). It specifically
describes the experimentally-relevant limit of strongly-
scattering but dilute impurities. From the theory, we
identify a novel scattering process that we call anisotropic
spin precession (ASP) scattering, which arises from a
combination of skew and spin-flip during a single scatter-
ing event. ASP scattering gives rise to a direct coupling
between spin polarization and charge current [Fig. 1(a)],
and is distinct from other previously-studied scattering
processes that couple non-equilibrium spin polarization
M, charge current J , and spin current J .

One of the most striking predictions of the theory is
that graphene can exhibit sizable current-induced spin

polarization (CISP). CISP, also known as the inverse
spin-galvanic e↵ect35–37, refers to non-equilibrium spin
polarization (i.e. magnetization) caused by passing a
charge current through a material. A well-known mech-
anism for producing CISP is the Edelstein e↵ect38–40, in
which charge current J is first converted into spin cur-
rent J via the SHE, and the latter then converted into
magnetization M via Rashba SOC41. In graphene doped
with SOC impurities, CISP arises from both an extrinsic
version of the Edelstein e↵ect, as well as the novel ASP
scattering process, and the latter contribution is domi-
nant when Rashba SOC in the impurities is strong.

Apart from CISP, ASP scattering also contributes to
the induced spin current J , and the size of its con-
tribution is comparable to the standard SHE contri-
bution caused by skew scattering. In particular, the
ASP scattering contribution is distinct from side-jump
scattering33,34, which was another source that leads SHE
in graphene apart from skew scattering. ASP scatter-
ing also gives a potentially sizable correction to spin re-
laxation processes, and particularly the D’yakonov-Perel
(DP) relaxation time.
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incorporating coherent spin dynamics into the transport
equations by treating both types of extrinsic SOC on
equal footing. Such a theory can serve as a guide to fu-
ture experiments and numerical simulations, especially
by helping to generate predictions regarding phenomena
other than the SHE (such as current-induced spin polar-
ization, discussed below).

This paper presents a theory of spin-coherent transport
for extrinsic SOC in graphene, based on the linearized
Quantum Boltzmann Equation (QBE). It specifically
describes the experimentally-relevant limit of strongly-
scattering but dilute impurities. From the theory, we
identify a novel scattering process that we call anisotropic
spin precession (ASP) scattering, which arises from a
combination of skew and spin-flip during a single scatter-
ing event. ASP scattering gives rise to a direct coupling
between spin polarization and charge current [Fig. 1(a)],
and is distinct from other previously-studied scattering
processes that couple non-equilibrium spin polarization
M, charge current J , and spin current J .

One of the most striking predictions of the theory is
that graphene can exhibit sizable current-induced spin

polarization (CISP). CISP, also known as the inverse
spin-galvanic e↵ect35–37, refers to non-equilibrium spin
polarization (i.e. magnetization) caused by passing a
charge current through a material. A well-known mech-
anism for producing CISP is the Edelstein e↵ect38–40, in
which charge current J is first converted into spin cur-
rent J via the SHE, and the latter then converted into
magnetization M via Rashba SOC41. In graphene doped
with SOC impurities, CISP arises from both an extrinsic
version of the Edelstein e↵ect, as well as the novel ASP
scattering process, and the latter contribution is domi-
nant when Rashba SOC in the impurities is strong.

Apart from CISP, ASP scattering also contributes to
the induced spin current J , and the size of its con-
tribution is comparable to the standard SHE contri-
bution caused by skew scattering. In particular, the
ASP scattering contribution is distinct from side-jump
scattering33,34, which was another source that leads SHE
in graphene apart from skew scattering. ASP scatter-
ing also gives a potentially sizable correction to spin re-
laxation processes, and particularly the D’yakonov-Perel
(DP) relaxation time.
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FIG. 2. Ratio of magnetization to charge current at zero tem-
perature, plotted versus the chemical potential µ (measured
from the Dirac point). The magnetization is measured in
Bohr magnetons. The top panel is plotted for strong Rashba
SOC with bare Rashba potential strength of 30 meV while
the bottom panel is for weak Rashba SOC with bare Rashba
potential strength of 10 meV . In both cases, the strength of
the spin-conserving and scalar potentials are set to 10 meV
and 80 meV, respectively, in line with previous theoretical
studies1,18. See the App. B for details.

the charge current, can be enhanced both by the reso-
nant enhancement of the SHE1, and the long spin relax-
ation times that can occur in graphene samples8,9. Inter-
estingly, recent experimental works have demonstrated
the spin-charge conversion in CVD graphene by spin-
pumping42–44...

B. Current-induced spin current

We can compute the spin current J from the second
row of Eq. (1). To first order in ✓sH and ↵asp↵R, we find
that J z

y

= �ciscEx

, where

�cisc = �D

⇣
� ✓sH + (↵R⌧D) (↵asp⌧EY)

⌘
. (3)

The first term in Eq. (3) is the conventional spin Hall
conductivity, arising from skew scattering processes. The
second term arises from a combination of ASP scatter-
ing and Rashba scattering; if this term were absent, the
“skewness ratio” �cisc/�D would reduce to ✓sH, conven-
tionally known as the spin Hall angle. Note that both

FIG. 3. Ratio of spin current to charge current at zero tem-
perature, plotted versus the chemical potential µ (measured
from the Dirac point). In the close vicinity of Dirac point, the
contribution of ASP scattering goes to number much larger
than one. This is because ⌧EY goes to infinity much faster
than ↵asp goes to zero, an artefact of the theory. The param-
eters used here are the same as in Fig. 2

terms are independent of the impurity density, unlike
the side-jump scattering contribution to the spin Hall
current33,34, which is not included in this theory.

Fig. 3 plots �cisc/�D versus chemical potential µ. For
strong impurity Rashba SOC, the skewness ratio is en-
hanced for µ near the scattering resonance (⇠ 100 meV;
see Sec. IV), with the skew scattering and ASP/Rashba
contributions having the same sign. For weak Rashba
SOC, however, the two contributions can have oppo-
site signs, diminishing the total spin current response.
This is consistent with a previous semiclassical (non-spin-
coherent) calculation which found a similar reduction un-
der weak Rashba SOC disorder1. These plots also indi-
cate that at small µ, there is a sharp increase in the
skewness ratio coming from the ASP/Rashba scattering
contribution. Specifically, as µ tends to zero, ↵asp van-
ishes more slowly than the Elliot-Yafet spin relaxation
time ⌧EY increases. At very small values of µ (⇠ 10 meV),
however, our theory becomes less reliable due to multiple
impurity scattering and interband coherence e↵ects (see
Sec. IV).

The new mechanism of creating spin-current from
charge current calls for a need to revise the theory45 that
fits spin hall data18, especially when the Rashba SOC is
strong.
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The rest of the article is organized as follows. Sec. II
summarizes our most important results, including the lin-
ear response equation relating charge current, spin cur-
rent, and spin polarization to the applied electric field.
We also discuss some of the experimental implications
from our theory and clarify the spin relaxation mecha-
nisms in graphene with SOC disorder. Sec. III provides a
brief summary of the QBE and emphasis is placed on the
structure of the collision integral. Sec. IV explains how
the QBE is solved by introducing a microscopic model
for the SOC potential and an ansatz for the electron dis-
tribution function. Finally, we close the article with a
summary and outlook in Sec. V. Some key technical
details are provided in the Appendix, and the detailed
derivation of the QBE from the density matrix is given
in the Supplementary Material.

II. RESULTS

In this section, we first present the main results of
the QBE-based theory (whose derivation is discussed in
Sec. III). When both types of extrinsic SOC (Maclure-
Yafet-Kane-Male and Rashba) are present in impurity-
doped graphene, and quantum spin coherence is ac-
counted for, the linear response of the system becomes
qualitatively di↵erent from the previous semi-classical
description of Refs. 1 and 2. Specifically, consider an
electric field E

x

applied in the x̂ direction, where the
graphene plane is the x̂-ŷ plane. The response of the lon-
gitudinal charge current J

x

, transverse spin current J z

y

,
and magnetization My (in rescaled units; see Sec. III)
take the form
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The first term on the right describes the coupling of spin
and charge, and the second term describes the out-of-
equilibrium drive (�D is the Drude conductivity). In
the (dimensionless) coupling matrix, ⌧D and ⌧EY are the
Drude relaxation time and Elliott-Yafet spin relaxation
time (see Sec. II C); ↵R is the scattering rate induced
by Rashba SOC and ✓sH is the spin Hall angle. In
the experimentally18,23 relevant dilute-impurity regime
(. 1%), the dominant contribution to the SHE arises
from skew scattering1,20, and thus ✓sH = ⌧D↵sk where
↵sk is the skew scattering rate. These relationships are
depicted in Fig. 1(a).

The matrix elements that directly couple J

x

with My

are a novel outcome of the theory. They are governed
by the ASP scattering rate, ↵asp. As shown in Fig. 1(c),
ASP scattering arises from quantum interference between
skew scattering and spin flip scattering: in a single scat-

tering event, the electron is skewed and then flipped (or
vice versa), and this results in a net spin polarization
in the plane. Fundamentally, this is due to the exis-
tence of a special axis (the out-of-plane direction) in 2D
materials, which breaks rotational symmetry for rota-
tions about this axis. Hence, ASP scattering vanishes in
3D materials possessing time-reversal and 3D rotational
symmetries. As shown in App. A, ASP scattering also
occurs in the broader context of two dimensional elec-
tron gases in quantum wells. More generally, the ASP
scattering may also occur in spin-orbit coupled electron
systems when the full 3D rotational symmetry is broken,
such as interfaces.

Note also that the J-J couplings (SHE) and the J -M
couplings are both Onsager odd processes (i.e., the ma-
trix elements in Eq. (1) have opposite sign); by contrast,
the ASP scattering induced J-M couplings are new On-
sager even processes (i.e., their matrix elements have the
same sign).

A. Current-induced spin polarization

To compute the CISP, we expand the last row in
Eq. (1) to first order in ↵R✓sH and ↵asp. This gives
My = �cispE

x

, where

�cisp = �D (✓sH↵R⌧

s

+ ↵asp⌧

s

) . (2)

Here ⌧

�1
s

= ⌧

�1
EY + ⌧

�1
DP is the total spin relaxation time.

Eq. (2) stresses that the CISP receives contributions from
two distinct mechanisms: (i) the extrinsic Edelstein e↵ect
which is a two-step process associated with ✓sH↵R, and
(ii) the ASP scattering which is associated with ↵asp. The
first term in Eq. (2) is formally identical to the Edelstein
e↵ect found in 2D electron gases40, with one important
di↵erence: the e↵ect here is of extrinsic origin. Unlike the
intrinsic Eldestein e↵ect38–40 which arises from spatially
uniform Rashba SOC in the bandstructure, the extrin-

sic Eldestein e↵ect arises from impurity Rashba scatter-
ing and is characterized by the energy-dependent Rashba
scattering rate ↵R.

The second term in Eq. (2) describes the enhance-
ment of the magnetization by ASP scattering. Generally
speaking, since ASP scattering is present even in the first
Born approximation, it dominates the Edelstein e↵ect,
which appears only in the third Born approximation.

The ratio �cisp/�D, representing the figure of merit for
CISP, is plotted against chemical potential µ in Fig. 2.
It is peaked at a certain positive µ due to resonant spin-
coherent scattering (⇠ 100 meV based on our choice of
SOC impurity potential; see Sec. IV). ASP scattering
gives the dominant contribution to CISP when the im-
purity Rashba SOC is large.

Both the extrinsic Edelstein and ASP scattering con-
tributions to CISP are proportional to the total spin re-
laxation time. Due to the specific features of graphene,
this implies that the net magnetization, normalized by
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3D materials possessing time-reversal and 3D rotational
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such as interfaces.
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ing and is characterized by the energy-dependent Rashba
scattering rate ↵R.

The second term in Eq. (2) describes the enhance-
ment of the magnetization by ASP scattering. Generally
speaking, since ASP scattering is present even in the first
Born approximation, it dominates the Edelstein e↵ect,
which appears only in the third Born approximation.

The ratio �cisp/�D, representing the figure of merit for
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It is peaked at a certain positive µ due to resonant spin-
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FIG. 1. (Color online) (a) Raman spectra of the HSQ film both
on top of the graphene and away from it before (black curve) and after
(red curve) the exposure. The intensity is normalized to the intensity
of the G peak for both curves. The inset shows a schematic of the
HSQ monomer. Silicon atoms are shown with purple filled circles,
oxygen with red filled circles, and hydrogen with white filled circles.
(b) Raman spectra of the graphene sample covered with the HSQ
film after successive exposures with an electron beam. Red and blue
curves are shifted both horizontally and vertically for clarity.

and only then was the sample uniformly covered with HSQ.
Finally, samples of type C were coated with HSQ directly
after exfoliation in order to minimize the contamination level
of the graphene-HSQ interface. For this type the Hall bar mask
was defined in the first lithography step in HSQ, then it was
coated with PMMA followed by the second lithography step
and metal deposition, and only then the sample was etched.
Determined by lithography the geometry of the samples was
confirmed with scanning electron microscopy (SEM) imaging
with accuracy better than ∼10%. In total seven samples (three
A samples, one B sample, and three C samples) were measured
and showed a consistent behavior.

The graphene conducting channels were functionalized
with the help of an electron-beam exposure of the HSQ mask
or film that was formed on top of the device. Hydrogen
silsesquioxane is known as a high-resolution negative tone
resist [19]. Its monomer has a cubic shape with Si atoms in
the corners that are linked with oxygen atoms; see the inset
to Fig. 1(a). The remaining silicon bonds are saturated with
hydrogen. When an HSQ film is exposed with the electron-
beam, SiH bonds get dissociated, and neighboring monomers
cross-link via an extra oxygen atom. At the same time released
hydrogen becomes available for covalently bonding to the
graphene surface [15,19]. Scission of the SiH bond leads to the
modification of the vibration modes of the HSQ film and can
be detected via Raman spectroscopy. Moreover, when bonding
to graphene, hydrogen locally modifies the hybridization from
sp2 to sp3, therefore, introducing an atomic-scale imperfection
in the lattice of the crystal [7]. Such imperfections are known
to cause intervalley scattering of the carriers and result in the
appearance of a D peak in the Raman spectrum of graphene
[16,20].

III. RAMAN SPECTROSCOPY AND NONLOCAL
TRANSPORT CHARACTERIZATION

We used Raman spectroscopy to confirm the effect of the
electron-beam exposure on the HSQ-graphene system and to
relate the used doses to the reported values in Refs. [2,15].
In the spectrum of the HSQ film we were able to identify a

peak around 2260 cm−1 that is associated with the presence
of SiH bonds [21]; see Fig. 1(a). The normalized intensity
of this peak was seen to prominently decrease after exposure
with an e-beam, thus, confirming the hydrogenation model
proposed in Ref. [15]. Besides, after the first e-beam irradiation
the Raman spectrum of graphene showed an appearing D
peak which continued to increase in relative intensity with
further exposures; see Fig. 1(b). The intensity of the D peak
was found to grow monotonically with irradiation implying
a monotonic increase in the hydrogen coverage [15]. Using
the relation between the defect concentration and the relative
intensity of the D peak ID/IG [22] we estimated the coverage
of the defects as 0.006% and 0.02% for 100 and 1400 µC/cm2,
respectively. The strength of the induced spin-orbit coupling is
expected to depend linearly on the level of functionalization,
thus, suggesting in a certain range of exposures monotonic and
close-to-linear relations between the relative intensity of the
D peak and the strength of the spin-orbit interaction.

To study the effect of such a modification on charge trans-
port in our graphene samples, we used a Hall bar geometry;
see Fig. 2. Employment of a nonlocal measurement scheme
allowed us to separate the classical Ohmic consequences of the
charge transport from the studied phenomenon. In a system
with the enhanced spin-orbit interaction, a drifting electron
is scattered into the direction that depends on the spin. For a
Hall bar geometry it implies that an applied transverse charge
current Iq results in a longitudinal spin current (spin Hall
effect) IM that diffuses over relatively long distances in a
longitudinal direction. In turn, spin current is converted back
into the charge current (inverse spin Hall effect), which is
detected as a builtup transverse voltage difference VNL. From
here we will use the notation of a nonlocal resistance RNL,
which is defined as VNL/Iq and is a measure of the conversion
efficiency between IM and Iq . The axis of spin quantization is

FIG. 2. (Color online) SEM image of sample C2 under a 45◦

angle. The scale is given by the width of the channel, which is
0.5-µm wide. The inset: schematic of the measuring circuit and
the measured region of the sample. The transverse charge current
Iq between electrodes 1 and 2 is converted into the mediative current
IM and then converted back into the voltage drop between 3 and 4.
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Hanle effect  is qualitatively different for different spin-
charge conversion mechanism. It may become asymmetric.

Anomalous Hanle spin precession
C Huang, Y Chong, and MAC, Phys. Rev. Lett. (2017)
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Figure 1 |Device characterization. a, Scanning electron micrograph of a hydrogenated graphene sample showing multiple Hall bar junctions. Scale bar,
5 µm. b, Measurement schematics for the non-local spin Hall measurement. Inset: schematics showing the deformation of the graphene hexagonal lattice
due to hydrogenation. c, Evolution of the percentage of hydrogenation with increasing irradiation dose for HSQ (0–5 mC cm�2) calculated from the ID/IG
ratio of Raman peaks.
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Figure 2 | Room-temperature measurements of non-local signal. a, RNL versus n for pristine graphene and hydrogenated graphene at room temperature.
The dark grey dashed lines show the ohmic contribution to the measured signal. Inset: ⇢ versus n for pristine and hydrogenated graphene. b, Dependence
of the RNL on the percentage of hydrogenation. The dark grey dashed lines show the calculated ROhmic contribution for this sample.

hydrogenation at T = 4K (µ⇠ 20,000 cm2 V�1 s�1, L/W = 5). A fit
to this oscillating non-local signal using29

RNL = 1
2
� 2⇢WRe

h
(
p
1+ i!B⌧s/⌦s)e�(

p
1+i!B⌧s/⌦s)|L|

i
(1)

where � is the spin Hall coefficient, gives ⌦s(B) ⇠ 1.6 µm and
� ⇠ 0.18. It should be noted that such an oscillatory behaviour
is absent for pristine graphene samples. Thus, the oscillatory
behaviour of RNL is a direct signature of both the SHE arising from
the hydrogenation of the graphene lattice and the enhancement of
an otherwise weak SO coupling strength on hydrogenation.

Further to the magnetic field dependence, we also employed the
length and the width dependence to confirm that the origin of the
non-local signal in weakly hydrogenated graphene samples is due
to the SHE.We first discuss the length dependence by keepingW =
1 µm constant. Figure 4a,b shows the length dependence of RNL/⇢,
both at the charge neutrality point (CNP) and at n= 1⇥1012 cm�2,
for the same sample (S3) hydrogenated first to 0.02% and then
at 0.05%. The sample has mobilities of 1600 cm2 V�1 s�1 and
900 cm2 V�1 s�1 for 0.02% and 0.05% hydrogenation respectively.
At zero applied field the equation (1) for the non-local signal, for a
device with length L and widthW , becomes29,30

RNL = 1
2
� 2⇢

W
⌦s

e�L/⌦s (2)

By fitting the RNL/⇢ versus L curve using equation (2), we
determine ⌦s ⇠ (0.95± 0.02) µm and � ⇠ 0.58 at CNP and ⌦s ⇠
(1.12±0.06) µm and � = 0.45 at n= 1⇥1012 cm�2. These results
are consistent and in good agreement with the results from con-
ventional lateral spin-valve31–34 devices for hydrogenated graphene
with ferromagnetic contacts35 (see Supplementary Information
for further data).

Next we study the width dependence of the non-local signal
at a fixed length L = 2 µm (Fig. 4c, sample S2). After 0.01%
hydrogenation S2 still shows a mobility of 14,000 cm�2 V�1 s�1 at
room temperature. In such higher mobility samples, the width
dependence of the SHE signal shows a power-law dependence. The
ROhmic, on the other hand, depends on the width as exp(�⇡L/W )
and is orders of magnitude smaller. The distinction between RNL
and ROhmic is most apparent at the smallest width (400 nm). This
is in good agreement with the theoretical prediction of ref. 29,
for narrow channels. The observed width dependence can also be
well explained by the theoretical model for clean wires36,37, that
is, for high-mobility devices in the limit W < ⌦so, where ⌦so is the
spin-precession length. For most of our width range (0.4–1.8 µm)
this condition is easily fulfilled, because for S2 ⌦so ⇠ 8 µm (see
Supplementary Information).

We next evaluate other key spin parameters such as the ⌧s
and the �SO. In hydrogenated graphene, the dominant spin
relaxation is predicted to be the spin dephasing due to Elliott–
Yafet scattering1. In the Elliott–Yafet mechanism, ⌧s = ("F/�SO)2⌧p,
where "F is the Fermi energy and ⌧p is the momentum relaxation
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Colossal enhancement of spin–orbit coupling in
weakly hydrogenated graphene
Jayakumar Balakrishnan1,2†, Gavin KokWai Koon1,2,3†, Manu Jaiswal1,2‡, A. H. Castro Neto1,2,4

and Barbaros Özyilmaz1,2,3,4*
Graphene’s extremely small intrinsic spin–orbit (SO)
interaction1 makes the realization of many interesting phe-
nomena such as topological/quantum spin Hall states2,3 and
the spin Hall effect4 (SHE) practically impossible. Recently,
it was predicted1,5–7 that the introduction of adatoms in
graphene would enhance the SO interaction by the conversion
of sp2 to sp3 bonds. However, introducing adatoms and yet
keeping graphene metallic, that is, without creating electronic
(Anderson) localization8, is experimentally challenging. Here,
we show that the controlled addition of small amounts of
covalently bonded hydrogen atoms is sufficient to induce a
colossal enhancement of the SO interaction by three orders
of magnitude. This results in a SHE at zero external magnetic
fields at room temperature, with non-local spin signals
up to 100�; orders of magnitude larger than in metals9.
The non-local SHE is, further, directly confirmed by Larmor
spin-precession measurements. From this and the length
dependence of the non-local signal we extract a spin relaxation
length of ⇠1µm, a spin relaxation time of ⇠90ps and a SO
strength of 2.5meV.

Graphene10 is an ideal two-dimensional (2D) system with large
Young’s modulus11 and low bending rigidity12. Its extraordinary
in-plane mechanical strength allows for large out-of-plane defor-
mations, even at the atomic scale. This enables a broad class of
chemical reactions/functionalizations, that are not practical with
other 2D materials13–15. The out-of-plane distortion of the planar
carbon bonds is unique to graphene and may allow for a strong
enhancement in its otherwise weak intrinsic SO coupling strength1.
This enhancement is unlike the SO enhancement in metals16
and semiconductors17, and is even distinct from the curvature-
induced SO coupling in carbon nanotubes18,19. As the sp3-bond
angle depends strongly on the graphene–substrate interaction, the
hydrogenation of graphene allows for a controllable SO strength
ranging from a few tens of microelectronvolts up to 7meV (ref. 1).
This allows the manipulation of electron/hole spins in graphene
through SHE (refs 17,20–24), thus eliminating the need for any
magnetic elements or externally applied (local) magnetic fields in
the device architecture.

We introduce small amounts of covalently bonded hydrogen
atoms to the graphene lattice by the dissociation of a hydrogen
silsesquioxane (HSQ) resist25. The extent of hydrogenation for our
samples is determined by Raman spectroscopy measurements26,27
(see Supplementary Information) and gives ⇠0.01–0.05%
hydrogenation for a HSQ dose in the range 0.4–5mC cm�2

1Department of Physics, 2 Science Drive 3, National University of Singapore, Singapore 117542, Singapore, 2Graphene Research Centre, 6 Science Drive 2,
National University of Singapore, Singapore 117546, Singapore, 3Nanocore, 4 Engineering Drive 3, National University of Singapore, Singapore 117576,
Singapore, 4NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), 28 Medical Drive, Singapore 117456,
Singapore. †These authors contributed equally to this work. ‡Present address: Department of Physics, Indian Institute of Technology Madras, Chennai
600036, India. *e-mail: barbaros@nus.edu.sg.

(Fig. 1c). Our studies focus on samples that are only weakly
hydrogenated, because hydrogen atoms are predicted to cluster
at higher densities28. In such samples, our spin-transport
measurements both at room temperature and low temperatures
show a large non-local signal in the absence of any externally applied
magnetic fields. By studying the length, width, adatom density and
in-plane magnetic field dependence of the spin signal, we estimate
the SO coupling strength (�SO), the spin relaxation length (⌦s) and
the spin relaxation time (⌧s).

Charge and spin transport measurements are characterized
in graphene Hall bar devices (Fig. 1 and see Supplementary
Information). The scanning electron micrograph of one such
device with multiple Hall bar junctions is shown in Fig. 1a. The
room-temperature local resistivity (⇢) and the non-local resistance
(RNL) measurements for the exfoliated pristine graphene device
S1 with length L = 2 µm and width W = 1 µm are shown in
Fig. 2a. The presence of a finite RNL at zero fields is not intriguing,
because it is comparable to the estimated ohmic contribution
(ROhmic; refs 29,30),

ROhmic = ⇢e�⇡L/W

However, already after very weak hydrogenation ⇠0.02%, we
observe a significant (⇠400%) increase in RNL (Fig. 2a), well
above what can be accounted for by ROhmic. With increasing
hydrogenation the measured RNL shows a steep increase, reaching
170� at 0.05% hydrogenation (Fig. 2b). A strong increase of the
RNL is observed even at charge densities >1⇥ 1012 cm�2. These
results are reproduced consistently in 18 junctions in 5 samples. As
the ohmic contribution to RNL remains negligible over the entire
hydrogenation rate (Fig. 2b), the only plausible explanation for the
observed physical phenomenon (in the absence of an applied field
and at room temperature) is the SHE.

The most direct way to confirm the SHE is to study the in-plane
magnetic field sweeps, where only the presence of spin-polarized
current can lead to an oscillating signal29. For this geometry the
non-local signal has been predicted to oscillate in a magnetic field
range given by the Larmor frequency !B =�B (Ds/W 2) (ref. 29),
where � is the gyromagnetic ratio, B is the applied magnetic field,
Ds is the spin diffusion coefficient andW is the width of the sample.
For this, devices with higher mobility (higherD) and smallerW are
selected so that the conditionW <⌦s is satisfied and the variation in
the spin polarization across the strip is negligible29. Figure 3 shows
the in-plane field dependence of RNL for the device with 0.01%
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“Spooky” Non-local signals…
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FIG. 1. (Color online) (a) Raman spectra of the HSQ film both
on top of the graphene and away from it before (black curve) and after
(red curve) the exposure. The intensity is normalized to the intensity
of the G peak for both curves. The inset shows a schematic of the
HSQ monomer. Silicon atoms are shown with purple filled circles,
oxygen with red filled circles, and hydrogen with white filled circles.
(b) Raman spectra of the graphene sample covered with the HSQ
film after successive exposures with an electron beam. Red and blue
curves are shifted both horizontally and vertically for clarity.

and only then was the sample uniformly covered with HSQ.
Finally, samples of type C were coated with HSQ directly
after exfoliation in order to minimize the contamination level
of the graphene-HSQ interface. For this type the Hall bar mask
was defined in the first lithography step in HSQ, then it was
coated with PMMA followed by the second lithography step
and metal deposition, and only then the sample was etched.
Determined by lithography the geometry of the samples was
confirmed with scanning electron microscopy (SEM) imaging
with accuracy better than ∼10%. In total seven samples (three
A samples, one B sample, and three C samples) were measured
and showed a consistent behavior.

The graphene conducting channels were functionalized
with the help of an electron-beam exposure of the HSQ mask
or film that was formed on top of the device. Hydrogen
silsesquioxane is known as a high-resolution negative tone
resist [19]. Its monomer has a cubic shape with Si atoms in
the corners that are linked with oxygen atoms; see the inset
to Fig. 1(a). The remaining silicon bonds are saturated with
hydrogen. When an HSQ film is exposed with the electron-
beam, SiH bonds get dissociated, and neighboring monomers
cross-link via an extra oxygen atom. At the same time released
hydrogen becomes available for covalently bonding to the
graphene surface [15,19]. Scission of the SiH bond leads to the
modification of the vibration modes of the HSQ film and can
be detected via Raman spectroscopy. Moreover, when bonding
to graphene, hydrogen locally modifies the hybridization from
sp2 to sp3, therefore, introducing an atomic-scale imperfection
in the lattice of the crystal [7]. Such imperfections are known
to cause intervalley scattering of the carriers and result in the
appearance of a D peak in the Raman spectrum of graphene
[16,20].

III. RAMAN SPECTROSCOPY AND NONLOCAL
TRANSPORT CHARACTERIZATION

We used Raman spectroscopy to confirm the effect of the
electron-beam exposure on the HSQ-graphene system and to
relate the used doses to the reported values in Refs. [2,15].
In the spectrum of the HSQ film we were able to identify a

peak around 2260 cm−1 that is associated with the presence
of SiH bonds [21]; see Fig. 1(a). The normalized intensity
of this peak was seen to prominently decrease after exposure
with an e-beam, thus, confirming the hydrogenation model
proposed in Ref. [15]. Besides, after the first e-beam irradiation
the Raman spectrum of graphene showed an appearing D
peak which continued to increase in relative intensity with
further exposures; see Fig. 1(b). The intensity of the D peak
was found to grow monotonically with irradiation implying
a monotonic increase in the hydrogen coverage [15]. Using
the relation between the defect concentration and the relative
intensity of the D peak ID/IG [22] we estimated the coverage
of the defects as 0.006% and 0.02% for 100 and 1400 µC/cm2,
respectively. The strength of the induced spin-orbit coupling is
expected to depend linearly on the level of functionalization,
thus, suggesting in a certain range of exposures monotonic and
close-to-linear relations between the relative intensity of the
D peak and the strength of the spin-orbit interaction.

To study the effect of such a modification on charge trans-
port in our graphene samples, we used a Hall bar geometry;
see Fig. 2. Employment of a nonlocal measurement scheme
allowed us to separate the classical Ohmic consequences of the
charge transport from the studied phenomenon. In a system
with the enhanced spin-orbit interaction, a drifting electron
is scattered into the direction that depends on the spin. For a
Hall bar geometry it implies that an applied transverse charge
current Iq results in a longitudinal spin current (spin Hall
effect) IM that diffuses over relatively long distances in a
longitudinal direction. In turn, spin current is converted back
into the charge current (inverse spin Hall effect), which is
detected as a builtup transverse voltage difference VNL. From
here we will use the notation of a nonlocal resistance RNL,
which is defined as VNL/Iq and is a measure of the conversion
efficiency between IM and Iq . The axis of spin quantization is

FIG. 2. (Color online) SEM image of sample C2 under a 45◦

angle. The scale is given by the width of the channel, which is
0.5-µm wide. The inset: schematic of the measuring circuit and
the measured region of the sample. The transverse charge current
Iq between electrodes 1 and 2 is converted into the mediative current
IM and then converted back into the voltage drop between 3 and 4.
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(the same voltage was used for defining the mask in HSQ),
whereas sample A1 was exposed with 30-kV electrons. The
energy of the electrons influences the scattering probability of
the propagating electron, thus, potentially contributing to the
difference in the sensitivity for samples A1 and B1.

Further comparison between the exposures with low-
and high-energy electrons can be performed with Raman
spectroscopy. Namely, in Fig. 4(d) the spectrum of the
graphene-HSQ system is shown after 50-µC/cm2 exposure
with a 5-kV acceleration voltage. Comparing the relative
intensity of the D peak with the spectra given in Fig. 1(b)
for 30 kV, we conclude that irrespective of the electron energy
the amount of produced hydrogen bonds is of the same order of
magnitude for similar doses. Thus, we eliminate the influence
of the acceleration voltage on the hydrogenation process and
conclude that a significant difference in the saturation doses for
samples A1 and B1 is likely to be associated with the surface
contamination by the PMMA residues.

Along with the Raman spectrum of an exposed monolayer
graphene-HSQ interface, we measured the Raman spectrum
of the exposed bilayer graphene-HSQ interface; see Fig. 4(d).
As is seen, the D peak in the spectrum of bilayer graphene is
practically absent indicating insensitivity in a given exposure
range of the bilayer graphene-HSQ interface to the hydrogena-
tion process [15].

At last we studied dependence of the nonlocal resistance
on the distance between injecting and detecting electrodes L.
In Fig. 5 RNL as a function of the gate voltage is plotted
for different L’s for two samples C1 and C2. RNL for
sample C1 is plotted with black empty squares, red empty
circles, and blue empty triangles for L = 1–3 µm, respectively
(W = 1 µm). Nonlocal signals measured in sample C2 are
plotted with red empty diamonds and gray empty diamonds for
L = 1,2 µm, respectively (W = 0.5 µm). The dashed lines
give corresponding calculated Ohmic contributions for each
dashed curve. A consistent linear decrease in the RNL on a
logarithmic scale with the increasing channel length suggests

FIG. 5. (Color online) (a) RNL as a function of the gate voltage.
Different curves correspond to different L/W ratios for sample
C1. The dashed lines give the corresponding calculated Ohmic
contribution T = 4.2 K. (b) Nonlocal resistance as a function of gate
voltage for different L/W ratios for sample C2.

FIG. 6. (Color online) (a) RNL (black empty squares, circles and
triangles) and ROhmic (red empty diamonds and triangles) at the dif-
ferent carrier concentrations (gate voltages) are plotted as a function
of the channel length for sample C1. The dashed lines show an
exponential fit with Eqs. (2) and (1) for RNL and ROhmic, respectively.
(b) Nonlocal resistance for sample C2 measured with B = 0 T (red
line) and B = 7 T (blue line) in-plane magnetic field. The dashed line
represents the corresponding ROhmic(VG) dependence. (c) RNL(VG)
dependences for the reciprocal current injection/detection circuits for
sample C2. Configuration 1: Iq is applied between the contacts 1 and
2 (see Fig. 2), and VNL is measured between the contacts 3 and 4.
Configuration 2: Iq is between 3 and 4, and VNL is measured between
1 and 2. (d) RNL(VG) dependences for different magnitudes of the Iq

current for sample C1.

an exponential dependence of the nonlocal signal on L. In
theory, following the spin Hall model the nonlocal resistance
should obey the analytical expression [23],

RNL = 1
2
γ 2ρ

W

λs

exp
(

− L

λs

)
, (2)

where γ is a spin Hall angle or efficiency of conversion
between the spin and the charge currents and λs is a spin-
relaxation length. This means that for W < πλs the nonlocal
resistance should decay with the distance slower than the
Ohmic contribution, thus, enhancing the difference between
the two. After replotting RNL for sample C1 as a function
of L for three different gate voltages we were able to fit the
data with Eq. (2) and extract the characteristic length; see
Fig. 6(a). λs was found to be in the range of 400–700 nm
depending on the carrier concentration. At the Dirac point the
characteristic length was found to be longer than that at higher
concentrations.

IV. EFFECT OF THE IN-PLANE MAGNETIC FIELD

So far, all our findings support the proposed spin Hall model
in Refs. [2,23]. Namely, behavior of the nonlocal resistance
with an increase in the exposure dose and with enlarging
the channel length can be consistently explained within the
limits of the model. The extracted characteristic length of
440 nm is also close to the values reported elsewhere for
the spin-relaxation length in the low quality graphene samples

165412-4

No Hanle precession!?



(T1 ¼ 1=g ∼ d2 for d ≫ A2
⊥). Experimental data

confirm this behavior (Fig. 3B). This dependence
also explains why quantum jumps were not ob-
served in previous experiments with NV centers
performed at low magnetic fields [similar mag-
netic field–enabled decoupling of nuclear spin
was proposed recently for alkaline earth metal
ions (10, 22)]. The dominance of flip-flop pro-
cesses is also visible in the quantum state tra-
jectory of the nuclear spin shown in Fig. 3C (top).
Here, jumps obey the selection rule DmI ¼ T1
imposed by the flip-flop term HA. From analyz-
ing the whole quantum state trajectory, a matrix
showing the transition probabilities can be
obtained (Fig. 3C, bottom).

Single-shot measurement of a single nuclear
spin places diamond among leading quantum
computer technologies. The high readout fidelity
(92%) demonstrated in this work is already close
to the threshold for enabling error correction (23),
although the experiments were carried out in a
moderatestrength magnetic field. Even though
the optical excitation induces complex dynamics
in the NV center (including passage into singlet
electronic state), the nuclear spin relaxation rates
are defined solely by electron-nuclear flip-flop
processes induced by hyperfine interaction. There-
fore, we expect improvement of T1 by two orders
of magnitude (reaching seconds under illumina-
tion) when a magnetic field of 5 T is used. This
will potentially allow readout fidelities compara-
ble with that achieved for single ions in traps
(24). The present technique can be applied to
multiqubit quantum registers (5, 6, 25), enabling

tests of nonclassical correlations. Finally, single-
shot measurements open new perspectives for
solid-state sensing technologies. Spins in diamond
are considered to be among the promising candi-
dates for nanoscale magnetic field sensing (26, 27).
Currently their performance is limited by photon
shot noise (26): “Digital” QND will provide im-
provement over conventional photon counting in
the case of short acquisition time. This requires
that the electron spin state used for magnetic field
sensing can bemapped onto the nuclear spin with
high accuracy, but this was already shown to be
practical in NV diamond (5).
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Strain-Induced Pseudo–Magnetic
Fields Greater Than 300 Tesla in
Graphene Nanobubbles
N. Levy,1,2*† S. A. Burke,1*‡ K. L. Meaker,1 M. Panlasigui,1 A. Zettl,1,2 F. Guinea,3

A. H. Castro Neto,4 M. F. Crommie1,2§

Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states
through the creation of a pseudo–magnetic field. This effect is unique to graphene because of its
massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Here, we present
experimental spectroscopic measurements by scanning tunneling microscopy of highly strained
nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles
exhibit Landau levels that form in the presence of strain-induced pseudo–magnetic fields greater
than 300 tesla. This demonstration of enormous pseudo–magnetic fields opens the door to both
the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate
mechanical control over electronic structure in graphene or so-called “strain engineering.”

Graphene, a single atomic layer of carbon,
displays remarkable electronic and me-
chanical properties (1, 2). Many of gra-

phene’s distinctive properties arise from a linear
band dispersion at low carrier energies (3) that
leads to Dirac-like behavior within the two-
dimensional (2D) honeycomb lattice—charge
carriers travel as if their effective mass is zero

(1). An intriguing recent prediction is that a dis-
tortion of the graphene lattice should create large,
nearly uniform pseudo–magnetic fields and give
rise to a pseudo–quantum Hall effect (4). Where-
as an elastic strain can be expected to induce a
shift in the Dirac point energy from local changes
in electron density, it is also predicted to induce
an effective vector potential that arises from

changes in the electron-hopping amplitude be-
tween carbon atoms (5). This strain-induced gauge
field can give rise to large pseudo–magnetic
fields (Bs) for appropriately selected geometries
of the applied strain (1, 6). In such situations, the
charge carriers in graphene are expected to cir-
culate as if under the influence of an applied out-
of-plane magnetic field (7–10). It has recently
been proposed that a modest strain field with
triangular symmetry will give approximately uni-
form, quantizing Bs upward of tens of tesla (4).

Here, we report the measurement of Landau
levels (LLs) arising from giant strain-induced
pseudo–magnetic fields in highly strained graphene
nanobubbles grown on the Pt(111) surface. Lan-
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associated with phonon-assisted inelastic tunnel-
ing (20).

STS measurements made directly over the
nanobubble regions exhibit a succession of rela-
tively strong peaks, spaced by more than 100
meV, which do not appear in the spectra on other
regions of the sample (Fig. 1B). The peaks are
typically weaker at negative bias, which may be
attributed to the expected shorter vertical exten-
sion of wavefunctions at lower energies. These
peaks in the LDOS of the graphene nanobubble
are unlike features seen previously in STS per-
formed on graphene in the absence of a magnetic
field on SiC (21, 22) and SiO2 (20, 23) substrates
and often overwhelm the usual graphene fea-
tures. Figure 2A shows a series of spectra taken at
different positions across a single nanobubble
(topography shown in Fig. 2B). These spectra
display the typical nanobubble peak structure as
well as the inelastic feature at the Fermi energy
described above [a broader bias range is shown in
(fig. S3)]. Similar peak structure was observed on
10 different nanobubbles with four different STM
tips, with some variation in peak spacing and
amplitude that we presume was caused by varia-
tions in strain-induced electronic structure arising
from different nanobubble geometries.

These peaks observed in the nanobubble
LDOS can be attributed to LLs originating from
a strain-induced pseudo–magnetic field. Other
possible origins that we rule out as unlikely in-
clude confinement effects and defect creation.
Confinement of Dirac fermions in graphene is
difficult because of Klein tunnelling and the sup-
pression of backscattering (1). If confinement
somehow occurred at the nanobubble edges, the
peaks observed would be expected to follow a
different progression, most notably missing the
n = 0 peak observed in spectra taken at the
center of most nanobubbles (24). Confinement
would also result in strong nodal patterns in
LDOS (24), which were not observed. The pro-
duction of defect states by strain is also unlikely
because of the high energetic barrier toward de-

fect creation. It is possible that some nanobub-
bles were formed at defect sites in the as-grown
graphene, but the nanobubbles that we mea-
sured did not show signatures of defect physics
in spectroscopy, such as tip height dependence
of peak positions associated with the charging of
defect states.

The most likely explanation for the nano-
bubble peaks is that they arise from a large,
relatively uniform strain-induced pseudo–magnetic
field. This pseudo–magnetic field is expected to
mimic the influence of a real magnetic field ap-
plied perpendicular to the graphene sheet and
give rise to LLs (4). These appear as a series of
peaks in STS as they do for the case of a real
magnetic field (25, 26). Specifically, the 2D
massless Dirac nature of charge carriers near the
Fermi energy causes the progression of peaks in
the LDOS to follow the expression (7, 8):

En ¼ sgnðnÞℏwc

ffiffiffiffiffi
jnj

p
þ EDirac,

wc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏv2FBs

p
(1)

where En is the position in energy of the nth LL
with respect to the Fermi level,wc is the cyclotron
resonance frequency arising fromBs, and vF is the
Fermi velocity. Both positive and negative n will
appear symmetrically about the Dirac point,
corresponding to electron and hole states, respec-
tively, as well as an n = 0 state coincident with the
Dirac point (1, 7, 8).

The energy progression expected for LLs in
graphene can be compared to STS data taken on
a nanobubble by fitting the spectra with a se-
quence of Lorentzian peaks following Eq. 1 with
a simple polynomial background (Fig. 2A). The
observed peak structure follows the expected
progression well, and a value of Bs for position
“1” in Fig. 2Awas determined to be 350 T 40 T
(energies of the n = 0, 1, and 2 states from the fit
are shown below the spectrum for this position).
Additional peaks that largely follow the expected
sgnðnÞ

ffiffiffiffiffi
jnj

p
progression were also observed over

a wider bias range. Small deviations from this
progression occur for higher energy peaks, be-
cause the graphene dispersion is not strictly lin-
ear in this range. A plot of normalized energy
ðEn − EDiracÞ= ℏwc versus sgnðnÞ

ffiffiffiffiffi
jnj

p
, shown in

Fig. 2C, compiled from spectra on five different
nanobubbles, demonstrates the expected scaling
behavior for LLs in graphene.

The offset and spacing of the peak progres-
sion changes over different positions on individ-
ual nanobubbles, indicating a spatial variation
of Bs and EDirac. The Bs profile across a strained
nanobubble was extracted from the spectral peak
spacing at different positions across a nanobub-
ble, shown in Fig. 3B. As seen in Fig. 3A, the Bs
profile is reasonably flat across the center of the
bubble, indicating a relatively uniform pseudo–
magnetic field of 300 to 400 T for this particular
geometry. EDirac, coincident with the n = 0 LL,
ranges from 0.2 to 0.3 eV across this region of
the nanobubble. This variation in EDirac indicates
scalar potential variations across the nanobubble,
as expected for an elastic deformation that does
not constitute a pure shear strain (1, 5).

To compare the experimental spatial depen-
dence of the strain-induced pseudo–magnetic
field to theoretical predictions, we simulated a
triangular nanobubble with similar geometry to
that shown in Figs. 2A and 3B by using con-
tinuum elasticity theory (27) [see supporting in-
formation for details (12)]. In this calculation, the
edges of a triangular graphene patch were brought
in toward the center to simulate the strain arising
from the different coefficients of thermal expan-
sion of graphene and the underlying Pt(111) sub-
strate during experimental sample preparation.
The predicted pseudo–magnetic field arising
from this strain field was also calculated follow-
ing (4). A 3D plot of the simulated nanobubble
shape with the pseudo–magnetic field strength
shown as a color map is displayed in Fig. 3C (the
corresponding experimental nanobubble is shown
in Fig. 3B). The simulated and experimental topo-
graphic profiles agree well, as seen by the com-
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Fig. 3. (A) Experimental topographic line scan and experimentally determined
Bs profile over the tip trajectory shown by black line in (B). (B) STM topography
of graphene nanobubble. (C) Topography of theoretically simulated graphene
nanobubble with calculated Bs color map. (D) Simulated topographic line scan
and Bs profiles extracted from line shown in (C).
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(T1 ¼ 1=g ∼ d2 for d ≫ A2
⊥). Experimental data

confirm this behavior (Fig. 3B). This dependence
also explains why quantum jumps were not ob-
served in previous experiments with NV centers
performed at low magnetic fields [similar mag-
netic field–enabled decoupling of nuclear spin
was proposed recently for alkaline earth metal
ions (10, 22)]. The dominance of flip-flop pro-
cesses is also visible in the quantum state tra-
jectory of the nuclear spin shown in Fig. 3C (top).
Here, jumps obey the selection rule DmI ¼ T1
imposed by the flip-flop term HA. From analyz-
ing the whole quantum state trajectory, a matrix
showing the transition probabilities can be
obtained (Fig. 3C, bottom).

Single-shot measurement of a single nuclear
spin places diamond among leading quantum
computer technologies. The high readout fidelity
(92%) demonstrated in this work is already close
to the threshold for enabling error correction (23),
although the experiments were carried out in a
moderatestrength magnetic field. Even though
the optical excitation induces complex dynamics
in the NV center (including passage into singlet
electronic state), the nuclear spin relaxation rates
are defined solely by electron-nuclear flip-flop
processes induced by hyperfine interaction. There-
fore, we expect improvement of T1 by two orders
of magnitude (reaching seconds under illumina-
tion) when a magnetic field of 5 T is used. This
will potentially allow readout fidelities compara-
ble with that achieved for single ions in traps
(24). The present technique can be applied to
multiqubit quantum registers (5, 6, 25), enabling

tests of nonclassical correlations. Finally, single-
shot measurements open new perspectives for
solid-state sensing technologies. Spins in diamond
are considered to be among the promising candi-
dates for nanoscale magnetic field sensing (26, 27).
Currently their performance is limited by photon
shot noise (26): “Digital” QND will provide im-
provement over conventional photon counting in
the case of short acquisition time. This requires
that the electron spin state used for magnetic field
sensing can bemapped onto the nuclear spin with
high accuracy, but this was already shown to be
practical in NV diamond (5).
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Strain-Induced Pseudo–Magnetic
Fields Greater Than 300 Tesla in
Graphene Nanobubbles
N. Levy,1,2*† S. A. Burke,1*‡ K. L. Meaker,1 M. Panlasigui,1 A. Zettl,1,2 F. Guinea,3

A. H. Castro Neto,4 M. F. Crommie1,2§

Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states
through the creation of a pseudo–magnetic field. This effect is unique to graphene because of its
massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Here, we present
experimental spectroscopic measurements by scanning tunneling microscopy of highly strained
nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles
exhibit Landau levels that form in the presence of strain-induced pseudo–magnetic fields greater
than 300 tesla. This demonstration of enormous pseudo–magnetic fields opens the door to both
the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate
mechanical control over electronic structure in graphene or so-called “strain engineering.”

Graphene, a single atomic layer of carbon,
displays remarkable electronic and me-
chanical properties (1, 2). Many of gra-

phene’s distinctive properties arise from a linear
band dispersion at low carrier energies (3) that
leads to Dirac-like behavior within the two-
dimensional (2D) honeycomb lattice—charge
carriers travel as if their effective mass is zero

(1). An intriguing recent prediction is that a dis-
tortion of the graphene lattice should create large,
nearly uniform pseudo–magnetic fields and give
rise to a pseudo–quantum Hall effect (4). Where-
as an elastic strain can be expected to induce a
shift in the Dirac point energy from local changes
in electron density, it is also predicted to induce
an effective vector potential that arises from

changes in the electron-hopping amplitude be-
tween carbon atoms (5). This strain-induced gauge
field can give rise to large pseudo–magnetic
fields (Bs) for appropriately selected geometries
of the applied strain (1, 6). In such situations, the
charge carriers in graphene are expected to cir-
culate as if under the influence of an applied out-
of-plane magnetic field (7–10). It has recently
been proposed that a modest strain field with
triangular symmetry will give approximately uni-
form, quantizing Bs upward of tens of tesla (4).

Here, we report the measurement of Landau
levels (LLs) arising from giant strain-induced
pseudo–magnetic fields in highly strained graphene
nanobubbles grown on the Pt(111) surface. Lan-
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dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.

2nm

A B C
4Å

0Å

Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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Energy gaps and a zero-field quantum Hall effect
in graphene by strain engineering
F. Guinea1*, M. I. Katsnelson2 and A. K. Geim3*
Among many remarkable qualities of graphene, its electronic
properties attract particular interest owing to the chiral
character of the charge carriers, which leads to such unusual
phenomena as metallic conductivity in the limit of no carriers
and the half-integer quantum Hall effect observable even
at room temperature1–3. Because graphene is only one atom
thick, it is also amenable to external influences, including
mechanical deformation. The latter offers a tempting prospect
of controlling graphene’s properties by strain and, recently,
several reports have examined graphene under uniaxial
deformation4–8. Although the strain can induce additional
Raman features7,8, no significant changes in graphene’s band
structure have been either observed or expected for realistic
strains of up to ⇠15% (refs 9–11). Here we show that a
designed strain aligned along three main crystallographic
directions induces strong gauge fields12–14 that effectively
act as a uniform magnetic field exceeding 10 T. For a finite
doping, the quantizing field results in an insulating bulk and
a pair of countercirculating edge states, similar to the case
of a topological insulator15–20. We suggest realistic ways of
creating this quantum state and observing the pseudomagnetic
quantum Hall effect. We also show that strained superlattices
can be used to open significant energy gaps in graphene’s
electronic spectrum.

If a mechanical strain � varies smoothly on the scale of
interatomic distances, it does not break the sublattice symmetry
but rather deforms the Brillouin zone in such a way that the Dirac
cones located in graphene at points K and K0 are shifted in the
opposite directions2. This is reminiscent of the effect induced on
charge carriers by magnetic field B applied perpendicular to the
graphene plane2,12–14. The strain-induced, pseudomagnetic field BS
or, more generally, gauge-field vector potential A has opposite
signs for graphene’s two valleys K and K0, which means that elastic
deformations, unlikemagnetic field, do not violate the time-reversal
symmetry of a crystal as a whole12–14,21,22.

On the basis of this analogy between strain andmagnetic field, we
ask the following question. Is it possible to create such a distribution
of strain that it results in a strong uniform pseudomagnetic field BS
and, accordingly, leads to a ‘pseudo-quantum Hall effect (QHE)’
observable in zero B? The previous attempts to engineer energy
gaps by applying strain5–7 seem to suggest a negative answer.
Indeed, the hexagonal symmetry of the graphene lattice generally
implies a highly anisotropic distribution of BS (refs 21, 22).
Therefore, the strain is expected to contribute primarily in the
phenomena that do not average out in a random magnetic field,
such as weak localization13,14. Furthermore, a strong gauge field
implies the opening of energy gaps owing to Landau quantization,
�E ⇡ 400K

p
B (>0.1 eV for BS = 10 T), whereas no gaps were
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theoretically found for uniaxial strain as large as ⇡25% (ref. 4).
The only way to induce significant gaps known so far is to spatially
confine carriers (�E ⇡ 0.1 eV requires 10-nm-wide ribbons)1,2.
Contrary to these expectations, we have found that by applying
stresses with triangular symmetry it is possible to generate a uniform
quantizing BS equivalent to tens of Tesla so that the corresponding
gaps exceed 0.1 eV and are observable at room temperature.

A two-dimensional strain fieldu
ij

(x,y) leads to a gauge field23,24
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where a is the lattice constant, � = �@ ln t/@ lna ⇡ 2 and t the
nearest-neighbour hopping parameter, and the x-axis is chosen
along a zigzag direction of the graphene lattice. In the following,
we consider valley K, unless stated otherwise. We can immediately
see that BS can be created only by non-uniform shear strain. Indeed,
for dilation (isotropic strain), equation (1) leads to A= 0 and, for
the uniform strain previously considered in refs 4–6, to A= const,
which also yields zero BS.

Using polar coordinates (r,✓), equation (1) can be rewritten as
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which yields the pseudomagnetic field
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In the radial representation, it is easy to show that uniform BS is
achieved for the following displacements:

u

r

= cr

2 sin3✓ , u✓ = cr

2cos3✓ (2)

where c is a constant. The strain described by (2) and its
crystallographic alignment are shown in Fig. 1a,b, respectively.
This yields uniform BS = 8�c/a (given in units ¯h/e ⌘ 1). For a
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Figure 1 | Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a, Distortion of a graphene disc which is required to
generate uniform BS. The original shape is shown in blue. b, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or
compressed along equivalent crystallographic directions h100i. Two graphene sublattices are shown in red and green. c, Distribution of the forces applied
at the disc’s perimeter (arrows) that would create the strain required in a. The uniform colour inside the disc indicates strictly uniform pseudomagnetic
field. d, The shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The length of the arrows indicates the
required local stress.
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Figure 2 | Stretching graphene samples along h100i axes always generates a pseudomagnetic field that is fairly uniform at the centre. a, Distribution of
BS for a regular hexagon stretched by its three sides oriented perpendicular to h100i. Other examples are given in the Supplementary Information.
b, Normalized density of states for the hexagon in a with L= 30 nm and �m = 1%. The black curve is for the case of no strain and no magnetic field. The
peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B= 10 T. The pseudomagnetic field
with BS ⇡ 7 T near the hexagon’s centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the
pseudo-Landau levels is mostly due to the finite broadening � = 2 meV used in the tight-binding calculations (� corresponds to submicrometre mean free
paths attainable in graphene devices). The inhomogeneous BS plays little role in the broadening of the first few pseudo-Landau levels (see
Supplementary Fig. S4).

disc of diameter D, which experiences a maximum strain �m at
its perimeter, we find c = �m/D. For non-ambitious �m = 10%
and D= 100 nm, we find BS ⇡ 40 T, the effective magnetic length
lB = p

aD/8��m ⇡ 4 nm and the largest Landau gap of ⇡0.25 eV.
Note that distortions (2) are purely shear and do not result in any
changes in the area of a unit cell, which means that there is no
effective electrostatic potential generated by such strain23.

The lattice distortions in Fig. 1a can be induced by in-plane
forces F applied only at the perimeter and, for the case of a disc,
they are given simply by

F

x

(✓)/ µsin(2✓), F

y

(✓)/ µcos(2✓)

where µ is the shear modulus. Figure 1c shows the required force
pattern. It is difficult to create such strain experimentally because
this involves tangential forces and both stretching and compression.
To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).

A strong pseudomagnetic field should lead to Landau quan-
tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K0 and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s�1. Our approach exploits the
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FIG. 6: (Color online) (a) Sketch of the strained graphene
sheet: we consider a rectangular sample of width W and
height L, bent into an arc of circle with inner radius R. The
unstrained graphene sheet is shown as open circles, for com-
parison. (b) Strain-induced magnetic field barrier step, ob-
tained by bending the graphene lattice only in the y ≥ 0
region. The number of atoms was reduced in both figures, in
comparison to the lattices studied in this work, in order to
improve the visualization.

around the Dirac points 2 and 5 of Fig. 1(b), namely

K =

(

0,
4π

3
√
3a0

)

and K ′ =

(

0,−
4π

3
√
3a0

)

, (21)

respectively. This choice is very convenient, since the ro-
tation angles for these points are φ = π/2 and 3π/2, re-
spectively, so that the pseudo-spinor [1, 1]T points to the
y (-y) direction in the former (latter) case. Hence, with
this pseudo-spinor, wave packets in K (K ′) will propa-
gate with positive (negative) velocity in the vertical zig-
zag direction.

B. External magnetic fields and strain

Recently,24 it was shown theoretically that bending a
graphene sheet into an arc of a circle produces a strong
and almost uniform pseudo-magnetic field profile. Fig-
ure 6(a) illustrates such a strained system, where the
rectangular graphene sample of width W and height L is
bent into an arc of a circle with inner radius R. As the
(pseudo) magnetic field points in the same direction (op-
posite directions) at each K and K ′ points,21 the combi-
nation of both external and strain-induced magnetic field
effects provides a valley-dependent magnetic field. If one
applies the appropriate external magnetic field for some
configuration of the strained graphene, one can obtain
an almost perfect suppression of the effective magnetic
field at one of the Dirac cones, while the effective field
in the other cone is enhanced. This leads to a compli-
cated system to be studied within the Dirac approxima-
tion, since one has two completely different systems for

the K and K ′ valleys. Namely, Landau levels would be
present only around one of the cones (though one can-
not expect a perfect Landau level spectrum, since the
strain-induced magnetic field is not perfectly uniform in
space), whereas in the other cone, the usual continuum
spectrum would be observed. This motivated us to an-
alyze the trajectories of a wave packet in such a system
within the TB model, where we do not need to include
the pseudo-magnetic fields artificially in the Dirac cones,
since they appear naturally when we consider the effect
of the strain-induced changes of the inter-site distances
on the hopping energies, as explained in the previous sec-
tion.

In this subsection, we investigate the dynamics of a
wave packet with width d = 200 Å and initial wave vec-
tor k0x = 0 and k0y = 0.02 Å−1 around the Dirac points K
and K ′ of Eq. (21) in the presence of external and strain-
induced magnetic field barrier steps. As in the K ′ valley
the pseudo-spinor [1, 1]T is polarized in the negative y-
direction of the graphene lattice, we choose [1,−1]T for
this case, so that a wave packet in this valley will also
propagate in the positive y-direction. In order to obtain a
pseudo-magnetic field barrier step, we consider that the
graphene layer is strained only in the y ≥ 0 region, as
sketched in Fig. 6(b). We also consider an external mag-
netic field B⃗ = BΘ(y)ẑ, where Θ(y) is the Heaviside step
function, which leads to a magnetic barrier step for y ≥ 0,
described by the vector potential A⃗ = (−ByΘ(y), 0, 0).
In order to avoid effects due to zitterbewegung in the
(pseudo) magnetic field region, the wave packet starts at
the position x0 = 0, y0 = −420 Å , so that it can travel
for some time in the magnetic field-free region y < 0 until
its velocity converge to a time independent value.

The influence of the external and strain-induced mag-
netic field barriers on the trajectories of the wave packet
are analyzed separately in Fig. 7, which shows the trajec-
tory of the centroid of the wave packets in K (symbols)
and K ′ (curves) points, calculated as ⟨r⟩ = (⟨x⟩, ⟨y⟩), (a)
in a non-strained graphene sheet with magnetic field bar-
riers B = 5 T (solid, circles), 7 T (dashed, triangles) and
10 T (dotted, squares) and (b) in a strained graphene
sheet with radius R = 1 µm (solid, circles), 0.8 µm
(dashed, triangles) and 0.6 µm (dotted, squares). All the
trajectories form semi-circles in the y ≥ 0 region, which
is due to the Lorentz force produced by the (pseudo)
magnetic field. As the external magnetic field (radius
of the strained region) increases (decreases), the radii
of these semi-circular trajectories are reduced, since a
higher (pseudo) magnetic field produces a stronger mod-
ulus of the Lorentz force. Notice that the radii of tra-
jectories in the external and pseudo-magnetic fields cases
are comparable, which means that for radii R = 1 µm -
0.6 µm of the strained graphene, the generated pseudo-
magnetic field is also within ≈ 5 T and 10 T. Indeed, the
strain induced pseudo-magnetic field distribution for the

9

FIG. 7: (Color online) Trajectories of the wave packet in the
x−y plane, obtained by the TB method for such a system, for
initial momentum k0

y = 0.02 Å−1 around K (symbols) and K′

(curves) points, for (a) non-strained graphene with magnetic
barrier height B = 5 T (solid, circles), 7 T (dashed, triangles)
and 10 T (dotted, squares), and for (b) a graphene sheet bent
into an arc of circle with radius R = 1 µm (solid, circles), 0.8
µm (dashed, triangles) and 0.6 µm (dotted, squares), consid-
ering B = 0 T. In (b), symbols and curves coincide for each
value of R.

bend graphene ribbon is given by24
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, (22)

where β ≈ 2 and c is a dimensionless constant which
depends on the details of the atomic displacements.22

Considering L/R → 0 in Eq. (22) the pseudo-magnetic
field can be approximated as BS ≈ −cβΦ0

/

aR = ω/R.
Using the value ω ≈ 4.5× 104 TÅ estimated numerically
in Ref. 23, one obtains pseudo-magnetic fields within
BS ≈ 4.5 T - 7.5 T for R = 1 µm - 0.6 µm, which are
of the same order of magnitude as the external magnetic
fields that we considered. For the external magnetic field
barrier, the trajectories of wave packets in K and K ′

points form circles in opposite directions, as shown in
Fig. 7(a), which is reasonable, since these packets have
opposite momentum, which causes a sign change in the
Lorentz force. Conversely, considering the strain-induced
magnetic barrier illustrated in Fig. 6(b), the trajectories
of wave packets in K and K ′ curve in the same direction,
since, although their momenta have opposite signs, the
pseudo-magnetic fields also point in opposite directions
at each Dirac cone K and K ′.

C. Strain induced valley filter

Let us consider the strained sample in Fig. 6(b) with
R = 1 µm. By comparing the radius of the semi-circular
trajectory of the wave packet in such a system with those
obtained for different intensities of the external magnetic
field barrier, one obtains the strain-induced magnetic
field for this value of R as ≈ 4.9 T. Figure 8(a) shows
the trajectories in the x − y plane of the centroid of the
wave packets in a system where we combine a R = 1 µm
strain for y ≥ 0 with an external magnetic field barrier
B = 0 T (solid, open) and 4.9 T (dashed, full), for wave
packets in the K (symbols) and K ′ (curves) Dirac points.
In the absence of the external magnetic field, both the
K and K ′ packets exhibit the same semi-circular trajec-
tory, as discussed earlier. However, when we combine
the effect of the strain-induced and external magnetic
field barriers, the wave packet in K ′ undergoes a stronger
Lorentz force and is readily reflected, whereas the one in
the K point performs a practically straight trajectory,
as if this packet is not influenced by any Lorentz force.
This is a consequence of the fact that combining the ef-
fects of a pseudo-magnetic field produced by a R = 1µm
strain and a B = 4.9 T external magnetic field produces
a stronger magnetic field in the K ′ point, while in the
K point these fields equilibrate, producing a practically
magnetic field-free region for particles in this cone. In
this situation, the system works as a valley filter, where
only wave packets in the K Dirac cone are allowed to pass
through the strained region, whereas the wave packets in
K ′ are reflected. The results for the wave packet in K
for two other values of the external magnetic field are
shown as thin solid lines, showing that within a range of
∆B = ±0.2 T around B = 4.9 T, which is a reasonable
range for magnetic field intensities in experiments, only a
weak Lorentz force is observed and the valley filter works
fine.
The results of Fig. 8 are obtained for both external

and pseudo-magnetic field barriers starting at the same
position y = 0. It is straightforward to verify that if
there is a mismatch between the starting points of the
strained and external field regions, some deviations will
occur in the trajectories of the wave packets but, pro-
vided the length of the mismatch is much smaller than
the magnetic length, the filtering effect is still stable. As
an example, a 30 Å mismatch between the external and
pseudo-magnetic field barriers in the system analyzed in
Fig. 8 would produce a ≈ 5◦ deviation in the otherwise
vertical trajectory of the wave packet in K, whereas the
wave packet in K ′ is still readily reflected by the combi-
nation of magnetic fields in the filter region.
The probability P> of finding the particle in the

strained y ≥ 0 region, calculated as

P>(t) =
∑

n>

∑

m

|Ψt
n,m|2, (23)

where n> represents the lines of atomic sites with y ≥ 0,
is shown as a function of time in Fig. 8(b). In the B = 0
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mean scattering time and the inter-valley scattering rate.
For the latter, we provide expressions that can be used
to extract the scattering rates from first principle calcu-
lations of a single impurity potential.

Finally, it is worth mentioning that the strain-induced
valley Hall currents predicted here are neutral currents
that do not couple to external magnetic fields. There-
fore, unlike spin currents,13,28 valley currents will not
display Hanle precession (i.e. modulation of the nonlocal
resistance as a function of the strength of the in-plane
magnetic field). Thus, our findings are relevant for the
interpretation of some of the nonlocal transport measure-
ments in graphene decorated with hydrogen29 and gold
adatoms30, for which Hanle precession was not observed.
Indeed, nonuniform strain may have been introduced un-
intentionally during device preparation in the studies re-
ported in Refs. 29 and 30.31 However, the application of
the present theory to such experiments, as well as the
study of the interplay with other neutral currents, is be-
yond the scope of this work and will be explored else-
where.32

The rest of the article is organized as follows. In the
following section, we describe the details of the model
as well as its validity regime. In Sec. III, we compute
the linear response of a strained graphene and, in par-
ticular, the doping and temperature dependence of the
valley Hall conductivity. The derivation of the di↵usion
equation for the valley polarization is provided in Sec. IV.
In Sec. V, we compute the nonlocal resistance of a Hall
bar device, which provides a convenient way to detect
the VHE. In Sec. VI we provide a short summary of our
results. Finally, some detailed mathematical expressions
are relegated to the Appendix.

II. MODEL

Semiclassically, the electron motion in non-uniformly
strained graphene is described using the following set of
equations:

ṙ = u

k

, k̇ = (eE + ⌧
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where r and k are the average position and momentum
of a narrow wave packet of Bloch states, ✏
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the electron dispersion (� = +1 for the conduction and
� = �1 for the valence band, respectively), and u
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k/|k| the carrier group velocity (henceforth
we set ~ = 1). In addition, E is the applied electric field,
e < 0 the electron charge, and ⌧

z

B
s

is strain-induced
pseudo-magnetic field.11,14–16 Note that, because strain
does not break time-reversal invariance (unlike a real
magnetic field), the sign of the magnetic field is opposite
at opposite valleys. In terms of the strain tensor11,15,16

u

↵�

, B
s

= r ⇥A
s

where A
s

= �

a

(u
xx

� u

yy

,�2u
xy

) is

the pseudo gauge field. Here a = 1.42 Å is the carbon-
carbon distance and14 � ' 2. In the absence of an electric
field (i.e. E = 0), Eq. (1) predicts that a wave packet

of mean momentum k0 6= 0 moves in a circular orbit
and in opposite directions depending on whether k0 lies
closer to the K or K 0 valley. Such a valley-dependent cir-
cular motion of electron wavepackets has been observed
numerically.33

When quantized, the circular orbits lead to pseudo-
Landau levels11,14,17 (pLLs) with energy dispersion "
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cy of graphene. In this work, however, we will explore
the semiclassical regime, for which pLL are absent due
to the broadening induced by disorder and/or temper-
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consecutive Landau levels, i.e. �

n

= "

n+1 � "

n

, is s-
maller or comparable to max{k

B

T, ⌧

�1
D

}, where ⌧

�1
D

is
the impurity scattering rate (see below). For large pLL
filling factor, i.e. for µ � ⌦

c

, where µ = v

F

k

F

is the
Fermi energy (at T = 0) and k

F

the Fermi momentum,
�

n

' ⌦
c

/(2
p
n). Taking into account that

p
n ' µ/⌦

c

,
the condition �

n

⌧

D

. 1 translates into !

c

⌧

D

. 1, where
!

c

= ⌦2
c

/µ = v

F

|eB
s

|/k
F
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when the Boltzmann kinetic equation is applied to de-
scribe doped graphene. Besides the low pseudo-magnetic
field (i.e low strain) limit, our results are also applicable
in high field limit where !
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is Boltzmann’s constant).
Under the conditions stated above, we can use the fol-

lowing linearized Boltzmann equation (BE) to describe
doped strained graphene:
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Dirac distribution at temperature T and chemical poten-
tial µ. Note that, in order to correctly account for the
quantum entanglement between the two valleys within
the k ·p theory,11 �nk must be treated as a 2⇥ 2 density
matrix acting on the space of valley pseudo-spinors.

In Eq. (2), the collision integral I [�nk] describes the
e↵ect of disorder. Its form has been derived in Ref. 27,
extending the work of Kohn and Luttinger34 in order to
account for the e↵ects of disorder on the electron internal
degrees of freedom, such as the valley pseudo-spin. To
leading order in the impurity density, nimp,
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where T

±
kp

is the scattering matrix for a single impurity
(the system area is assumed to be unity).
At low temperatures, the dominant mechanism that

limits the di↵usion of bulk valley currents is the inter-
valley scattering caused by atomic-size impurities and

Semiclassical equations of motion uk = rk✏k ✏k = ±vF |k|
Bs = r⇥As(r)
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mean scattering time and the inter-valley scattering rate.
For the latter, we provide expressions that can be used
to extract the scattering rates from first principle calcu-
lations of a single impurity potential.

Finally, it is worth mentioning that the strain-induced
valley Hall currents predicted here are neutral currents
that do not couple to external magnetic fields. There-
fore, unlike spin currents,13,28 valley currents will not
display Hanle precession (i.e. modulation of the nonlocal
resistance as a function of the strength of the in-plane
magnetic field). Thus, our findings are relevant for the
interpretation of some of the nonlocal transport measure-
ments in graphene decorated with hydrogen29 and gold
adatoms30, for which Hanle precession was not observed.
Indeed, nonuniform strain may have been introduced un-
intentionally during device preparation in the studies re-
ported in Refs. 29 and 30.31 However, the application of
the present theory to such experiments, as well as the
study of the interplay with other neutral currents, is be-
yond the scope of this work and will be explored else-
where.32

The rest of the article is organized as follows. In the
following section, we describe the details of the model
as well as its validity regime. In Sec. III, we compute
the linear response of a strained graphene and, in par-
ticular, the doping and temperature dependence of the
valley Hall conductivity. The derivation of the di↵usion
equation for the valley polarization is provided in Sec. IV.
In Sec. V, we compute the nonlocal resistance of a Hall
bar device, which provides a convenient way to detect
the VHE. In Sec. VI we provide a short summary of our
results. Finally, some detailed mathematical expressions
are relegated to the Appendix.
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ṙ ⇥B
s

) , (1)

where r and k are the average position and momentum
of a narrow wave packet of Bloch states, ✏

k

= �v

F

|k|
the electron dispersion (� = +1 for the conduction and
� = �1 for the valence band, respectively), and u

k

=
r

k

✏

k

= �v

F

k/|k| the carrier group velocity (henceforth
we set ~ = 1). In addition, E is the applied electric field,
e < 0 the electron charge, and ⌧

z

B
s

is strain-induced
pseudo-magnetic field.11,14–16 Note that, because strain
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closer to the K or K 0 valley. Such a valley-dependent cir-
cular motion of electron wavepackets has been observed
numerically.33

When quantized, the circular orbits lead to pseudo-
Landau levels11,14,17 (pLLs) with energy dispersion "

n

=
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p
n, where ⌦

c

=
p

2v2
F

|B
s

| is the cyclotron frequen-
cy of graphene. In this work, however, we will explore
the semiclassical regime, for which pLL are absent due
to the broadening induced by disorder and/or temper-
ature (T ). This is the case when the distance between
consecutive Landau levels, i.e. �

n

= "

n+1 � "

n

, is s-
maller or comparable to max{k

B

T, ⌧
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}, where ⌧
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D

is
the impurity scattering rate (see below). For large pLL
filling factor, i.e. for µ � ⌦

c

, where µ = v

F
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F

is the
Fermi energy (at T = 0) and k

F

the Fermi momentum,
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n). Taking into account that
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,
the condition �
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. 1 translates into !
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. 1, where
!

c

= ⌦2
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/µ = v

F

|eB
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|/k
F

. Below, we shall see that
the modified cyclotron frequency !

c

naturally emerges
when the Boltzmann kinetic equation is applied to de-
scribe doped graphene. Besides the low pseudo-magnetic
field (i.e low strain) limit, our results are also applicable
in high field limit where !

c

⌧

D

� 1 provided the temper-
ature T � !

c

/k

B

(where k

B

is Boltzmann’s constant).
Under the conditions stated above, we can use the fol-

lowing linearized Boltzmann equation (BE) to describe
doped strained graphene:
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where �n

k

is deviation of the electron distribution from
the equilibrium distribution, i.e. �n

k

= n

k

� n

0
k

, where

n

0
k

= n

0(✏
k

�µ), being n

0(✏) =
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e

✏/kBT + 1
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the Fermi-
Dirac distribution at temperature T and chemical poten-
tial µ. Note that, in order to correctly account for the
quantum entanglement between the two valleys within
the k ·p theory,11 �nk must be treated as a 2⇥ 2 density
matrix acting on the space of valley pseudo-spinors.

In Eq. (2), the collision integral I [�nk] describes the
e↵ect of disorder. Its form has been derived in Ref. 27,
extending the work of Kohn and Luttinger34 in order to
account for the e↵ects of disorder on the electron internal
degrees of freedom, such as the valley pseudo-spin. To
leading order in the impurity density, nimp,

I[�nk] = 2⇡nimp
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, (3)

where T

±
kp

is the scattering matrix for a single impurity
(the system area is assumed to be unity).
At low temperatures, the dominant mechanism that

limits the di↵usion of bulk valley currents is the inter-
valley scattering caused by atomic-size impurities and

Semiclassical Transport

�nk = ⇢k1+Pk · ⌧ Describes quantum coherence
between valleys
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that the semiclassical theory ceases to be valid, as 
discussed above. However, as explained above, at 
sufficiently high temperatures, the pseudo-LLs are 
broadened by thermal fluctuations and system can 
be described by the semiclassical theory. Although 
thermal fluctuations slightly suppress the magnitude 
of θ θ< =T T 0( )( ( )), fairly sizable valley Hall angles 
can be reached θ π!T 4( ) /  in high-temperature 
semiclassical regime for !T 100 K   and µ! 0.05 eV, as 
shown in figure 1(a).

4. Diffusion of the valley polarization

The above quantum Boltzmann equation also allows 
us to obtain the continuity equations for the charge and 
the valley current. After multiplying equation (2) by 
τ, z( )1  and taking the trace after summing over λ and k, 

we obtain (in the steady state) ∇ ⋅ =J 0, for the charge 
current and τ∇ ⋅ + =J P 0r v/ , for the valley current. 
By combining the last equation with equation (11), 
the diffusion equation for the valley polarization is 
obtained:

τ
∇ − =D P

P
r

r
rS ,r

2

v
( ) ( ) ( )∥

 (15)
where σ∇= ⋅ × ⊥r z r E rS r( ) ˆ [ ( ) ( )] is the source of the 
diffusion. For uniform pseudo-magnetic field, Bs, it is 
only where the strain-induced pseudo-magnetic field 
vanishes abruptly, i.e. at the device boundary, that the 
source term is not zero. Equation (15) indicates the 
existence of the following length scale that controls  
the diffusion of valley polarization:

τ ω τ= = + −ℓ D L 1 ,v v v c
2

D
2 1 2( )∥ / (16)

where τ= DLv v . In figure 2(a), we have plotted 
the length scale ℓv against the chemical potential for 
different values of strength of the pseudo-magnetic 
field. We find that the magnitude of ℓv decreases 
with the magnitude of the pseudo-magnetic field, 
as expected from equation (16). For the present 
choice of parameters, note that the resulting valley 
diffusion length ℓv (i.e. about µ5 m   at µ = 0.1 eV) is, 

in most regimes, larger than the width of the device, 
µ=W 1 m  . However, as shown in the next section, 

the decay of the nonlocal resistance along the channel 
direction is controlled by Lv rather than ℓv.

5. Nonlocal resistance

Following Beconcini et al [5] we solve solve the 
diffusion equation for a Hall bar device geometry, 
consisting of a channel of width W, which we 
assume to be infinitely long. Thus, the solution of the 
diffusion equations can be found by imposing suitable 
boundary conditions (BCs): (i) On the charge current: 

( / ) ( )δ=± =J x y W I x, 2y . This BC describes the 
current injection (extraction) along the y direction (ii) 
On the valley current: =± =J x y W, 2 0y( / ) , implying 
that no valley current flows across the device boundary.

The solution can be simplified by taking δ !rn 0( ) , 
which amounts to assuming complete screening of the 
electric field in the device [5]. Thus, the electrostatic 
potential φ r( ) obeys the Laplace equation, φ∇ =r 02 ( ) . 
Using equations (10) and (11), the BCs can be recast as:

δ σ φ= − ∂ − ∂⊥ =±D P r rI x ,x y y W
2

( ) [ ( ) ( )]∥ (17)

σ φ= − ∂ − ∂⊥ =±D P r r0 ,y x y W
2

[ ( ) ( )]∥ (18)

where we have dropped the terms contaning δ rn( ). We 
see that the BCs couple the Laplace equation for φ r( ) 
with the diffusion equation for P r( ). Equation (15) 
together with the Laplace equation can be solved using 
equations (17) and (18) as BCs. Thus, we obtain:
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w h e r e  ρ σ= ||1c / ,  θ= +ωF k ktan coth k W2
2( )( ) ( ) ( )  

ω k coth kW
2( )( ) , and ω = + −ℓk k .2

v
2( )

Figure 2. (a) ℓv, in µm, versus the chemical potential µ. (b) Nonlocal resistance RNL (in units of ρc) evaluated at  µ=x 1 m as a 
function of chemical potential µ. (c) Nonlocal resistance RNL (in logarithmic scale) as a function of chemical potential /x Lv for 
fixed chemical potential µ = 0.15 eV (  µ!L 5v m), where the Ohmic nonlocal resistance corresponds to the black imaginary line. 
Note that the decay is controlled by the same length scale Lv for all values of the pseudo-magnetic field. The latter is induced by 
applying along the y direction an average (uniaxial) strain of 0.4%, 1.2% and 2.0%, respectively, to a ribbon of width  µ=W 1 m. The 
parameters are the same as for figure 1 and temperature is T  =  0.
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Interplay of VHE and SHE
X-P Zhang, CL Huang, and MAC in preparation

Hanle oscillations are suppressed! 
4

0.0 0.6 1.2 1.8 2.4
-0.6

-0.3

0.0

0.3

0.6

Im
(  

   
  W

)

(a) Re(       W)
0 2 4 6 8 10

-0.5

0.0

0.5

1.0

= 0.2T

= 0.0T

= 0.4T

= 1.0T

0 0.2 0.4 0.6 0.8 1
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

= 1.0T
= 1.4T

= 1.8T

(c)

FIG. 3. (Color online) (a) The complex plane trajectories of eigen-lengths, `⌫ , of the diffusion matrix M, i.e., M|ê⌫i = `�2
⌫ |ê⌫i . For valley

relaxation time ⌧v/⌧s = 5 ( ⌧v/⌧s = 1), the trajectory directions are indicated by hexagrams (squares), the start points (H = 0T) are indicated
by big filled ones, and the end points, H = 10T(H = 1T), are indicated by small hexagrams (squares). Here we evaluated at fixed pseudo
magnetic field Bs = 1.0T . Nonlocal resistance R⇤

nl(H), in the unit of R⇤
nl(0), are plotted against in-plane magnetic field H(T) for different

valley relaxation time (b) ⌧v/⌧s = 5 (`v = 1.41µm and `s = 0.63µm) and (c) ⌧v/⌧s = 1 (`v = 0.63µm and `s = 0.63µm). The pseudo
magnetic field Bs = 0.2, 0.4, 1.0, 1.4, 1.8T can be induced by applying along the y direction an average (uniaxial) strain of 0.4%, 0.8%, 2.0%,
2.8% and 3.6%, respectively, to a ribbon of width W = 0.5µm. Here we evaluated at fixed distance X = 2W = 1µm and comparable
mobilities, ⇠ 104 cm�2V�1s�1 [10]. Other parameters are the same as FIG. 2.

here assume complete screening of the electric field in the
device, which amounts to take charge density into zero, i.e.,
Nc (r) = 0. Therefore, we have Laplace equation

r2
r� (r) = 0, (15)

Furthermore, we drop other longitudinal modes for simplici-
ty. Laplace equation (15) and the above system of differential
equations (13) of (J, I) = (|, ı) need to be supplemented by
suitable boundary conditions (BCs): J y

c (x; y = ±W/2) =
I�(x), and J y

ı

(x; y = ±W/2) = 0. The problem posed by
Eqs. (13), (15) can be solved by Fourier transforming all the
unknowns in the longitudinal x̂ direction. After a series of
complicated mathematical calculations, we obtain
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Here we define nonlocal resistance as Rnl (X) =
(1/I) [� (X,�W/2)�� (X,+W/2)]. Substituting above s-
calar potential 16 into this definition of nonlocal resistance,
we obtain the final integral form
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which can be separated into
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Let us calculate term by term. The N = 0 term, R0

nl (X), is
purely Ohmic nonlocal resistance,
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which reduces to the well-known van der Pauw formula
RvdP ' ⇢c

4
⇡

e�|X|/L0 for |X| & W where L0 = W/⇡. At
large |X|, and for W ⌧ `

⌫

, the N = 1 term is R1
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For higher terms (N > 1), we here just pick out terms Rn

⌫

with ⌫
ı

= ⌫ . Finally, we obtain total nonlocal resistance
Rnl (X) = R0

nl (X) +R⇤
nl (X), with
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with L0 = W/⇡ and L
⌫

= `
⌫

/
�

1 + ✓2
⌫

�1/2, where the first
term is ohmic contribution, R0

nl, and the second term is de-
scribed by the summary of exponential dependence of each
eigen-mode, R⌫

nl. Near the current injection point (|X| . L0),
Rnl is dominated by ohmic contribution, R0

nl, which will dis-
appear at long enough distance (|X| � L0). Here we focus
on the behavior of R⇤

nl, when eigen-modes prevail over, i.e.,
R⇤

nl � R0
nl.
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FIG. 1. (Color online) (a) Raman spectra of the HSQ film both
on top of the graphene and away from it before (black curve) and after
(red curve) the exposure. The intensity is normalized to the intensity
of the G peak for both curves. The inset shows a schematic of the
HSQ monomer. Silicon atoms are shown with purple filled circles,
oxygen with red filled circles, and hydrogen with white filled circles.
(b) Raman spectra of the graphene sample covered with the HSQ
film after successive exposures with an electron beam. Red and blue
curves are shifted both horizontally and vertically for clarity.

and only then was the sample uniformly covered with HSQ.
Finally, samples of type C were coated with HSQ directly
after exfoliation in order to minimize the contamination level
of the graphene-HSQ interface. For this type the Hall bar mask
was defined in the first lithography step in HSQ, then it was
coated with PMMA followed by the second lithography step
and metal deposition, and only then the sample was etched.
Determined by lithography the geometry of the samples was
confirmed with scanning electron microscopy (SEM) imaging
with accuracy better than ∼10%. In total seven samples (three
A samples, one B sample, and three C samples) were measured
and showed a consistent behavior.

The graphene conducting channels were functionalized
with the help of an electron-beam exposure of the HSQ mask
or film that was formed on top of the device. Hydrogen
silsesquioxane is known as a high-resolution negative tone
resist [19]. Its monomer has a cubic shape with Si atoms in
the corners that are linked with oxygen atoms; see the inset
to Fig. 1(a). The remaining silicon bonds are saturated with
hydrogen. When an HSQ film is exposed with the electron-
beam, SiH bonds get dissociated, and neighboring monomers
cross-link via an extra oxygen atom. At the same time released
hydrogen becomes available for covalently bonding to the
graphene surface [15,19]. Scission of the SiH bond leads to the
modification of the vibration modes of the HSQ film and can
be detected via Raman spectroscopy. Moreover, when bonding
to graphene, hydrogen locally modifies the hybridization from
sp2 to sp3, therefore, introducing an atomic-scale imperfection
in the lattice of the crystal [7]. Such imperfections are known
to cause intervalley scattering of the carriers and result in the
appearance of a D peak in the Raman spectrum of graphene
[16,20].

III. RAMAN SPECTROSCOPY AND NONLOCAL
TRANSPORT CHARACTERIZATION

We used Raman spectroscopy to confirm the effect of the
electron-beam exposure on the HSQ-graphene system and to
relate the used doses to the reported values in Refs. [2,15].
In the spectrum of the HSQ film we were able to identify a

peak around 2260 cm−1 that is associated with the presence
of SiH bonds [21]; see Fig. 1(a). The normalized intensity
of this peak was seen to prominently decrease after exposure
with an e-beam, thus, confirming the hydrogenation model
proposed in Ref. [15]. Besides, after the first e-beam irradiation
the Raman spectrum of graphene showed an appearing D
peak which continued to increase in relative intensity with
further exposures; see Fig. 1(b). The intensity of the D peak
was found to grow monotonically with irradiation implying
a monotonic increase in the hydrogen coverage [15]. Using
the relation between the defect concentration and the relative
intensity of the D peak ID/IG [22] we estimated the coverage
of the defects as 0.006% and 0.02% for 100 and 1400 µC/cm2,
respectively. The strength of the induced spin-orbit coupling is
expected to depend linearly on the level of functionalization,
thus, suggesting in a certain range of exposures monotonic and
close-to-linear relations between the relative intensity of the
D peak and the strength of the spin-orbit interaction.

To study the effect of such a modification on charge trans-
port in our graphene samples, we used a Hall bar geometry;
see Fig. 2. Employment of a nonlocal measurement scheme
allowed us to separate the classical Ohmic consequences of the
charge transport from the studied phenomenon. In a system
with the enhanced spin-orbit interaction, a drifting electron
is scattered into the direction that depends on the spin. For a
Hall bar geometry it implies that an applied transverse charge
current Iq results in a longitudinal spin current (spin Hall
effect) IM that diffuses over relatively long distances in a
longitudinal direction. In turn, spin current is converted back
into the charge current (inverse spin Hall effect), which is
detected as a builtup transverse voltage difference VNL. From
here we will use the notation of a nonlocal resistance RNL,
which is defined as VNL/Iq and is a measure of the conversion
efficiency between IM and Iq . The axis of spin quantization is

FIG. 2. (Color online) SEM image of sample C2 under a 45◦

angle. The scale is given by the width of the channel, which is
0.5-µm wide. The inset: schematic of the measuring circuit and
the measured region of the sample. The transverse charge current
Iq between electrodes 1 and 2 is converted into the mediative current
IM and then converted back into the voltage drop between 3 and 4.
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Quantum Spin Hall Insulators

interesting circuit capabilities. The thin polymer
interlayers allow robust interconnects to be
formed easily by evaporating metal lines over
lithographically defined openings. Thermal
cycling tests showed no changes in their
properties (fig. S10). Figure 4A shows a 3D
n-channel metal oxide semiconductor inverter
(logic gate) in which the drive (L = 4 mm, W =
200 mm) and load (L = 4 mm, W = 30 mm) Si
MOSFETs are on different levels. With a sup-
ply voltage of 5 V, this double-layer inverter
exhibits well-defined transfer characteristics
with gains of ~2, comparable to the perform-
ance of conventional planar inverters that use
similar transistors. Figure 4B shows an inverter
with a complementary design (CMOS) with the
use of integrated n-channel Si MOSFETs and
p-channel SWNT TFTs, designed to equalize
the current-driving capability in both pull-up
and pull-down directions. Transfer curves col-
lected with a supply voltage (VDD) of 5 V and
gate voltage (input) swept from 0 to 5 V ap-
pear in Fig. 4B. The curve shapes and gains
(as high as ~7) are qualitatively consistent
with numerical circuit simulations (fig. S6).
As a third example, we built GaAs metal-
semiconductor-metal (MSM) infrared detectors
(26), integrated with Si MOSFETs on flexible PI
substrates, to demonstrate a capability for fab-
ricating unit cells that could be used in active
infrared imagers. In this case, printed nano-
ribbons of GaAs (L = 400 mm,W = 100 mm, and
thickness = 270 nm) transferred onto a substrate
with a printed array of Si nanoribbon MOSFETs
form the basis of the MSMs. Electrodes (Ti/Au)
deposited on the ends of these GaAs nanoribbons
form back-to-back Schottky diodes with sepa-
rations of 10 mm. The resulting detector cells
exhibit current enhancement as the intensity of
infrared illumination increases (Fig. 4C), con-

sistent with circuit simulation (fig. S7). A re-
sponsivity of about 0.30 A/W at the 850-nm
wavelength is observed from 1 to 5 V. (This value
underestimates the true responsivity because it
ignores optical reflection). The bendability of this
system, which is comparable to that of the devices
in Fig. 3, could be useful for advanced systems
such as curved focal plane arrays for wide-angle
infrared night vision imagers.

Printed semiconductor nanomaterials provide
new approaches to 3D heterogeneously integrated
systems that could be important in various fields
of application, including not only those suggested
by the systems reported here but also others such
as microfluidic devices with integrated electron-
ics, chemical and biological sensor systems that
incorporate unusual materials with conventional
silicon-based electronics, and photonic and
optoelectronic systems that combine light emit-
ters and detectors of compound semiconductor
with silicon drive electronics or microelectro-
mechanical structures. Furthermore, the compat-
ibility of this approach with thin, lightweight
plastic substrates may create additional oppor-
tunities for devices that have unusual form
factors or mechanical flexibility as key features.
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Quantum Spin Hall Effect and
Topological Phase Transition in
HgTe Quantum Wells
B. Andrei Bernevig,1,2 Taylor L. Hughes,1 Shou-Cheng Zhang1*

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties
distinct from those of conventional insulators, can be realized in mercury telluride–cadmium
telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the
electronic state changes from a normal to an “inverted” type at a critical thickness dc. We show that
this transition is a topological quantum phase transition between a conventional insulating phase
and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss
methods for experimental detection of the QSH effect.

The spin Hall effect (1–5) has recently at-
tracted great attention in condensed mat-
ter physics, not only for its fundamental

scientific importance but also because of its
potential application in semiconductor spin-

tronics. In particular, the intrinsic spin Hall effect
promises the possibility of designing the intrinsic
electronic properties of materials so that the effect
can be maximized. On the basis of this line of
reasoning, it was shown (6) that the intrinsic spin

Hall effect can in principle exist in band in-
sulators, where the spin current can flow without
dissipation. Motivated by this suggestion, re-
searchers have proposed the quantum spin Hall
(QSH) effect for graphene (7) as well as for
semiconductors (8, 9), where the spin current is
carried entirely by the helical edge states in two-
dimensional samples.

Time-reversal symmetry plays an important
role in the dynamics of the helical edge states
(10–12). When there is an even number of pairs
of helical states at each edge, impurity scattering
or many-body interactions can open a gap at the
edge and render the system topologically trivial.
However, when there is an odd number of pairs
of helical states at each edge, these effects can-
not open a gap unless time-reversal symmetry is
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interesting circuit capabilities. The thin polymer
interlayers allow robust interconnects to be
formed easily by evaporating metal lines over
lithographically defined openings. Thermal
cycling tests showed no changes in their
properties (fig. S10). Figure 4A shows a 3D
n-channel metal oxide semiconductor inverter
(logic gate) in which the drive (L = 4 mm, W =
200 mm) and load (L = 4 mm, W = 30 mm) Si
MOSFETs are on different levels. With a sup-
ply voltage of 5 V, this double-layer inverter
exhibits well-defined transfer characteristics
with gains of ~2, comparable to the perform-
ance of conventional planar inverters that use
similar transistors. Figure 4B shows an inverter
with a complementary design (CMOS) with the
use of integrated n-channel Si MOSFETs and
p-channel SWNT TFTs, designed to equalize
the current-driving capability in both pull-up
and pull-down directions. Transfer curves col-
lected with a supply voltage (VDD) of 5 V and
gate voltage (input) swept from 0 to 5 V ap-
pear in Fig. 4B. The curve shapes and gains
(as high as ~7) are qualitatively consistent
with numerical circuit simulations (fig. S6).
As a third example, we built GaAs metal-
semiconductor-metal (MSM) infrared detectors
(26), integrated with Si MOSFETs on flexible PI
substrates, to demonstrate a capability for fab-
ricating unit cells that could be used in active
infrared imagers. In this case, printed nano-
ribbons of GaAs (L = 400 mm,W = 100 mm, and
thickness = 270 nm) transferred onto a substrate
with a printed array of Si nanoribbon MOSFETs
form the basis of the MSMs. Electrodes (Ti/Au)
deposited on the ends of these GaAs nanoribbons
form back-to-back Schottky diodes with sepa-
rations of 10 mm. The resulting detector cells
exhibit current enhancement as the intensity of
infrared illumination increases (Fig. 4C), con-

sistent with circuit simulation (fig. S7). A re-
sponsivity of about 0.30 A/W at the 850-nm
wavelength is observed from 1 to 5 V. (This value
underestimates the true responsivity because it
ignores optical reflection). The bendability of this
system, which is comparable to that of the devices
in Fig. 3, could be useful for advanced systems
such as curved focal plane arrays for wide-angle
infrared night vision imagers.

Printed semiconductor nanomaterials provide
new approaches to 3D heterogeneously integrated
systems that could be important in various fields
of application, including not only those suggested
by the systems reported here but also others such
as microfluidic devices with integrated electron-
ics, chemical and biological sensor systems that
incorporate unusual materials with conventional
silicon-based electronics, and photonic and
optoelectronic systems that combine light emit-
ters and detectors of compound semiconductor
with silicon drive electronics or microelectro-
mechanical structures. Furthermore, the compat-
ibility of this approach with thin, lightweight
plastic substrates may create additional oppor-
tunities for devices that have unusual form
factors or mechanical flexibility as key features.
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Quantum Spin Hall Effect and
Topological Phase Transition in
HgTe Quantum Wells
B. Andrei Bernevig,1,2 Taylor L. Hughes,1 Shou-Cheng Zhang1*

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties
distinct from those of conventional insulators, can be realized in mercury telluride–cadmium
telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the
electronic state changes from a normal to an “inverted” type at a critical thickness dc. We show that
this transition is a topological quantum phase transition between a conventional insulating phase
and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss
methods for experimental detection of the QSH effect.

The spin Hall effect (1–5) has recently at-
tracted great attention in condensed mat-
ter physics, not only for its fundamental

scientific importance but also because of its
potential application in semiconductor spin-

tronics. In particular, the intrinsic spin Hall effect
promises the possibility of designing the intrinsic
electronic properties of materials so that the effect
can be maximized. On the basis of this line of
reasoning, it was shown (6) that the intrinsic spin

Hall effect can in principle exist in band in-
sulators, where the spin current can flow without
dissipation. Motivated by this suggestion, re-
searchers have proposed the quantum spin Hall
(QSH) effect for graphene (7) as well as for
semiconductors (8, 9), where the spin current is
carried entirely by the helical edge states in two-
dimensional samples.

Time-reversal symmetry plays an important
role in the dynamics of the helical edge states
(10–12). When there is an even number of pairs
of helical states at each edge, impurity scattering
or many-body interactions can open a gap at the
edge and render the system topologically trivial.
However, when there is an odd number of pairs
of helical states at each edge, these effects can-
not open a gap unless time-reversal symmetry is

1Department of Physics, Stanford University, Stanford, CA
94305, USA. 2Kavli Institute for Theoretical Physics, University
of California, Santa Barbara, CA 93106, USA.

*To whom correspondence should be addressed. E-mail:
sczhang@stanford.edu

www.sciencemag.org SCIENCE VOL 314 15 DECEMBER 2006 1757

REPORTS

EDGE PHYSICS IN TWO-DIMENSIONAL TOPOLOGICAL INSULATORS 17

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0
103

104

105

106

107

R
14

,2
3

/ Ω

R
14

,2
3

/ k
Ω

G = 0.3 e2/h

G = 0.01 e2/h

T = 30 mK

–1.0 –0.5 0.0 0.5 1.0
0

5

10

15

20

G = 2 e2/h

G = 2 e2/h

T = 0.03 K

(Vg – Vthr) / V

(Vg – Vthr) / V

T = 1.8 K

Fig. 9. – Four-terminal resistance R
14,23

as a function of gate voltage V
g

that allows to change
the Fermi energy; for �0.5 V> V

g

� V
thr

> 0.5 V the Fermi energy lies in the bulk energy
gap. The measurements are performed in the absence of external magnetic field at temperature
T = 30 mK. Di↵erent curves correspond to di↵erent samples: (I, black) device size (20.0⇥ 13.3)
µm2 in the normal regime (d < d

c

); (II, blue) device size (20.0⇥13.3) µm2 in the inverted regime
(d > d

c

); (III, green) device size (1.0⇥1.0) µm2 in the inverted regime (d > d
c

); (IV, red) device
size (1.0 ⇥ 0.5) µm2 in the inverted regime (d > d

c

). Inset: Four-terminal resistance R
14,23

as
a function of gate voltage for two di↵erent temperatures T = 30 mK (green) and T = 1.8 K
(black). From Ref. [2] with the courtesy of the authors.

the scattering matrix becomes non-universal, leading to deviations from the predicted
plateau. This mechanism explains the di↵erent behaviour of the blue curve in Fig. 9,
corresponding to an inverted QW whose sample size exceeds the inelastic mean free path.
We devote Sec. 4 to the discussion of the possible backscattering processes. The black
curve of Fig. 9 shows that edge states disappear in the normal, non-topological regime
d < dc, where the QW behaves as a trivial insulator, whose resistance saturates inside
the bulk energy gap. This scenario has been confirmed in other multi-terminal transport
experiments [63]. Finally, the quantum plateau appears to be only weakly sensitive to
temperature variations, as shown in the inset.

The measurements of non-local transport properties confirm the physical picture of
two counter-propagating channels where backscattering is forbidden, but do not provide
evidence of their spin-polarisation. To shed light on this point, experimentalists [64] used
a split-gate technique to combine two T-shaped bars, one in the QSH regime and the
other one in the non-topological spin Hall regime, to fabricate a hybrid H-bar, as shown
in Fig. 10.

Two protocols are implemented to test the spin polarisation of the helical edge states.
In configuration (a), a current is injected in the metallic region from contact 3 to 4,
with the contacts 1 and 2 used as voltage probes, while the opposite happens in con-
figuration (b). When a charge current is injected into the metallic region (a), spin-up
and spin-down electrons accumulate on di↵erent edges because of the spin Hall e↵ect.
This imbalance is transferred to the confining QSH region: then, only if the helical edge
states are spin-polarised, a finite chemical potential di↵erence between terminals 1 and 2

M König et al Science (2007)
 S Tang et al Nat. Phys (2017)
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Quantum spin Hall state in monolayer 1T’-WTe2

Shujie Tang1,2,3,4,5†, Chaofan Zhang1,2†, DillonWong6, Zahra Pedramrazi6, Hsin-Zon Tsai6,
Chunjing Jia1,2, Brian Moritz1, Martin Claassen1, Hyejin Ryu3,7,8, Salman Kahn6, Juan Jiang3,5,9,
Hao Yan1,2, Makoto Hashimoto10, Donghui Lu10, Robert G. Moore1,2, Chan-Cuk Hwang9,
Choongyu Hwang8, Zahid Hussain3, Yulin Chen11, Miguel M. Ugeda12,13, Zhi Liu4,5, Xiaoming Xie4,5,
Thomas P. Devereaux1,2, Michael F. Crommie6,14,15, Sung-KwanMo3* and Zhi-Xun Shen1,2*
A quantum spin Hall (QSH) insulator is a novel two-
dimensional quantum state of matter that features quantized
Hall conductance in the absence of a magnetic field, resulting
from topologically protected dissipationless edge states that
bridge the energy gap opened by band inversion and strong
spin–orbit coupling1,2. By investigating the electronic structure
of epitaxially grown monolayer 1T’-WTe2 using angle-resolved
photoemission (ARPES) and first-principles calculations,
we observe clear signatures of topological band inversion
and bandgap opening, which are the hallmarks of a QSH
state. Scanning tunnelling microscopy measurements further
confirm the correct crystal structure and the existence of a
bulk bandgap, and provide evidence for a modified electronic
structure near the edge that is consistentwith the expectations
for a QSH insulator. Our results establish monolayer 1T’-WTe2
as a new class of QSH insulator with large bandgap in a
robust two-dimensional materials family of transition metal
dichalcogenides (TMDCs).

A two-dimensional (2D) topological insulator (TI), or a quantum
spin Hall insulator, is characterized by an insulating bulk and
a conductive helical edge state, in which carriers with di�erent
spins counter-propagate to realize a geometry-independent edge
conductance 2e2/h (refs 1,2). The only scattering channel for such
helical edge current is back scattering, which is prohibited by time
reversal symmetry, making QSH insulators a promising material
candidate for spintronic and other applications.

The prediction of the QSH e�ect in HgTe quantumwells sparked
intense research e�orts to realize the QSH state3–11. So far only a
handful of QSH systems have been fabricated, mostly limited to
quantumwell structures of three-dimensional (3D) semiconductors
such as HgTe/CdTe (ref. 3) and InAs/GaSb (ref. 6). Edge conduction
consistent with a QSH state has been observed3,6,12. However, the
behaviour under a magnetic field, where time reversal symmetry
is broken, cannot be explained within our current understanding

of the QSH e�ect13,14. There have been continued e�orts to predict
and investigate other material systems to further advance the
understanding of this novel quantum phenomenon5,7–9,15. So far,
it has been di�cult to make a robust 2D material with a QSH
state, a platform needed for widespread study and application.
The small bandgaps exhibited by many candidate systems, as well
as their vulnerability to strain, chemical adsorption, and element
substitution, make them impractical for advanced spectroscopic
studies or applications. For example, a QSH insulator candidate
stanene, a monolayer analogue of graphene for tin, grown on Bi2Se3
becomes topologically trivial due to the modification of its band
structure by the underlying substrate11,16. Free-standing Bi film with
2Dbonding on a cleaved surface has shown edge conduction9, but its
topological nature is still debated17. It takes 3Dout-of-plane bonding
with the substrate and large strain (up to 18%) to open a bulk energy
gap inmonolayer bismuth15. Such 3D bonding structuremay induce
similar surface issues as seen in 3D semiconductor QSH systems.
Monolayer FeSe grown on a SrTiO3 substrate has also emerged
as a model system to support both QSH and superconductivity.
However, due to doping from the substrate, the Fermi energy (EF) is
more than 500meV higher than the non-trivial gap, making it less
practical for applications18.

1T0 phase monolayer TMDCs MX2, M = (W, Mo) and X = (Te,
Se, S), are theoretically predicted to be a promising new class of QSH
insulators with large bandgap10. Among them,WTe2 is the only one
for which the 1T0 phase is most energetically favoured. Realization
of a QSH insulator in 2D TMDCs would be a breakthrough as this
is a robust family of materials with none of the complications from
surface/interface dangling bonds that are seen in 3D semiconduc-
tors, enabling a broad range of study and application ofQSHphysics.
In this work, we report a successful growth of monolayer 1T0-WTe2
using molecular beam epitaxy (MBE) on a bilayer graphene (BLG)
substrate. In-situ ARPES measurements clearly show the band
inversion and the opening of a 55meV bulk bandgap, which is an
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bulk state and edge conduction, and describe the properties of the edge conduction, including its 
dependence on gate voltage, magnetic field, temperature, contact separation, and bias. We will 
then compare the behavior with that expected for helical modes in the presence of disorder 
expected to be present at the monolayer edge. 

To make devices, WTe2 sheets exfoliated from flux-grown crystals27 were fully encapsulated 
in thin (~10 nm) hexagonal boron nitride in a glove box to prevent degradation from exposure to 
air31. Each device had thin (~5 nm) Pt or Pd contacts patterned on the hBN beneath the WTe2 and 
a top few-layer-graphene gate (see Supplementary Information 1 for details). Figures 1f-h show 
representative two-terminal measurements of the differential conductance 𝐺𝑑𝑖𝑓𝑓 of a trilayer, a 
bilayer, and a monolayer device. Each of these devices has a row of contacts along one edge of the 
WTe2 sheet, as visible in the optical micrograph of monolayer device MW1 in Fig. 1d. For these 
particular measurements two contacts and the gate were connected as shown in Fig. 1e and a small 
(3 mV) dc bias was superposed on the 100 PV ac excitation. This dc bias affects only the lowest 
temperature measurement (1.6 K), by suppressing a zero-bias anomaly (ZBA), as will be explained 
later. The conductance measurements shown in Figs. 2 and 3 and in Supplementary Information 6 
are made with no dc bias, i.e., in linear response. 

 

 
Figure 1 | Two-terminal characteristics of WTe2 devices. a, Structure and lattice constants of 
monolayer WTe2. Tungsten atoms form zigzag chains along the a-axis. b, Sketch of its calculated Fermi 
surface, showing two electron (green) and one hole (gray) pockets. c, Sketch of calculated bands in a 
strip of monolayer WTe2. The spin-resolved helical edge modes (red and blue lines) are predicted to be 
degenerate with bulk states (gray and green) at all energies. d, Optical image of monolayer WTe2 device 
MW1. Scale bar, 5 Pm. e, Schematic two-terminal measurement configuration, indicating also the 
voltage applied to the few-layer graphene top gate (gray). The pink region is the monolayer WTe2. f-h, 
Temperature dependence of the characteristics for similar contact pairs on a trilayer (L=0.20 μm, W=3.4 
μm), bilayer (L=0.26 μm, W=3.1 μm), and monolayer (L=0.24 μm, W=3.3 μm) device (MW1) 
respectively. Here the differential conductance 𝐺diff  is measured with a small (3 mV) dc bias to 
suppress effects of a zero-bias anomaly in the 1.6 K sweep for the monolayer. The inset to f compares 
the temperature dependence of the conductance minimum in the three cases. 
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Fig. 13. – (a) Resistance as a function of the gate voltage V
front

for di↵erent temperatures. The
quantized plateau persists from 30 mK up to 2 K. For higher temperatures, bulk transport is
activated, leading to an increasing of the conductance, as shown in the inset. (b) Log-log plot
of the conductance as a function of the temperature for two di↵erent applied bias currents. In
this temperature range, the bulk contribution is negligible, so that the conductance is safely
amenable to the edge. The black straight line represents the power law behaviour T 0.32. The
SEM image of the device is shown in the inset. From Ref. [54] with the courtesy of the authors.

Luttinger parameter from the actually measured value K ⇠ 0.21 < 1
4 to values K > 1

4 ,
thus allowing to observe the insulating to metal transition predicted to occur at K = 1

4 .

5. – Tunneling dynamics

In Section 4 we have discussed the main sources of scattering occurring in the heli-
cal liquid, arising from the combined presence of helicity and electron interactions. If
the edges of the QSH bar are well separated, the most relevant scattering processes oc-
cur indeed inside the edge, since tunneling from one edge to the other is exponentially
suppressed. On the other hand, if the width of the QSH bar is comparable with the pen-
etration depth of the edge states in the bulk, the wave-functions belonging to di↵erent
edges can develop a non-vanishing overlap, thus giving rise to a finite tunneling probabil-
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Outline: Part II

 Topology  = Dimensional reduction?

 Impurity in a 1D Channel w and w/o interactions: Kane & Fisher

Magnetic Impurity near the non-interacting edge of a 2D QSHI 

 Magnetic Impurity near the interacting edge of a 2D QSHI



Structureless Impurity in 1D

Weak impurity: Potential scattering

Non-interacting electrons

Strong scatterer limit |✏0| � t t0 = � t2

✏0

H = �t
X

n

h
c†ncn+1 + c†n+1cn

i
+✏0c

†
0c0

Strong impurity: Weak tunneling link
H = �t

X

n

h
c†ncn+1 + c†n+1cn

i
�t0

h
c†1c�1 + c†+1c�1

i

T (✏) = G0(✏) +G0(✏)V T (✏) G0(✏) = (✏+ �H0)
�1

Lippmann-Schwinger Equation

Conductance from Landauer-Buttiker

T (✏) ⇠ T (✏) G(✏) = |T (✏)|2 = |T0|2 = const.

(For ε near the center of the band)



The Kane-Fisher Problem: Impurity in 1D
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Another way to understand it …
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Experiment and Numerics

MAC and JB Marston Phys Rev Lett (2001)

THE RESULTS: TUNNELING BETWEEN LL’s
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• Junction hopping tq/w = 0.125
• Pulse parameters �µ
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= 5⌧w
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See C.L. Kane & M.P.A. Fisher, PRB 46, 15233 (1992).
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Outline: Part II

 Topology  = Dimensional reduction?

 Impurity in a 1D Channel w and w/o interactions: Kane & Fisher

 Magnetic Impurity near the non-interacting edge of a 2D QSHI 

 Magnetic Impurity near the interacting edge of a 2D QSHI
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Transmission coefficient
Impurity on 1st atomic row

No coupling to bulk states 
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What is going on?
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Fitting an effective low energy model 4
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FIG. 4. (Color online) (Left) Transmission coe�cient for an
impurity strength �imp = 40 � (� is the band gap). Dots
are the transmission coe�cient obtained numerically for the
Kane-Mele model with a backscatterer at the edge. The red
line is the fit to the e↵ective model (cf. Eq. 8). (Right)
E↵ective model parameters as a function of �imp.

tance cut-o↵. In the above model, V
B

describes a renor-
malized BS amplitude for the edge electrons, and V

c

the
tunneling into and out of the bound states. The reflection
coe�cient for the e↵ective model reads:

R(✏) =
p=±1

p
iV

2
c

(✏+p✏0)�
+ (1 � p iV

B

2� )

2

(11)

We have fitted the numerical results for the impurity sys-
tem interacting with the edge of a 2DTI to this equation,
as shown on the left panel of Fig. 4 for N = 2. The
behavior of the fitted V

c

, V
B

, and ✏0 as a function of
�imp, is shown in the right panel. As expected from the
above discussion, ✏0 decreases as �imp ! +1. Note also
that V

c

, V
B

⌧ �. In passing, we note that for V
c

= 0,
the resonances disappear and the the reflection coe�cient
becomes independent of the energy, which applies to an
impurity located on the first atomic row (N = 1).

Finally, we study the e↵ect of electron interactions
on the above picture. Interactions will be treated non-
perturbatively using the bosonization method [20], and
their characteristic energy scale e2/a0 (where e is the
electron charge) is assumed to be smaller than �. Before
considering interaction e↵ects, we further project the ef-
fective 1D model in Eq. (8) must onto the subspace of
excitations with energy ✏ ⇡ ✏

F

(✏
F

is Fermi energy). In
particular, when ✏

F

is away from the resonances at ±✏0,
the bound states can be integrated out. To leading order,
this yields a renormalized backscattering amplitude:

V 0
B

' V
B

� V 2
c

✏0 � ✏
F

+
V 2
c

✏0 + ✏
F

. (12)

Hence, the model reduces to the one studied by Kane
and Fisher [12, 13] (see H

KF

in Eq. 14 below), with the
BS amplitude V

B

replaced by V 0
B

from Eq. (12).
On the other hand, for ✏

F

' +✏0 or ✏
F

' �✏0, the
resonant level cannot be immediately integrated out, al-
though the bound state further away can. Assuming
(without loss of generality) that ✏

F

' �✏0 yields the

following low-energy e↵ective model:

H 0
e↵ = H

KF

+H�[d, t� (0)] + d†d � 1
2

⇥ U
F

 †(0) (0) + U
B

 †(0)sx (0) , (13)

H
KF

= H
B

+ U dx ⇢
R

⇢
L

. (14)

Here we have also accounted for interactions between the
edge electrons (with amplitude U) and with the resonant
level electron (with amplitudes U

F

and U
B

). Further-
more, integrating out the non-resonant level at ✏ = +✏0
modifies the BS potential V

B

�U
B

/2 inH 0
e↵ by an amount

' V 2
c

/(✏
F

� ✏0) ' �V 2
c

/2✏0. Forward scattering is also
generated but it has been dropped since it can be elimi-
nated by a unitary transformation [12, 20].
The Hamiltonian in H 0

e↵ in Eq. (13) is very simi-
lar to a model of side-coupled level to an interacting
1D channel, which has been studied by Goldstein and
Berkovits in Ref. [26]. Following these authors, after
bosonizing [20] Eq. (13), we apply a unitary transforma-
tion and eliminate the forward interaction term / U

F

,
at the expense of renormalizing the scaling dimension
(�

c

) of the tunneling, O
c

/ V
c

, where hO†
c

(⌧)O
c

(0)i ⇠
⌧�2�

T , where ⌧ is the imaginary time and �
T

(K,U
F

) =
1
4 K +K�1 1 � U

F

K

⇡v

2
, where K = 2⇡v

F

�U

2⇡v
F

+U

is the

Luttinger parameter and v = v
F

1 � U

2⇡v
F

2
the ve-

locity of the edge plasmons [20]. Tunneling into the reso-
nant state becomes relevant in the renormalization-group
(RG) sense when�

c

(K,U
F

) < 1. Thus, for weak to mod-
erate repulsion (i.e K . 1), both tunneling V

c

and the BS
(/ V

B

, U
F

) renormalize to strong coupling and suppress
the transmission across the impurity, as confirmed by the
RG flows to 2nd order [26, 30]. Interestingly, for moder-
ate attraction (i.e. K & 1), for which BS is näıvely irrel-
evant [12, 26], we have �

c

(K,U
F

) < 1. Thus, tunneling
flows to strong coupling and 2nd order RG flows [26, 30]
show that the runaway flow of V

c

drags along U
B

and U
F

,
which leads to the narrowing of the anti-resonance in the
transmission and suppression of conductance as T ! 0,
also for weak to moderate attraction in the edge channel.
In summary, we have investigated the problem of an

impurity inducing backscattering at the edge of a two-
dimensional topological insulator (TI). By obtaining a
solution of the scattering problem, we have derived the
1D e↵ective low-energy Hamiltonian describing the sys-
tem. Strong backscattering induces two discrete levels
within the band gap, which couple to the (interacting)
metallic edge(s). When the Fermi energy resonates with
one of the levels, both moderately attractive or repul-
sive interactions suppress the transmission through the
impurity. O↵ resonance, the system can be e↵ectively
described as an impurity in a Tomonaga-Luttinger liq-
uid [12, 13, 18] with a renormalized backscattering po-
tential. This picture should be robust in the presence of
weak uniform Rashba spin-orbit, which will introduce an

Transmission coefficient Model parameters (N = 2)

Edge
states

Bound states  
resonate with edgeUse discrete symmetries of the microscopic model  

(TRS + π-rotation, TRS+p-h transformation)
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Adding interactions
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Taking into account the scaling behavior

e2i�0(⌧
0)e�2i�0(⌧) ⇠ |⌧ 0 � ⌧ |�2K (53)

and

ei[�0(⌧
0)��✓0(⌧

0)]e�i[�0(⌧)��✓0(⌧)] ⇠ |⌧ 0 � ⌧ |�K/2��

2
K

�1
/2, (54)

and their operator product expansions (OPE), using Cardy’s approach [5], we arrive at the following set of RG
equations valid to second order in the couplings describing backscattering (y

B

) and tunneling in and out of the
resonant level:

dy
B

d ln ⇠
= (1 � K) y

B

+ y2
t

. (55)

dy
t

d ln ⇠
= 1 � K/4 � (1 � �

F

)2K�1/4 y
t

+ y
t

(y
B

+ v
B

), (56)

d�
F

d ln ⇠
= 4(1 � �

F

)y2
t

, (57)

dv
B

d ln ⇠
= (1 � K)v

B

. (58)

These RG equations are similar to the ones derived in Ref. 4. They show that for weak to moderate attractive
interactions (i.e. K > 1), the tunneling operator / y

t

is flows to strong coupling. On the other hand, both the
backscattering interaction (/ y

B

) and potential (/ v
B

) will be initially suppressed. Eventually, the runaway of y
t

drags along �
F

and y
B

, quickly driving the forward interaction with the level to its fixed point �⇤
F

= 1. As a result,
the transmission through the impurity will be suppressed [4], as discussed in the main text.
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Adding interactions: RG Flow
Compare to Kane-Fisher 

dyB
d log ⇠

= (1�K)yB

Broadening of transmission 
resonance at low T
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• Resonant enhancement of Skew Scattering in 
Graphene

• Direct coupling between non equilibrium spin 
polarization and charge current induced by impurities: 
Anisotropic spin precession (ASP)

• ASP can lead to negative non local resistance and 
asymetry in the Hanle precession

• Strong  coupling limit of a magnetic impurity  near the 
edge of a QSHI induces resonant states and non-trivial 
behavior of the transmission at resonance

Summary & Conclusions
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