Estimation of Pseudo Magnetic Field for Isotropic/Anisotropic Dirac Cones

Toshikaze Kariyado

MANA, NIMS

2 Nov 2017

arXiv:1707.08601

Motivation & Background

Landau levels without an external magnetic field.

Essence

Dirac cones shift as gauge field

Any system with Dirac cones!

Even for a system inert to magnetic field: charge neutral particles, photons, phonons...

Example: Graphene under Strain

[†]Theory: F. Guinea *et al.*, Nat. Phys. **6**, 30 (2010). Exp.: N. Levy *et al.*, Science **329**, 544 (2010).

Example: Artifitial System K. K. Gomes et al., Nature 483, 306 (2012).

2D electrons on Cu surface with arranged molecule deposition

Quantum Oscillation

Strained 3D Weyl semimetal

T. Liu, D. I. Pikulin, and M. Franz, Phys. Rev. B 95, 041201 (2017).

Valley Imbalance

Valley Imbalance

Valley dependent Lorentz force in strained graphene

A. Chaves et al., Phys. Rev. B 82, 205430 (2010).

Valley Imbalance

Landau level splitting in strained graphene

B. Roy, Z.-X. Hu, and K. Yang, Phys. Rev. B 87, 121408 (2013).

Topic

1. Simple setup for pseudo magnetic field generation

not necessary strain

2. Concise formula to estimate pseudo magnetic field

- Counting number of "observable" Landau levels
- Effects of anisotropy of Dirac cones
- 3. Application to an exsisting material
 - 3D Dirac cones in an antiperovskite family

Setup

"Simplest" configuration

Important Parameters

- L: thickness of the buffer layer
- Δk: size of the Dirac cone shift

See also, A. G. Grushin *et al.*, Phys. Rev. X **6**, 041046 (2016). C. Brendel *et al.*, Proc. Natl. Acad. Sci. USA **114**, 3390 (2017). H. Abbaszadeh *et al.*, arXiv:1610.06406.

Formulation

$$H_{\vec{k}}^{(\pm)} = \hbar v (\vec{k} \pm \vec{k}_0) \cdot \vec{\sigma} \longleftrightarrow H^{(\pm)} = \hbar v (-i\vec{\nabla} \pm \vec{k}_0(y)) \cdot \vec{\sigma}$$
$$\vec{A}^{(\pm)} = \mp \frac{\hbar}{e} \vec{k}_0(y), \quad |\vec{B}| = |\vec{\nabla} \times \vec{A}| \sim \frac{\hbar}{e} \frac{\Delta k}{L} = \frac{\hbar}{ea^2} \frac{R}{N}$$
$$\Delta k = \frac{2\pi R}{a}, \quad L = Na$$

Formulation

$$H_{\vec{k}}^{(\pm)} = \hbar v (\vec{k} \pm \vec{k}_0) \cdot \vec{\sigma} \longleftrightarrow H^{(\pm)} = \hbar v (-i\vec{\nabla} \pm \vec{k}_0(y)) \cdot \vec{\sigma}$$

$$\vec{A}^{(\pm)} = \mp \frac{\hbar}{e} \vec{k}_0(y), \quad |\vec{B}| = |\vec{\nabla} \times \vec{A}| \sim \frac{\hbar}{e} \frac{\Delta k}{L} = \frac{h}{ea^2} \frac{R}{N}$$

$$\Delta k = \frac{2\pi R}{a}, \quad L = Na$$

R: Dirac cone shift, N: buffer thickness
bulk 1
$$\vec{A} = \frac{\mu}{a} \frac{\Delta k}{k} = \frac{\mu}{k} \frac{\lambda}{k}$$

Formulation R: Dirac cone shift, N: buffer thickness

typical case

$$a \sim 5 \text{\AA} \rightarrow |\vec{B}| \sim 1.6 \times 10^4 \times \frac{R}{N} \text{[T]}$$

observable Landau levels

$$E_n = \sqrt{\frac{4\pi v^2 \hbar^2 R|n|}{Na^2}} < \frac{\hbar v \Delta k}{2} \quad \rightarrow \quad |n| < \frac{\pi}{4} NR$$

Toy Model

$H_{\vec{k}} = [1 + \delta + 2(\cos k_x + \cos k_y)]\sigma_z + 2\alpha \sin k_y \sigma_y$

$$H_{\vec{k}} \sim -\sqrt{3} [(\tilde{k}_x - \tilde{\delta})\sigma_z + \tilde{\alpha}k_y\sigma_y]$$
$$\tilde{k}_x = k_x - \frac{2\pi}{3}, \quad \tilde{\delta} = \frac{\delta}{\sqrt{3}}, \quad \tilde{\alpha} = \frac{2\alpha}{\sqrt{3}}$$

 $\tilde{\delta} \leftrightarrow A_x \quad \& \quad \tilde{\alpha} \leftrightarrow v_y/v_x$

Results R: Dirac cone shift, N: buffer thickness

Discussion 1.0 0.5 Energy 0.0 buffer -0.5-1.00.0 0.1 0.2 0.3 0.4 0.5 $k_x [2\pi/a]$ bulk1 k_x

wave function tail hits the boundary \rightarrow no longer Landau level

- extension of the wave function ~ $\sqrt{n}l_B \propto \sqrt{nN/R}$
- extension < thickness $\rightarrow n < NR$

Anisotropy

R: Dirac cone shift, N: buffer thickness

Anisotropy is advantageous for observing the LL structure!

Materials

TK and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).

Antiperovskite A₃EO (A=Ca,Sr,Ba and E=Sn,Pb) family

Materials

TK and M. Ogata, arXiv:1705.08934, to appear in PRMaterials.

Materials

Ba₃SnO (band inversion dominant) vs Ca₃PbO (SOC dominant)

Strategy

- Inducing Dirac cone shift by modulating chemical composition
 - ► $Ca_3SnO \leftrightarrow Sr_3SnO$

• Estimating R instead of $|B_{pseudo}|$, to avoid computational burden

(Quasi) Ab-Initio Estimation: Wannier Interpolation

- 1. Derive effective models for the two end materials $\mbox{Ca}_3\mbox{SnO}$ and $\mbox{Sr}_3\mbox{SnO}$
- Interpolate the parameters to obtain a model for Ca_{3(1-x)}Sr_{3x}SnO

(Quasi) Ab-Initio Estimation: Wannier Interpolation

- 1. Derive effective models for the two end materials $\mbox{Ca}_3\mbox{SnO}$ and $\mbox{Sr}_3\mbox{SnO}$
- Interpolate the parameters to obtain a model for Ca_{3(1-x)}Sr_{3x}SnO

(Quasi) Ab-Initio Estimation

▶ heterostructure $Ca_{3(1-x)}Sr_{3x}SnO$, $a = (a_{x=0} + a_{x=1})/2$

(Quasi) Ab-Initio Estimation

▶ heterostructure $Ca_{3(1-x)}Sr_{3x}SnO$, $a = (a_{x=0} + a_{x=1})/2$

Fabrication of Films

Sr₃PbO, molecular beam epitaxy, thickness 200nm-300nm
D. Samal, H. Nakamura, and H. Takagi, APL Mater. 4, 076101 (2016).

 Ca₃SnO, pulsed laser deposition M. Minohara et al., arXiv:1710.03406.

Summary

TK, arXiv:1707.08601

 Concise formulae for the pseudo magnetic field & pseudo Landau levels

$$B \sim \frac{h}{ea^2} \frac{R}{N}, \quad |n| < \frac{\pi}{4} \frac{v_x}{v_y} NR$$

Anisotropic Dirac cones are better to observe LL structures.

Estimation of R for an existing material

Perspective

- Interesting physical consequences!
 - eg. coexistence with a real magnetic field