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A paradigm for topological states of matter
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Superconducting and magnetic Tl surface

non-interacting SPT phase: G=U(1l)x Z2T

Dirac cone + s-wave pairing: TR breaking: anomalous QHE

U(1) breaking: TRS SC with

. . fractional conductivity
Majorana in vortex

without fractionalization

Oxy = 1/2
Fu Kane PRL 08 Fu Kane Mele PRL 07

Tl Tl




Domain wall modes

a) chiral fermion
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b) chiral Majorana mode
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Topology from Wilson loops

W by) = 55| [ " b (R 0. )

\occupied band

eigenstates

unitary operator in filled
band subspace

Define ‘Wilson loop Hamiltonian” W (k,, k,) = exp|—iHw (kz, k)] AAV)

Resembles surface Hamiltonian with Aky /

qualitatively identical gapless spectrum
(single Dirac cone) e e

Equivalence: eigenvalues of Wilson loop and
projected position operator P4 P




Topological crystalline insulators

Stabilize more than one Dirac cone by adding crystalline symmetries

Mirror symmetry:
eigenvalues +i and -i in spinful system
eigenstates on the mirror invariant planes in momentum space

L Mirror Chern number:
2 - Chern number in +i/-i subspace on the plane
1 2 + +
Oy = o d°ktr [8k A — O .Ay ]kxz()/w
c Time-reversal symmetry: C_|_ = —(C_

Number of Dirac cones crossing line in surface BZ
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i [L. Fu, Phys. Rev. Lett., 2011]




Electric circuit realization arXiv:1708.03647

frequency (norm.)

Mechanical realization, Huber group arXiv:1708.05015
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Can only happen with [Benalcazar, Bernevig, Hughes
3+ : spatial symmetries: Science 357, 61-66 (2017)]
¢ generalizations of TCls
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Construction of a 2nd order 3D Ti
Protecting symmetry: C4T (breaks T, C4 individually)

surface construction from 3D TI:
decorate surfaces alternatingly with outward and inward pointing
magnetization, gives chiral 1D channels at hinges

Adding C4T respecting IQHE layers on
surface can change number of hinge
modes by multiples of 2

against any C4T respecting surface

Odd number of hinge modes stable ‘I
manipulation R4

_ Chern h Ay
Bulk Z, topological property A4 I'




Construction of a 2nd order 3D Ti
Protecting symmetry: C4T
(breaks T, C4 individually) V\;\ ‘//
Bulk construction

Tl band structure plus (sufficiently weak)
triple-q (r,m,m) magnetic order / V\

Toy model with only C4T in z-direction

H4(E) — (M + Z COS kz) 7,00 + Ay Z sin k; 7,0; + Aa(cos ky — cosk,) 7,00

3D TI T, C4 breaking term

Spectrum of column
geometry




Topological invariant of a 2nd order 3D TI

Same quantization with C4T as with T alone: o .
¢ = 0,7 is topological invariant iop = € 872 J& BB

Different from existing indices, because |(C,T)* = -1

Case of additional inversion times TRS, IT, symmetry: £ = +1
use (IC4)* = —1 with eigenvalues gE{e”/‘l,e—”/‘l} ko
Dueto |[IC4,IT| =0 ‘Kramers’ pairs with same §z = %1 are
degenerate.

Band inversion formula for topological index a la Fu Kane
for C4T invariant momenta

Le-p =1(0,0,0), (m,m,0),(0,0,7), (7w, 7, m)}



Wilson loop topology of a 2nd order 3D Ti

Wilson-loop based bulk topological characterization
27
W (ki k) = 5P { / k. (i (7). [ (F))
0

A Hw)

7T

C4T implies Kramers-like
degeneracies in Wilson loop
spectrum at C4T invariant momenta

(Fz, ky) € 1(0,0), (7, m)}

0 —=————_

Z> Wilson loop winding
between these momenta is

topological invariant — ks Ky
(0,0) (0, ) (m, ) (0,0)

1 (77771-) 5 5
yo L / aF - O N(F) — M(mm) + As(0,0) ) mod 2
2T p (0,0)



Boundary topology of a 2nd order 3D TI

Nested entanglement spectrum Nested Wilson loop spectrum
pa = Trg| U)W (V| = Zi o~ He T&Icilvisection Wilson loop spectrum gapped
A(H,) e m

entanglement

: spectrum is 0 \_ //;
gapped .
...0Ne more: matrix
W - Wilson loop of gapped slab c;lgg:ggl -
Define: entanglement spectrum of spectrum: gapless modes oop
entanglement Hamiltonian x ian’
1 g
Pe:ay, = Tra,|Ve)(Ve| = 7 e " op
e—e 11611.07987]
0 :
s chiral

A
\//.— gapless chiral
: -z hinge modes
/\B

4//\\ .



Gapless surfaces?

consider adiabatically inserting a hinge

e

chlral
gapless

surface turns gapless hinge

at some critical angle

H4(E) — (M + Z COS kz> 7,00 + Ay Z sin k; 7,0, + Ag(cos ky — cos ky, + risin k, sin k) 7,00

Critical angle nonuniversal, not fixed to particular crystallographic
direction. Different from gapless surfaces of TCls.



Electromagnetic response

Flux insertion in quantum Hall
system creates quantized

dipole

Flux insertion in chiral higher-
order Tl creates quantized
quadrupole




2nd order 3D topological superconductor

H4(l_5) = (M + Z COS kzz) T.00 + Ay Z sin k; 7,0; + Aa(cos ky — cosk,) 7,00

has a particle hole symmetry P° = 7,0, K

Interpretation: Superconductor with generic dispersion and
superposition of two order parameters

A1  spin triplet, p-wave dk = 1A sin k;
Balian-Werthamer state in superfluid Helium-3-B

Ao  spin singlet dxey-wave I

p + 1id superconductor with chiral
Majorana hinge modes




Time-reversal symmetric 2nd order 3D TI

Stabilized by mirror symmetries and TRS

One Kramers pair of modes on each hinge,
like quantum spin Hall edge




Time-reversal symmetric 2nd order 3D TI

Can also be defined with C4 and time-
reversal symmetry:

t

C4 eigenvalues

>

Re

TRS Kramers pairs

e=- | £=+

Define 3D Z2 index independently in each & subspace.

One nontrivial: 3D Z> Tl, surfaces are gapless

Both nontrivial: 3D higher-order Tl, surfaces gapped, edges gapless
Both trivial: trivial insulator



Time-reversal symmetric 2nd order 3D TI

Surface perturbations:

No mirror chiral modes allowed in 2D > E -
S c 3
s A s B s
Mirror x = —X, leaves domain wall " |8 e 8
iInvariant ‘
eigenvalue +i *
eigenvalue —i
A A
Not allowed:
2 2 2 2
IR U

Allowed 2D surface perturbations:

Number of upmovers of both mirror
eigenvalues are equal




Time-reversal symmetric 2nd order 3?le

Bending the surface of a I
topological crystalline insulator

\ A%y

- +i

mirror Ch =0

Z (upmovers — downmovers)
with mirror eigenvalue —i

= with time-reversal 7/

y I Z (upmovers — downmovers)
with mirror eigenvalue + i

One upmr
Requires 3D bulk.

Allowed 2D surface perturbations:

Number of upmovers of both mirror
eigenvalues are equal




Time-reversal symmetric 2nd order 3D TI

(a)
Exam| open gap on the surface
(100) (001) (110)
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Summary:

C4T symmetry:  Zo classification |
mirror symmetry: ZxZ classification t [ 1
C4 symmetry: Z> classification ' '

mirror symmetry: Z classification

new paradigm for topological phases protected by spatial symmetries

mirror or rotational symmetries
hinge modes protected by 3D bulk invariant
single hinge has same properties as that of QHE/QSHE
- feature nested entanglement spectrum or nested Wilson loop spectrum
realizations in AFM spin-orbit coupled semiconductors, TCls (strained SnTe)




Bonus material




Edge modes at
TCI surface steps

P. Sessi et al.,

Robust spin-polarized midgap states at step edges of
topological crystalline insulators

Science, 354, 1269-1273 (2016)



Step edges on topological crystalline insulators

+i

(Pb,Sn)Se: TCI with two pairs of Dirac cones,
protected by mirror Chern numbers

Two surface terminations related by half lattice translation

[Hsieh et al., Nature Comm., 2012]



Step edges on topological crystalline insulators

Study step edges on the surface with
STM

Pick (0,1) step edge orientation and
distinguish even and odd steps
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Atomistic approach: DF1
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empirical confirmation: 1D DoS only at odd step edges

other dispersive features likely stem from finite size



Qualitative explanation:
N graphene

Honeycomb lattice (with spinless
fermions), nearest neighbor hopping




Qualitative explanation:
N graphene

Appearance of edge states dictated by
Wilson loop/Berry phase invariant.

- |
W = exp /0 Ak (] 04))

= +1

Half a lattice translation: ‘¢> — eiﬂk|¢> W — —W
“Bulk-boundary” correspondence is exactly N0 0.0
reversed between the two twin domains: depends Y BY%Y S

on

® 0.9 /0



Bonus Summary

Edge modes at TCI surface steps

1D edge states at step edges due to Berry phase mismatch
between surface Dirac cones
ROBUST:
200 meV bulk gap
 no backscattering observable in QPI
- temperature: almost unaltered at T = 80K
- TRS breaking: almost unaltered at B = 11T
- only 10 nm wide




