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A paradigm for topological states of matter

… works when things are sufficiently smooth.
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Topological Insulators
E

k

Bulk-boundary correspondence:  
gapless Dirac cones, gapped bulk band structure

All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.
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FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.
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product over inversion eigenvalues 
at time-reversal invariant momenta
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(iii) The entanglement spectrum

14,15 is the spectrum of the
reduced density matrix ⇢A of a system that is obtained by sub-
dividing the single-particle Hilbert space into two parts A and
B and tracing out the degrees of freedom of B

⇢A = TrB | i h | ⌘ 1

Z
e

e�He , (7)

where | i is the gapped many-body ground state of ˆH(k).
The last equality then defines the entanglement Hamiltonian
H

e

, with Z
e

= Tr e�He a normalization constant. Here we
are interested in a real-space cut separating regions A and B
such that all lattice sites r with x > 0 are in A, say, and B is
the complement of A. In this case, ky and kz are good quan-
tum numbers which label the blocks of H

e

as H
e

(ky, kz). The
entanglement spectrum [or equivalently that of H

e

(ky, kz)] of
a topological state has been shown to be in direct correspon-
dence with the spectrum of H

slab

(ky, kz)
16.

Notice that all the definitions in (i)–(iii) apply equally well
if the starting point ˆH(k) would have been a 2D system, with
the only difference that the resulting spectra of H

slab

(ky),
H

W

(ky), and H
e

(ky) would have only one good momentum
quantum number.

We observe from direct numerical computation for both the
TRB and TRS higher order TIs defined in Eqs. (1) and (4)
that the slab, Wilson loop, and entanglement spectra are fully

gapped if we choose the geometry described above (giving up
the good quantum number kx). In other words, H

slab

(ky, kz),
H

W

(ky, kz), and H
e

(ky, kz) can be seen as Hamiltonians for
2D insulators. In fact, they describe topologically nontrivial
insulators, namely a Chern insulator in the TRB case and a 2D
Z
2

TI in the TRS case.
To support this claim, we can again compute the slab, Wil-

son loop, and entanglement spectra for these systems, but
this time one dimension lower, giving up the momentum ky
as a good quantum number. For example, we can compute
the Wilson loop spectrum of the Wilson loop Hamiltonian
H

W

(ky, kz), following the concept of nested Wilson loops of
Ref. 8. Any other of the nine possibilities of combining any of
H

slab

(ky, kz), HW

(ky, kz), and H
e

(ky, kz) with a slab, Wil-
son loop spectrum, or entanglement spectrum analysis will
lead to the same conclusion: We obtain an effective 1D sys-
tem with good momentum quantum number kz that shows a
gapless, symmetry protected spectral flow. To exemplify this,
we show in Fig. 2 a) and b) the gapped Wilson loop and entan-
glement spectra of H

W

(ky, kz) and H
e

(ky, kz), respectively,
and in panels (c) and (d) the Wilson loop spectrum of the
Wilson loop Hamiltonian and the entanglement spectrum of
the entanglement Hamiltonian. Evidently, these nested spec-
tral analysis are ideal to uncover the topological properties of
higher-order TIs.

Instead of computing the slab spectrum of the slab spec-
trum, one can of course directly use a square column geometry
periodic only in z-direction, such that the surface is invariant
under ˆCz

4

ˆT . The spectrum then exhibits chiral edge modes
for H

TRB

(k) and Kramers pairs of edge modes for H
TRS

(k),
respectively (see Fig. 1a-c).

Quantized magnetic multipole moment — Topological
phenomena are often imprinted in universally quantized re-

sponse functions of a system. A standard example is the Hall
conductivity of a Chern insulator, given by Ce2/h, where
C 2 Z is the Chern number of the insulator. Another quantity
in which the same topological invariant appears is the mag-
netic dipole moment M of an insulator. For a 3D system,
the derivative of M with respect to the chemical potential
obeys @M/@µ / G, where G is a reciprocal lattice vector
with components given by the Chern numbers along the there
primitive directions.17 This gives a direct relation between the
Hall conductivity and @M/@µ. We show in appendix C that
the magnetic quadrupole moment Mkl of an insulator obeys

@Mkl

@µ
=

1

e
↵kl, (8)

where the tensor ↵kl is the magneto-optical polarizability of
the insulator18. We further show that for a system with ˆC

4

ˆT
symmetry along all three crystallographic directions, the latter
reduces to ↵lk = �lk

✓
2⇡

e2

h , where

✓ = �✏abc

Z
d

3

k

(2⇡)3
tr


Aa@bAc + i

2

3

AaAbAc

�
, (9)

is written in terms of the Berry gauge field Aa;n,n0
=

�i hun|@a|un0i, with n, n0 running over the occupied bands
of the insulator. With ˆT symmetry, Eq. (9) is the quantized
topological invariant for time-reversal symmetric topological
insulators, restricting ✓ to the values ✓ = 0,⇡mod2⇡. Im-
portantly, ˆC

4

ˆT symmetry (along one rotation axis) guaran-
tees the same quantization of ✓ as ˆT does. We thus found
in ✓ = 0,⇡ defined in Eq. (9) the Z

2

topological invariant
for TRB higher-order TIs. We explicitly evaluate ✓ for the
model (1) in appendix D. At the same time, we have charac-
terized TRB higher-order 3D TIs as magnetic multipole insu-
lators, in analogy to the characterization of the higher-order
TIs discussed in Ref. 8 as quantized electric multipole insula-
tors.

Topological characterization — The form of Eq. (9) is
impractical for an explicit computation of ✓ in generic insu-
lators. Thus, we now discuss alternative forms of the topo-
logical invariant of TRB higher-order TIs and also for TRS
higher-order TIs, which were not covered by the magnetic
multipole discussion. Alternative formulas for ✓ used in 3D
TIs, such as the Pfaffian invariant1,2 can be defined because
time-reversal obeys ˆT 2

= �1. However, since we have
an anti-unitary symmetry satisfying (

ˆC
4

ˆT )4 = �1 instead,
the Pfaffian-formulation cannot be used for TRB higher-order
TIs.

We start with the discussion of TRB higher-order TIs and
use Wilson loop eigenvalues to determine their topological
character. This time, for a ˆCz

4

ˆT invariant system, we employ
the Wilson loop W z

(kx, ky), in contrast to the Wilson loop
W x

(ky, kz) that was considered for the purpose of bound-
ary spectra. The spectrum of W z

(kx, ky) has Kramers-type
degeneracies protected by ˆCz

4

ˆT at exactly two points in the
2D BZ, namely at (kx, ky) = (0, 0) and (kx, ky) = (⇡,⇡),
which are invariant under ˆCz

4

ˆT . Taking into account that the
spectrum of W z

(kx, ky) lies on the unit circle, one can de-
duce that there are two topologically distinct ways to connect

Topological invariant:

✓ = 0,⇡ with time-reversal symmetry

Aa;n,n0 = �ihun|@a|un0i



G =U(1)oZT
2

Superconducting and magnetic TI surface

non-interacting SPT phase:

Fu Kane PRL 08

U(1) breaking: TRS SC with 

Majorana in vortex

TI

Dirac cone + s-wave pairing:


s
xy

= 1/2
Fu Kane Mele PRL 07

TR breaking: anomalous QHE


TI

fractional conductivity 
without fractionalization 




--
-

--
-

-
--

----
---

--
-
---
--
----

--
----
-

---
----

-
---
---

-
---
---

-
---
---

---
--
--

-

-
----- --
---- ---
--- -
-----
-
-
-----
-
---
-- -
------
-
------

--------------
-----------
-
---------
-
--------
--
-------
---
-------
---
-------
---
-------
---
--------
--

-
--------

-

-----
----

-

----------

----------

----------

------
----

---------

-

----------

----------

------
----

-----

-10 -5 0 5 10
M

M

0�2�4�6�8�10 2

M

0�2�4�6 �1�3�5

1

2

3

3

3

3

2

1

1

1

1
1

1

1

1

1

1

1Np = 12

Np = 11

--
-

--
-

-
--

----
---

--
-
---
--
----

--
----
-

---
----

-
---
---

-
---
---

-
---
---

---
--
--

-

-
----- --
---- ---
--- -
-----
-
-
-----
-
---
-- -
------
-
------

--
-

--
-

-
--

----
---

--
-
---
--
----

--
----
-

---
----

-
---
---

-
---
---

-
---
---

---
--
--

-

-
----- --
---- ---
--- -
-----
-
-
-----
-
---
-- -
------
-
------

M = "

M = # M = #

SC

a) chiral fermion

b) chiral Majorana mode

Domain wall modes



Topology from Wilson loops

k
x

ky

kz

W
nm

(k
x

, k
y

) = exp

Z 2⇡

0
dk

z

hu
m

(

~k)|@
kz |un

(

~k)i
�

occupied band 
eigenstatesunitary operator in filled 

band subspace

Define ‘Wilson loop Hamiltonian’ W (k
x

, k
y

) = exp[�iHW(k
x

, k
y

)]

Resembles surface Hamiltonian with 
qualitatively identical gapless spectrum 
(single Dirac cone) k

x

ky

�(W )
⇡

�⇡
�(W )

⇡

�⇡

Equivalence: eigenvalues of Wilson loop and 
projected position operator

P̂ x̂P̂



Topological crystalline insulators
Stabilize more than one Dirac cone by adding crystalline symmetries

Mirror symmetry: 

eigenvalues +i and -i in spinful system

eigenstates on the mirror invariant planes in momentum space

k
x

ky

kz Mirror Chern number: 

Chern number in +i/-i subspace on the plane

C± =
1

2⇡

Z
d2k tr

⇥
@k

y

A±
z � @k

z

A±
y

⇤
k
x

=0/⇡

2 Z Time-reversal symmetry: C+ = �C�
Number of Dirac cones crossing line in surface BZ

+i-i

ky

ky

k
x

[L. Fu, Phys. Rev. Lett., 2011]



Higher-order topological insulators

1 2 3 dimension

or
de

r

1

2

3

QHE

E

kSSH

TI

[Benalcazar, Bernevig, Hughes 

Science 357, 61-66 (2017)]

Rest of 

this talk

Can only happen with 
spatial symmetries: 
generalizations of TCIs

(d-m)-dimensional boundary components of a d-dimensional system 

are gapless for m = N, and are generically gapped for m < N

Electric circuit realization arXiv:1708.03647


Mechanical realization, Huber group arXiv:1708.05015 


normalized 
impedance



Construction of a 2nd order 3D TI
Protecting symmetry: C4T    (breaks T, C4 individually)


surface construction from 3D TI:  
decorate surfaces alternatingly with outward and inward pointing 
magnetization, gives chiral 1D channels at hinges


Adding C4T respecting IQHE layers on 
surface can change number of hinge 
modes by multiples of 2


Odd number of hinge modes stable 
against any C4T respecting surface 
manipulation


Bulk         topological property Z2

a) b)

Chern

insulator

c)



Construction of a 2nd order 3D TI
Protecting symmetry: C4T    

(breaks T, C4 individually)


Bulk construction 
TI band structure plus (sufficiently weak) 

triple-q (𝜋,𝜋,𝜋) magnetic order

Toy model with only C4T in z-direction

H4(
~k) =

 
M +

X

i

cos k
i

!
⌧
z

�0 +�1

X

i

sin k
i

⌧
y

�
i

+�2(cos kx � cos k
y

) ⌧
x

�0 + � ⌧
y

�0

3D TI T, C4 breaking term

⇡0 2⇡

kz

�(HC)

0

Spectrum of column 
geometry



Topological invariant of a 2nd order 3D TI

Case of additional inversion times TRS, IT, symmetry:

use                            with eigenvalues(IC4)

4 = �1 ⇠~k{e
i⇡/4, e�i⇡/4} ⇠~k = ±1

[IC4, IT ] = 0Due to                             ‘Kramers’ pairs with same                   are 
degenerate.

⇠~k = ±1

(�1)⌫ =
Y

~k2IĈz
4 T̂

⇠~k

Band inversion formula for topological index à la Fu Kane

for C4T invariant momenta

k
x

ky

kz

IĈz
4 T̂

= {(0, 0, 0), (⇡,⇡, 0), (0, 0,⇡), (⇡,⇡,⇡)}

Same quantization with C4T as with T alone:                 

                     is topological invariant✓ = 0,⇡ Z

top

= ei
✓

8⇡2

R
d

4
xE·B

(C4T )
4 = �1Different from existing indices, because



Wilson loop topology of a 2nd order 3D TI

Z2 Wilson loop winding 

between these momenta is 

topological invariant

⌫ =

1

2⇡

X

l

✓Z (⇡,⇡)

(0,0)
d

~k · @~k�l(
~k)� �l(⇡,⇡) + �i(0, 0)

◆
mod 2

Wilson-loop based bulk topological characterization

(k
x

, k
y

) 2 {(0, 0), (⇡,⇡)}

C4T implies Kramers-like 
degeneracies in Wilson loop 
spectrum at C4T invariant momenta

(0, 0) (⇡,⇡)(0,⇡) (0, 0)
�⇡

0

⇡

k
x

, k
y

�(HW )

W
nm

(k
x

, k
y

) = exp

Z 2⇡

0
dk

z

hu
m

(

~k)|@
kz |un

(

~k)i
�



Boundary topology of a 2nd order 3D TI
Nested entanglement spectrum Nested Wilson loop spectrum

⇡0 2⇡

0
A
B

�(He)

kz

4

�4

entanglement 
spectrum is 
gapped

⇢A = TrB | ih | ⌘
1

Ze
e�He

⇢e;A1 = TrA2 | eih e| ⌘
1

Ze�e
e�He�e

Define: entanglement spectrum of 
entanglement Hamiltonian

⇡0 2⇡

0

A1

B

A2

�(He�e)

kz

4

�4

gapless chiral 
hinge modes

x-direction Wilson loop spectrum gapped

k
x

ky

kz

W is 2x2 matrix 
with topological 
lower band: log is

‘Wilson loop 
Hamiltonian’

Define: Wilson loop of Wilson loop

gapless chiral 
mode

[Benalcazar et al., arxiv:1611.07987]

kz

…one more:
Wilson loop of gapped slab 
spectrum: gapless modes



Gapless surfaces?

chiral 
gapless 
hingesurface turns gapless 

at some critical angle

consider adiabatically inserting a hinge

Critical angle nonuniversal, not fixed to particular crystallographic 
direction. Different from gapless surfaces of TCIs.

H4(
~k) =

 
M +

X

i

cos k
i

!
⌧
z

�0 +�1

X

i

sin k
i

⌧
y

�
i

+�2(cos kx � cos k
y

+ r sin k
x

sin k
y

) ⌧
x

�0 + � ⌧
y

�0



Electromagnetic response
Flux insertion in quantum Hall 
system creates quantized 
dipole

�" = ��# ⌘ �

+ —

+ —

�" = ��# ⌘ �

Flux insertion in chiral higher-
order TI creates quantized 
quadrupole

+
+—

—

�" = ��# ⌘ �



2nd order 3D topological superconductor

H4(
~k) =

 
M +

X

i

cos k
i

!
⌧
z

�0 +�1

X

i

sin k
i

⌧
y

�
i

+�2(cos kx � cos k
y

) ⌧
x

�0 + � ⌧
y

�0

has a particle hole symmetry P = ⌧y�yK

Interpretation: Superconductor with generic dispersion and 
superposition of two order parameters

�1 spin triplet, p-wave

Balian-Werthamer state in superfluid Helium-3-B

d~k,i = i�1 sin ki

�2 spin singlet dx²-y²-wave

p+ id              superconductor with chiral 
Majorana hinge modes



Time-reversal symmetric 2nd order 3D TI

Stabilized by mirror symmetries and TRS

One Kramers pair of modes on each hinge,

like quantum spin Hall edge



Time-reversal symmetric 2nd order 3D TI
Can also be defined with C4 and time-
reversal symmetry:

C4 eigenvalues

Re

Im

TRS Kramers pairs

⇠ = +⇠ = �

Define 3D Z2 index independently in each     subspace. 

One nontrivial: 3D Z2 TI,  surfaces are gapless

Both nontrivial: 3D higher-order TI, surfaces gapped, edges gapless

Both trivial: trivial insulator

⇠



Time-reversal symmetric 2nd order 3D TI
Surface perturbations: 
No mirror chiral modes allowed in 2D

A B

x

y bo
un

da
ry

bo
un

da
ry

do
m

ai
n 

w
al

l

R L

(1)(2) (2)(3)
E

ky

(1)(2)

+i mirror subspace E

ky

(3)(2)

- i mirror subspace

(1) ) (2) ) (2) ) (3)

? ? ? ?

a) b)

c) d)

Mirror x → —x, leaves domain wall 
invariant

eigenvalue +i 
eigenvalue —i

A B

x

y bo
un

da
ry

bo
un

da
ry

do
m

ai
n 

w
al

l

R L

(1)(2) (2)(3)
E

ky

(1)(2)

+i mirror subspace E

ky

(3)(2)

- i mirror subspace

(1) ) (2) ) (2) ) (3)

? ? ? ?

a) b)

c) d)

Not allowed:

A B

x

y bo
un

da
ry

bo
un

da
ry

do
m

ai
n 

w
al

l

R L

(1)(2) (2)(3)
E

ky

(1)(2)

+i mirror subspace E

ky

(3)(2)

- i mirror subspace

(1) ) (2) ) (2) ) (3)

? ? ? ?

a) b)

c) d)

Number of upmovers of both mirror 
eigenvalues are equal

Allowed 2D surface perturbations:



d)

n+n�

(110)
(100) (010)

a) b) c)

R1 R2

L2L1

2D TI

+i-i

ky

k
x

Time-reversal symmetric 2nd order 3D TI
Bending the surface of a 
topological crystalline insulator 
mirror Chern number = 2

Allowed 2D surface perturbations:

A B

x

y bo
un

da
ry

bo
un

da
ry

do
m

ai
n 

w
al

l

R L

(1)(2) (2)(3)
E

ky

(1)(2)

+i mirror subspace E

ky

(3)(2)

- i mirror subspace

(1) ) (2) ) (2) ) (3)

? ? ? ?

a) b)

c) d)

Number of upmovers of both mirror 
eigenvalues are equal

One upmover with mirror eigenvalue +i  (=mirror Chern number/2)

Requires 3D bulk.

(upmovers — downmovers) 

with mirror eigenvalue —i

(upmovers — downmovers) 

with mirror eigenvalue + i

Z

Z
= with time-reversal Z



Time-reversal symmetric 2nd order 3D TI
Example: SnTe with appropriate stress to open gap on the surface

Large 1D DoS only at odd step widths!

Tuesday, November 22, 16

P. Sessi et al., 

Science, 354, 1269-1273 (2016)




Summary: Higher-order topological insulators

new paradigm for topological phases protected by spatial symmetries


• mirror or rotational symmetries

• hinge modes protected by 3D bulk invariant

• single hinge has same properties as that of QHE/QSHE

• feature nested entanglement spectrum or nested Wilson loop spectrum

• realizations in AFM spin-orbit coupled semiconductors, TCIs (strained SnTe) 

No TRS:  
C4T symmetry:     Z2 classification

mirror symmetry:  ZxZ classification

TRS: 
C4 symmetry:       Z2 classification

mirror symmetry:  Z classification

arXiv:1708.03636



Bonus material



Edge modes at  
TCI surface steps

P. Sessi et al., 

Robust spin-polarized midgap states at step edges of  
topological crystalline insulators  
Science, 354, 1269-1273 (2016)




Step edges on topological crystalline insulators
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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[Hsieh et al., Nature Comm., 2012]

(Pb,Sn)Se: TCI with two pairs of Dirac cones, 

protected by mirror Chern numbers

+i-i

Two surface terminations related by half lattice translation
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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Step edges on topological crystalline insulators

Study step edges on the surface with 
STM

Step edges on topological crystalline insulators

employ STM to analyze step edges on
(Pb,Sn)Se surfaces

pick a (0,1) step edge orientation and
distinguish even from odd steps

Tuesday, November 22, 16

Pick (0,1) step edge orientation and 
distinguish even and odd steps



Large 1D DOS at odd steps only
Large 1D DoS only at odd step widths!

Tuesday, November 22, 16

Merging of step edgesMerging step edges

Tuesday, November 22, 16



Atomistic approach: DFT

empirical confirmation: 1D DoS only at odd step edges 


other dispersive features likely stem from finite size

Atomistic approach: DFT

empirical confirmation: 1D DoS only at odd step edges

x

z

(1)

(2)

(3)

(4)

(5)

(6)

remainder dispersive features are likely to stem from finite size and equal 
sublattice hybridization

Tuesday, November 22, 16



Qualitative explanation: 
Flat edge bands in graphene

+    -   +    -   +    -   +    -   +   -    +    -    +   

Honeycomb lattice (with spinless 
fermions), nearest neighbor hopping

-3 -2 -1 0 1 2 3
kx

-3 -2 -1 0 1 2 3
kx

Haldane gap

-3 -2 -1 0 1 2 3
kx

trivial gap



Qualitative explanation: 
Flat edge bands in graphene

-3 -2 -1 0 1 2 3
kx

Appearance of edge states dictated by 
Wilson loop/Berry phase invariant. 

W = exp

Z 2⇡

0
dkh |@k i

�

W = ±1

| i ! ei⇡k| iHalf a lattice translation: W ! �W

“Bulk-boundary” correspondence is exactly 
reversed between the two twin domains: depends 
on choice of bulk unit cell vs. boundary 
termination
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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Bonus Summary

Edge modes at TCI surface steps

1D edge states at step edges due to Berry phase mismatch 
between surface Dirac cones

ROBUST: 
• 200 meV bulk gap

• no backscattering observable in QPI

• temperature: almost unaltered at T = 80K

• TRS breaking: almost unaltered at B = 11T

• only 10 nm wide


