

University of Zurich^{UZH}

Titus Neupert

Yukawa Institute, Kyoto, November 03, 2017

Higher order topological insulators

A paradigm for topological states of matter

 $\partial(\partial M) = \emptyset$ (the boundary of a boundary is empty)

... works when things are sufficiently smooth.

Crystals have no smooth surface!

arXiv:1708.03636

Frank Schindler Maia Vergniory (U Zurich) (Donostia)

Stuart Parkin Andrei Bernevig (Max Planck Halle) (Princeton U)

Topological Insulators

Bulk-boundary correspondence:

gapless Dirac cones, gapped bulk band structure

Topological invariant:

$$\theta = -\epsilon_{abc} \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \mathrm{tr} \left[\mathcal{A}_a \partial_b \mathcal{A}_c + \mathrm{i} \frac{2}{3} \mathcal{A}_a \mathcal{A}_b \mathcal{A}_c \right]$$

$$\mathcal{A}_{a;n,n'} = -\mathrm{i}\langle u_n | \partial_a | u_{n'} \rangle$$

 $\theta = 0, \pi$ with time-reversal symmetry

Topological invariant with inversion:

 $\prod_{k \in \text{TRIM}} \xi_k = (-1)^{\nu} \text{ product over inversion eigenvalues}$ at time-reversal invariant momenta

Superconducting and magnetic TI surface

non-interacting SPT phase:

$$G = U(1) \rtimes Z_2^T$$

Dirac cone + s-wave pairing:

U(1) breaking: TRS SC with Majorana in vortex

TR breaking: anomalous QHE

fractional conductivity without fractionalization

Domain wall modes

Topology from Wilson loops

Define 'Wilson loop Hamiltonian' $W(k_x, k_y) = \exp[-iH_W(k_x, k_y)] = \pi e^{\lambda(W)}$

Resembles surface Hamiltonian with qualitatively identical gapless spectrum (single Dirac cone)

Equivalence: eigenvalues of Wilson loop and projected position operator $\hat{P}\hat{x}\hat{P}$

Topological crystalline insulators

Stabilize more than one Dirac cone by adding crystalline symmetries

Mirror symmetry:

eigenvalues +i and -i in spinful system eigenstates on the mirror invariant planes in momentum space

Mirror Chern number:

Chern number in +i/-i subspace on the plane

$$C_{\pm} = \frac{1}{2\pi} \int d^2 \mathbf{k} \operatorname{tr} \left[\partial_{k_y} \mathcal{A}_z^{\pm} - \partial_{k_z} \mathcal{A}_y^{\pm} \right]_{k_x = 0/\pi}$$

$$\in \mathbb{Z} \quad \text{Time-reversal symmetry:} \quad C_+ = -C_-$$

Number of Dirac cones crossing line in surface BZ

[L. Fu, Phys. Rev. Lett., 2011]

Construction of a 2nd order 3D TI

Protecting symmetry: C₄T (breaks T, C₄ individually)

surface construction from 3D TI:

decorate surfaces alternatingly with outward and inward pointing magnetization, gives chiral 1D channels at hinges

Adding C₄T respecting IQHE layers on surface can change number of hinge modes by multiples of 2

Odd number of hinge modes stable against any C₄T respecting surface manipulation

Bulk \mathbb{Z}_2 topological property

Construction of a 2nd order 3D TI

Protecting symmetry: C₄T (breaks T, C₄ individually)

Bulk construction

TI band structure plus (sufficiently weak) triple-q (π , π , π) magnetic order

Toy model with only C₄T in *z*-direction

$$H_4(\vec{k}) = \left(M + \sum_i \cos k_i\right) \tau_z \sigma_0 + \Delta_1 \sum_i \sin k_i \tau_y \sigma_i + \Delta_2 (\cos k_x - \cos k_y) \tau_x \sigma_0$$
3D TI
T, C₄ breaking term

Spectrum of column geometry

Topological invariant of a 2nd order 3D Tl

Same quantization with C_4T as with T alone:

 $heta=0,\pi$ is topological invariant

 $Z_{\rm top} = e^{i\frac{\theta}{8\pi^2}\int d^4x \boldsymbol{E} \cdot \boldsymbol{B}}$

Different from existing indices, because $(C_4T)^4 = -1$

Case of additional inversion times TRS, IT, symmetry: use $(IC_4)^4 = -1$ with eigenvalues $\xi_{\vec{k}} \{e^{i\pi/4}, e^{-i\pi/4}\}$ $\xi_{\vec{k}} = \pm 1$

Due to $[IC_4, IT] = 0$ 'Kramers' pairs with same $\xi_{\vec{k}} = \pm 1$ are degenerate.

Band inversion formula for topological index à la Fu Kane for C₄T invariant momenta

$$(-1)^{\nu} = \prod_{\vec{k} \in \mathcal{I}_{\hat{C}_{4}^{z}\hat{T}}} \xi_{\vec{k}}$$

 $\mathcal{I}_{\hat{C}_{\star}^{z}\hat{T}} = \{(0,0,0), (\pi,\pi,0), (0,0,\pi), (\pi,\pi,\pi)\}$

Wilson loop topology of a 2nd order 3D TI

Wilson-loop based bulk topological characterization

$$W_{nm}(k_x, k_y) = \overline{\exp}\left[\int_0^{2\pi} \mathrm{d}k_z \langle u_m(\vec{k}) | \partial_{k_z} | u_n(\vec{k}) \rangle\right]$$

C₄T implies Kramers-like degeneracies in Wilson loop spectrum at C₄T invariant momenta $(k_x, k_y) \in \{(0, 0), (\pi, \pi)\}$

Z₂ Wilson loop winding

between these momenta is topological invariant

$$\nu = \frac{1}{2\pi} \sum_{l} \left(\int_{(0,0)}^{(\pi,\pi)} \mathrm{d}\vec{k} \cdot \partial_{\vec{k}} \lambda_l(\vec{k}) - \lambda_l(\pi,\pi) + \lambda_i(0,0) \right) \mod$$

2

Boundary topology of a 2nd order 3D TI

Nested entanglement spectrum

entanglement spectrum is gapped

Define: entanglement spectrum of entanglement Hamiltonian

$$\rho_{e;A_{1}} = \operatorname{Tr}_{A_{2}} |\Psi_{e}\rangle \langle \Psi_{e}| \equiv \frac{1}{Z_{e-e}} e^{-H_{e}}$$

$$\stackrel{\lambda(H_{e-e})}{ \int_{A_{1}} A_{2}} gapless chiral hinge modes$$

Nested Wilson loop spectrum

x-direction Wilson loop spectrum gapped

k_y

...one more: Wilson loop of gapped slab spectrum: gapless modes

2 matrix ological and: log is loop nian' DOD iv:1611.07987]

ss chiral

Gapless surfaces?

consider adiabatically inserting a hinge

$$H_4(\vec{k}) = \left(M + \sum_i \cos k_i\right) \tau_z \sigma_0 + \Delta_1 \sum_i \sin k_i \tau_y \sigma_i + \Delta_2 (\cos k_x - \cos k_y + r \sin k_x \sin k_y) \tau_x \sigma_0$$

Critical angle **nonuniversal**, not fixed to particular crystallographic direction. Different from gapless surfaces of TCIs.

Electromagnetic response

Flux insertion in quantum Hall system creates quantized dipole

Flux insertion in chiral higherorder TI creates quantized quadrupole

2nd order 3D topological superconductor

$$H_4(\vec{k}) = \left(M + \sum_i \cos k_i\right) \tau_z \sigma_0 + \Delta_1 \sum_i \sin k_i \tau_y \sigma_i + \Delta_2 (\cos k_x - \cos k_y) \tau_x \sigma_0$$

has a particle hole symmetry $P=\tau_y\sigma_y K$

Interpretation: Superconductor with generic dispersion and superposition of two order parameters

 $\Delta_1 \quad \text{spin triplet, p-wave} \quad d_{\vec{k},i} = \mathrm{i} \Delta_1 \sin k_i \\ \text{Balian-Werthamer state in superfluid Helium-3-B}$

$$\Delta_2$$
 spin singlet d_{x²-y²}-wave

 $p + \mathrm{i}d$ superconductor with chiral Majorana hinge modes

Stabilized by mirror symmetries and TRS

One Kramers pair of modes on each hinge, like quantum spin Hall edge

Define **3D** Z₂ index independently in each ξ subspace. **One nontrivial:** 3D Z₂ TI, surfaces are gapless **Both nontrivial:** 3D higher-order TI, surfaces gapped, edges gapless **Both trivial:** trivial insulator

Surface perturbations: No mirror chiral modes allowed in 2D domain wall boundary boundary Β Α Mirror $x \rightarrow -x$, leaves domain wall *Y*▲ invariant X eigenvalue +i eigenvalue — i Not allowed: ? ? ? 2

Allowed 2D surface perturbations:

Number of upmovers of both mirror eigenvalues are equal

Requires 3D bulk.

Allowed 2D surface perturbations:

Number of upmovers of both mirror eigenvalues are equal

Summary: Higher-order topological insulators

No TRS:

C₄T symmetry: Z₂ classification mirror symmetry: ZxZ classification TRS:

C₄ symmetry: Z₂ classification mirror symmetry: Z classification

new paradigm for topological phases protected by spatial symmetries

- mirror or rotational symmetries
- hinge modes protected by 3D bulk invariant
- single hinge has same properties as that of QHE/QSHE
- feature nested entanglement spectrum or nested Wilson loop spectrum
- realizations in AFM spin-orbit coupled semiconductors, TCIs (strained SnTe)

arXiv:1708.03636

Bonus material

Edge modes at TCI surface steps

P. Sessi et al., *Robust spin-polarized midgap states at step edges of topological crystalline insulators* Science, **354**, 1269-1273 (2016)

Step edges on topological crystalline insulators

-i/+i

(Pb,Sn)Se: TCI with two pairs of Dirac cones, protected by mirror Chern numbers

Two surface terminations related by half lattice translation

[Hsieh et al., Nature Comm., 2012]

Step edges on topological crystalline insulators

Large 1D DOS at odd steps only

Atomistic approach: DFT

empirical confirmation: **1D DoS only at odd step edges**

other dispersive features likely stem from finite size

Qualitative explanation: Flat edge bands in graphene

Appearance of edge states dictated by Wilson loop/Berry phase invariant.

$$W = \exp\left[\int_0^{2\pi} \mathrm{d}k \langle \psi | \partial_k \psi \rangle\right]$$

 $W = \pm 1$

Half a lattice translation:

$$|\psi\rangle \to e^{\mathrm{i}\pi k}|\psi\rangle$$

 $W \rightarrow -W$

"Bulk-boundary" correspondence is exactly reversed between the two twin domains: depends on choice of bulk unit cell vs. boundary termination

Bonus Summary

Edge modes at TCI surface steps

1D edge states at step edges due to Berry phase mismatch between surface Dirac cones

ROBUST:

- 200 meV bulk gap
- no backscattering observable in QPI
- temperature: almost unaltered at T = 80K
- TRS breaking: almost unaltered at B = 11T
- only 10 nm wide

